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Abstract

General time-volume averaged conservation equations and jump conditions for two-phase flows
are derived here. The time-averaged equations for a single phase region in two-phase flow are obtai-
ned from local instant balance equations by a technique often used for single phase turbulent flow
equations. The results obtained by integrating the time averaged equations over a flow volume are
spatially averaged twice; first, they are averaged over a single phase region of the 4-th phase and
then averaged over the total volume of the %-th phase, in a flow volume. The mass, momentum,
and energy conservation equations are obtained from the general time-volume averaged eguations.
The advantages of the present model are explained by comparing it with Ishii’s model (1) and
Banerjee’s model (2). Finally, the assumptions and approximate terms of the equations of the
THERMIT-6S are clarified.
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consists of a number of single phase regions
1. Introduction bounded by moving interfaces. Therefore, a
formulation based on local instant variables and

The most important characteristic of two moving interfaces results in a multi-boundary
phase flows is the presence of moving internal problem which are not known a priori. In order
interfaces separating phases; a two-phase system to overcome this difficulty, we need the formula-
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tion of two-phase flows to integrate the micro-
scopic scales of phenomena but to preserve
their effect on macroscopic phenomena.

Three approaches have been used widely to
develop a two-phase flow model:

1) Mixture Model Approach

2) Control Volume Approach

3) Averaging Approach

Ishii (1,3) provides an excellent description
of these three approaches. The first and second
approaches are mainly based on hypothesis,
physical intuition, and assumed similarity with
a single phase flow system. In these two app-
roaches, even though easy formulation and pra-
cticality in simple cases are main advantages,
we encounter the difficulty of identifying the
eftect of the microscopic scales of phenomena
on the macroscopic behavior. On the other
hand, the averaging approch enables us to set
up mathematically rigorous equations.

The averaging approach can be classified
into three main groups: Eulerian, Lagrangian,
and Boltzmann statistical averages. In an
Eulerian description, time and space coordinates
are taken as independent variables and various
dependent variables express their changes with
respect to these coordinates. As the particle
coordinate in a Lagrangian description displaces
the spatial variable of the Eulerian description,
the Lagran- gian average is taken by following a
certain particle and observing it in a time inter-
val. The Boltzmann statistical averaging with a
concept of the particle number density is im-
portant when the collective mechanics of large
number of particles are in question. The Eulerian
average has been considered as the most widely
used method, due to its close relation to exper-
imental observations and instrumentations. The-
refore, here the time-volume averaged conser-
vation equations of two phase flows are derived
on a basis of the Eulerian averaging approach.

2. Local Instant Balance Equation

A two-phase flow is considered to subdivided
into several single phase regions separated by
moving interfaces. Each separate phase can be
connected through jump conditions. Jump con-
ditions constitute a characteristic feature of
moving boundaries and provide relations be-
tween the phase interaction terms. Therefore,
the ordinary method used in continuum mech-
anics will be first used and then jump conditions
will be derived.

Let us start from a general balance equation.
For a material of the k-th phase with the vol-
ume and surface, V,; and A,;- we can set up

the general balance equation.

a;i §V.,pk¢"dV=~§Amnm.jde

+ [, oSy o

where the subscript, m, indicates a control

mass, p; is the density of k-th phase, &, is
any quantity being conserved in the k-th phase,
Jx and S, are the efflux and source of ¢, and
7y is an outward unit normal vector for the
k-th phase. Using the Reynolds transport theo-
rem (1), we have

4 — [ esr
dt fVm.pk¢de_fv.. at v

+ §A ‘pk¢k5’k . ﬁde (2)

where 7, denotes the velocity of a material of
the k-th phase. Note that, while the Reynolds
transport theorem is derived for a material
volume, the Leibnitz rule (4) (given later by
Eq. (24)) is a purely geometric theorem. The
Gauss’s theorem (5) gives a transformation

between a volume and surface integral.

§An‘(.0k¢'k7)'k+.7k) ‘A dA= fv,,.V. (oxa¥

+J0dv (3)
Substituing Eqgs. (2) and (3) into Eq. (1), we
have
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fv,... [ _@Bktﬂ +pe (Pk¢k7k+jk)

_kak ] dVZO. (4)

By the axiom of continuum, we get the local

instant differential balance equation

%‘I’V'(pk¢k7k>+V'7k_kak:0. (5)

The local instant differential balance equation,
Eq. (5) can be applied in each phase up to an
interface. Let us derive an interfacial balance
equation based on the control volumes, V; and
V, are surrounded by the areas of each phase,
A; and A,, with an interfacial area 4;. As the
control volumes, V; and V,, are very thin, we
put #y=—7%,,

where %, and #, are outward unit normal
vectors from surfaces, 4; and A,, respectively.
Now we have the general balance equation for
the control volumes, V; and V, by summing
the integrated result of Eq (5) over each result.

k=1 =

2 d - 2
5 ar | pav=g,

{ f LN CUACD +7dA

+ [, peSidV ] 6
We let the volumes, V; and V, shrink down to

V1 and Vz
vanish, while the interfacial area A; remains

the interface so that the volumes,

finite in the limit. The volume integrals vanish
and A; is equal to A;, in the limit. Then we
have the general interfacial balance equation.

2
kg(mk¢k+ ﬁk'jk) =0 )
where si,=p, (T, —7,) 7 (8
HZ
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Fig. 1. Configuration of interface.

3

71 is the local instant mass flux from V, thro-

ugh the interface.

3. General Time Averaged Balance
Equation

In a single phase turbulent flow, the Eulerian
time averaging is essential and a well-known
technique. As a two-phase flow consits of seve-
ral single phase regions, the technique used in
a single phase turbulent flow is taken to obtain
the general time-averagted balance equation for
one of single phase regions.

Let us integrate the local instant balance
equation, Eq. (5), over a time interval 4¢. The
time interval 4¢ should be smaller than the
transport time of one single phase to pass thr-
ough a reference position and than the macro-
scopic time constant of the unsteadiness of the
bulk fluid. Also 4¢ should be large enough to
smooth out the local variations of properties.
Ishii (1) and Delhaye (6), used 4¢ which is
a time inerval sufficient for several single phase
regions to pass through a local position. How-
ever, as turbulence originated in a single phase
region will be confined in that phase by the
interface and the effect of turbulence in a phase
can be transmitted through the other phase, 4t
should be smaller than a time interval for a
single phase region to pass through a reference
point.

As a result, we get a time-averaged equation
which is identical to that made in analyzing a
single phase turbulent flow.

6,05%_*_7 « (V) +F - .7k_m:0, 9

1o

In order to obtain Eq. (9), we used the follo-
wing relationships which come from the Leibn-

~ 1
where F—_ﬂfAdet'

itz rule.

oF  oF

T=T andV-F=V~F, an
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By taking a mon-zero scalar weighted function
w, we define the general weighted mean value
of a function F as:

F— wF

F=vl 12)
In general, the volume, momentum, energy, and
entropy are considered to be extensive variables.
If F is taken as a quantity per unit volume of
the extensive characteristic, it can be expressed
in terms of the variable per unit mass ¢ as:

F=p¢, (13)
The appropriate mean value for ¢ should be
weighted by the density as:

>

¢$= as

s[2l

Now let us introduce fluctuating components
of variables caused by turbulence. In general,
as they are defined as a difference between a
local instant variable and its weighted mean
value, we have

>
Fit=F—F. 15)
Since the mean values of ¢ and ¥ are weighted

by mass, the fluctuating components are given

as follows:
R d >
hr=¢s+Pp""and Ty= 7, +7,". 16

Using Eqgs. (14) and (15), we have the addi-
tional relationships:

[ o ——>

pk”___o, ¢k“=09 T)’lz”= )

=0, FTT=0. an
From Egs (16) and (17), the convective flux
term

—_— e

Pk‘llk'z?k:pkksbvk-}-pkgbk"i’k”. (18)
Now we obtain the time-averaged balance equ-

ation

—a—%;ﬂw- e dnTe) +7 « Tt T5 —psSe=0,
(19)
where

.7_§,=Pk¢k“3k”. (20)

In the same manner, we can obtain the time-

averaged interfacial balance equation by integr-
ating Eq. (7) over the time interval, 4t

2 3 5
kg (ﬁlk(ﬁk-l-ﬁk . .7k) =0, @n
where
=T (22)
my

>
ngis weighted by the time averaged mass flux

through the interface.

4. General Time-Volume Averaged Bala-
nce Equation

Many practical problems of two-phase flows
are dealt with using time-volume averaged equa-
tions. A time-volume averaged equation can be
obtained by integrating the local time averaged
equation, Eq. (19), over a flow volume Vy,
which consists of several single phase regions.

- L e . 05
Z V; fv:..-[ T (ose¥)

+7 - kT -0 | av=0, (23)
where I is the maximum number of the &-th
phase regions in the volume V; and Vj; is the
volume of the i-th single phase region of the
k-th phase. The theorems we will use are given
below:

Leibnitz rule

) [ oF oo
L[, Fav={, Srav+ [, Fu.waa,

(24)
Gauss’ theorem
- - - —
{7 Fav=p. [, Fav+ [ .- Faa,
(25)
where A,; is the surface area of the i-th single
phase region of the £-th phase in the volume

V, and ;- #, is the surface displacement vel-
ocity of A,. Using these theorems, we obtain
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the equation

0 PO —re
;_T}f— [ vaﬁpkﬁbk dV+V ’ anipk¢kvde
v [, dutld av-| 58 av

+ [ e G @—70+7D) dA

L DAL TN A S D
where A;,; denotes the area of the j-th single
region of the k-th phase contacting the solid
surface in the volume V,. The fifth term in
Eq. (26) can be simplified by using the defini-
tion of the turbulent flux, Eq. (20).

Pk N _‘ N
B=(pe(Va—T) + % - s

= orns+ PO — B < B (2T

From Egs. (14) and (18), Eq. (27) becomes
B=(pi»Vs Y HRE M 28)
Then, we have the following equation which is

consistent with the jump condition, Eq. (7).
<«

—P
B=rityy, (29)
Let us introduce spatial averaged relationships

for a single phase region.

(Fy= f L F av/ f 4V (30)
(Fyui= f F av/ f .4V @D
(Fyu= f Faa / f . dA. &)

Substituting Egs. (30), (31) and (32) into Eq.
(26), we obtain the equation averaged for a
single phase region.

3 % T
Z [—(—,%—a'k,- <‘0k¢'k>+V * Upi <pk¢vk>

+F o i <_]k+f;:>
— &y <.5k§:>+—zl;f <<_m;b_l:>ai

o Giin e Ty ] s | =0, 33)

where

5

woe Vi L Aw 1 Ay

TV, La TV, L. Vo
(34

Then Eq. (33) is averaged over the total vol-

ume, or over the total surface, of k-th phase
in the volume V; by using the following rela-
tionships:

;aki<F> ;aki<F>
E= = (35)
1 — 1
;?<F>ai Z’JT‘““ <F>ai
(Fo= = @)
> 1 1
i Lai Lak
1 1
R TR
(==, (D
; ij ka
where
i ZAkt ZAkj
o=y, L=t 1 T
k ki Lak Vf ka Vf
(38)

Substituting Eqs. (35), (36), and (37) into Eq.
(33), we have the general time-volume avera-
ged equation.

—2-aou) + 7oa(ouiTe)

+7a Tt T — (@S

G + e T

(e Tae=0, (39)

Let us obtain the time-volume averaged int-

erfacial jump condition from Eq. (21). Integr-
ating Eq. (21) over the interfacial surface area

Ay, we get the jump condition.
2 8 3
kgl ;IAH (ﬁlk‘l}k+ ﬁk.jk}dA

=% Gt e lde=0. 40




5. Time-Volume Averaged Conservation
Equations

The forms of the time-volume averaged con-
servation equations for mass, momentum, and
energy of the &-th phase can be written by

specifying Eq. (39) as follows:
Mass

In this case,

=1, fk=0, Sp=0. 4D
We have

- o)+ -apIn =Ty (42)
where

jk'=Pk7;k” =0
and Iy=——L—m).. (43)
ak

Iy is the time-volume averaged interfacial
mass flow rate per unit volume of k-th phase.

Momentum
In this case,
D=7 Tk:Pk f—:‘k' Sk-_—}:- (44)
We have
d 2 - oo -
_at-ak«ka W) 7 0¥ 0 k) -+ pasfon)

— e 73) — (P F) — (el T

+ Lo (T eat (B

LTt @ id=0 (45)

| J— oIt 1t
= U U

(46)

o

and py; is the local interfacial pressure. The
time-averaged local interfacial pressure p,; can

be divided into three terms as follows:

Pri={Be) + dpri+ 4P s, “n
where
Ai’ki= «pki»a - ((Pk», (48}
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A i=Bri—{Pridar (49)
and 4py; is the difference between the average
interfacial and average phase pressures and
dp’s; is the difference between the local and
average interfacial pressures.

Using Gauss’ theorem, we obtain the follow-

ing relationship:

L (Bde=— B+ )
ak

+,+”<<Ap’k,~>>a. (50)

The second term on the right-hand side in Eq.
(50) is the term which leads to the virtual
mass for inviscid flows. Substituting Eq. (50)
into Eq. (45), we obtain the momentum conse
rvation equation.

R d

2 DT+ 7o)+ ()

— o) — 7 -arlne ) — 7 oas - Ta)
—dprpay
1

—=
= L. T+ Ap"ni

!

Te W

_I,.

A (50)

Energy

In this case,

2
h=E,=e, _}__v_;_,

jk=‘—ik_ (szI —T) 7Y
8=F,- 7,40, (52)
where e, and Q, are the specific internal energy
and volumetric internal energy generation rate.
In solving two-phase problems, it is often
useful to separate the mechanical and thermal
effects in the total energy equation. From dott-
ing the local instant momentum equation deri-
ved by combining Egs. (5) and (44) by the
velocity of k-th phase 7,, we have the mecha-

nical energy balance equation.

‘% (%Pk‘Y/f) +r7- (—;‘-owﬁk 7PV
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=P Vetpe (_—Tk'vk> _?k:Vvk—Pkﬁ'vk———O.

(53)

Using Eqs. (5) and (52), we have the local
instant energy balance equation.

—aat—Pk<3k +%71k2>+l7‘:0k7k( ek‘l’—%— 'Ukz)

+7-Gutr- (paVs) +p- (rarvn)
-
— 0 (Fy Ty +Qr) =0. (54)

Subtracting Eq. (53) from Eq. (54), we can
obtain the internal energy equation.
d o . o
kaek'*'V PRVt Qrt PV
(55)

+?k57§k—Pka=0.
If we compare the equations of mechanical and
thermal energy, Egs. (53) and (55),
out that (puf+7:) and (%,:p¥:) are common to

we find

both equations and that they appear with opp-
Therefore,

these terms describe the interconversion of me-

osite signs in the two equations.

chanical and thermal energy. The term can
be either positive or negative, depending on
whether the fluid is expanding and contracting.
As a result, it represents a reversible mode of

interchange. Using the continuity equation, we

have
o 0, o
PrdTy=—py ;k [—a‘[;i—i—vk'VPk ]
_ 1 Dp,
=—p o Dt - (56)

For a fluid of constant density, the term(pyp+

7)) becomes zero. On the othere hand, the term

(—:_k—: p7.) is always positive and therefore rep-
resents an irreversible degradation of mechani-
cal to thermal.

Let us get the time averaged internal energy
from Eq. (55).

aat Owtr +[ ° Pkekvk—f—V'?ﬂ-FPkV'vk’F?k:V?fk

—0:Q:=0. (57)

Using Egs. (16), (17), and (18), we can obt-
ain the time averaged internal energy equation.

7
a —t i 4—)4_:) — —_
kaek +pe(orer¥s) +p+ (Tr+74)
FoF Vit TipT =0,
where
7]:;=Pkek”17k“- (58)

The time-volume averaged internal energy equ-
ation can be obtained by integrating Eq. (58)
over the flow vlume V. In order to do it, esp-
ecially, the term (puf-7,) a special
manipulation as follows. The local instant pres

requires

sure can be divided into two components: time-
averaged local pressure and local time fluctuation
of pressure.

br=putp:"". (69
Then (puf+7,) becomes
P Ve=pa T+ V. (60)
Let us integrate Eq. (60) over the flow volume
V;. Then, we have

1 - = -
=RV [, G T BT 4V (6D)
Also the time averaged local pressure can be

divided into two components: time-space avera-

ged pressure and time averaged space fluctuation
of pressure.

Be={Pe)+ 1" (62)
Substituting Eq. (62) into Eq. (61), Eq. (61)
becomes

Sy [0, 45y

[, B TR av.] 63)
Using Eq. (25), the first term in Eq. (63) is
expressed as follows:

1 =
o [, T av

f , BV

[, 77 da. (64)

—(F7 -

)
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Then, taking the procedure described in Section

. >
4 and assuming that 7, is equal to ¥,, we have

;?lffv.,-pky'ydeZ«Pk»V'a’k(&}k»

(P Vot a7 T

+" 7V ad. (65)
Applying the same procedures for other terms
in Eq. (58), we have the time-volume averaged

internal energy equation.

o - oo i
"‘aTak<<pkek>>+V o)+ 7l + 74

(P AT+ (P (a2

- «> —_—
T Fav ) +anl b7 Tt 27 V)

1 29 == 1 o =
=——L—ak“((mkeri-nk"lk»a“-m‘«nk'fh))w-
(66)

The term (su.e;) can be expressed in terms of
enthalpy, 2. The enthalpy is defined as folloows:

?
h=e+-2. 67
e+ - (67)

Using the definition sit,=p, (¥, —7;) »#s, we have

iy 24 =pp(Tp—T:) +Fipe (68)
Pr
By Eq. (68), we have
(G e =) — (B TamTB) - T).  (69)
Using the definition Eq. (62), we have
(Be(Tr—7) 74)

=(PITR— T )+ (B * (Tam ) 7).
“«y)
Combining the second term in Eq. (65) and
the first term in Eq. (70), then we obtain

L LB T) = (B o= T))

= (BT . 1)
ak

Applying Leibnitz rule to Eq. (71), Eq. (71
becomes

(BB =) (72)
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Then we obtain the final internal energy equ-

ation:
0 —, —E S
5t apre) TV aoerVs)+prald e+ q4)

o,
ot

+ (B Fal )+ (Brd

+arlTr: PR+ ps 7 Dot b’ P Ta)

“«—>

1,29, - =
= L., A b+ Hreqi)a
. 1 <<—> =3 N
Los G e)u- (73>

Using the definition of enthalpy, we can obtain
the enthalpy energy equation from Eq. (73).
The first and second terms on the left-hand side
in Eq. (73) become

0 - \ ] 7
2 o) — —at—a’k\\ﬁk» (74

a

%%«@Z» =

and -ak((p;;:ﬁtg)
=P ax(Puhed ) — s Bioe)
=P tn) — (B (7Y

«> >
—(Te) ParPe) ~ -l b7 ). (75>
Then, we have the final enthalpy energy equa-

tion
5 PR 7 s (BT + 7T T
— (TP — ar - Be)
et PR~ a(BT)
+a( B Tek BT

>
1 —r L, =
=— T;:“«mk R+ G 1da

— (T (76)

6. Interfacial Jump Condition
From Eq. (40) we can obtain the interfacial
jump conditions.
Mass

In this case.
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dr=1, Jpr=0,
we have
;F;FO. (77)

Momentum
In this case,

D=1, -—I_; :PkT'— :,

we have
> J—
2 1 —< T = -
kg . §me¥r+ 0o (e —71) Ha=0. (78
Energy

In this case,
2

(,bk:Ek: €k+‘%— N ,7k:7k"— (Plj_—f_k> 'vks

2
We have
<« J—
2 l % = ==
kg L., ((mkEk+nk°[qk_(PkI,__Tk>'7)k]>>a

=0. (79
The equation can be written in enthalpy form

1
1 Lak

=0, (80)

>
- - S
{rnphi+Tre (To—PreVitTa0U8) D

MN

k

7. Comparison

Ishii (3) derived time average equations by
averaging the local equations over a time inte-
rva 4t in which several single phase regions
with singular interfaces pass through a reference
point. Therefore, he was forced to use limiting
forms about the Leibniz rule derived by Del-
haye and Achard (6), which lead to a question
about the validity about their
an ambiguous physical interpretation of terms

derivation and

describing interfacial transfer phenomena.
These difficulties

averaging the local equations

mainly come from their
over a time
single phase with

through

interval in which several
singular interface are allowed to pass
a reference point.

Banerjee and Chan (2) derived one dimensi-

9

onal volume averaged equations by averaging
the local equations over a fluid volume V,
which consists of several single phase regions.
As their equations are not averaged over a time
terms do not

interval, turbulent contribution

appear in the conservation equations. Except
for these turbulent terms and the use of insta-
ntaneous properties, their Equations are the
same as the equations derived here.

Let us compare the time-averaged conservati-
on equations, Egs. (42), (51), and (73) with
the conservation equations of the THERMIT-
6S(7). The following equations are used in the
THERMIT-6S.

Mass

b PN
R (@nor) + 7 (aros ) =1 (88>
Momentum

0 N -
~6761'147);1);;4'17' (@r0rU1Ts) +arf P

L = — — —
='W~ F4—F;—Fata.pg (89>
Energy

0 o N
‘aTakpkek+V' (arprerVs) +pp - (V)

0
+p a(:k =Qie+ Qur+ Qs (90>

where

— —_— . .

Fg, F,;, and Q: interfacial standard drag
force and virtual mass force, energy ex-
change rate, per unit volume,respectively..

F,, and Q,:: wall friction force and wall
heat transfer rate, per unit volume, resp
ectively,

Qi+ liquid energy conduction rate per unit
volume,

— . .

g: gravitational force.

Note that Q,, is put to be zero for the vapor
energy equation of the THERMIT-6S. The
relationships between Eq. (89) and Eq. (51),
and between Eq. (90) and Eq. (73)

follows;

are as

R d
pad — —
v; =(v)." Fr=pigs
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—

Fskz‘_‘ Llak ((ﬁk';-'_—k»a

F:k = Tl,,; §dp’ra

ka—_.-—

7— (i)
=
Qiv=— b+ T o)
ak

ka=— Llwk «”k‘.—a—’;»w

Qu=—p-a;(q:+71".

Implicitly each property in the equations of
the THERMIT-6S can be considered to be
averaged in time and volume. Therefore, the
THERMIT-6S neglects the fluctuating terms
from the nonuniform spatial distribution of
properties. Properties can be expressed as the
um of a spatial average and spatial fluctuating

component;
Pr=(p)+oi"* and Gy=(g)+4y",
Then, (pus) and (Pegrvs) become
(o) = (o @)+ (on* ')
(odrod =B om) + (BN vi')
(o) + (T ")

+ (" P v ).
An adequate assessment should be given for all
terms in the equations by assessing their com-
parative magnitudes and thereby justify the
neglect of these spatial fluctuating terms.

In addition to neglecting the distribution
terms, in the momentum equation of the THE-
RMIT-6S, sevetal assumptions are made:

1) Negligible turbulent contribution term,

FealZd -7

2) Negligible phase shear force, p-ay(Te-7:)
3) The average interfacial pressure {Pu)a
equals the phase pressure {p,). As a result,we
have
Apri=0.

Similarily, beside the omission of the distri-
bution terms the following assumptions are made
in the internal energy equation of the THER-
MIT-6S:

1) Negligible irreversible conversion to inter-

nal energy, {(z::4%:)
2) Negligible vapor energy conduction rate,

v a«—a’—v +_(_fut>>-
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