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Abstracts

The in-core fuel management problem was studied by use of the calculus of variations. Two
functions of interest to a public power utility, the profit function and the cost function, were
subjected to the constraints of criticality, the reactor burnup equations and an inequality constraint
on the maximum allowable power density.

The variational solution of the initial profit rate demonstrated that there are two distinct regions
of the reactor, a constani power region and a minimum inventory or flat thermal flux region. The
transition point between these regions is dependent on the relative importance of the profit for
generating power and the interest charges for the fuel.

The fuel cycle cost function was then used to optimize a three equal volume region reactor with
a constant fuel enrichment. The inequality constraint on the maximum allowable power density
requires that the inequality become an equality constraint at some points in the reactor. and at all
times throughout the core cycle. The finite difference equations for reactor criticality and fuel
burnup in conjunction with the equality constraint on power density were solved, and the method
of gradients was used to locate an optimum enrichment.

The results of this calculation showed that standard non-linear optimization techniques can be
used to optimize a reactor when the inequality constraints are properly applied.
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1. Introduction

It is the purpose of this study to present the
fuel management concerned with the choosing
of enrichments and the placement of fuel
assemblies into a fixed reactor. The obvious
ultimate goal of the fuel management is to
maximize the profit earned by a utility pro-
ducing power. There are three basic aspects to
this objective of maximization of profit; (1)

One can utilize the fuel more completely by -
(2) Inventory"

operating it to “high burnups.
charges must be paid by the utility. If the
interest rates are low, this may not be too
severe a limitation. (3) Profit 'istéarned by

selling power. Therefore to maximize the

utility’s profit, it is necessary to operate the

reactor at the highest possible power level.
Early work®~® in the fuel management
was primarily concerned with achieving higher
burnups in fuel. It was recognized that this
could be achieved by refueling the reactor pre-
ferably continuously but more realistically in
steps. Since there are many choices available

to the fuel manager for discharging and re-

arranging fuel,

The most common schemes which were
studied are:
(2) In-out management scheme, (3) Roundelay
or scatter loading to yield a uniform exposure,
and (4) Batch loading in which all the.fuel is
discharged at _the end'of a core cycle. From
these schemes it was found that out-in cycling
gives acceptabie results for small cores and the
roundelay ot “scatter loadmg appioach looked
promising for large cores.

1) Out-in management scheme, -

It has been found that the cycling approach
yields low discharge burnups for the first two
zones of a three zone core and a recent attempt
to improve the burnups in three zones leads to
the concept of “fuel sharing” ¥ . In this approach
fuel discharged from the first reactor is used in
the start-up of a second reactor which is due
to begin operation approximately two years
after the first reactor is brought on the line.
One half the fuel assemblies from core one are
used along with fresh fuel in the second wunit
and the second core of unit one has the same
loading as the first core’ of unit two. Fuel
discharged from the first cycle of these reactors
has’ a ]:ugher net burnup which lowers the fuel
cycle ‘cost for the system of reactors.’

In the PWR, it was found that to achieve
mlmmum fuel cycle cost it is mecessary to
obta,m a.good power dlstrlbutlon at the beginning
of the core cyele. An attempt to obtain a power
listribution which is identical to the power
distribution in the pre'vious cycle is given by
Melice'™. He defines a pointwise k-distribution
which is an infinite. “transversal” multiplication
factor including 2 ferm for the axial buckling,
wd . maintains - this A-distribution  for all
succeeding cycles.

TFegan'® considered of optimizing the fuel
‘eloading. for the equilibrium cycle but did not
sonsider the problem -of approach to the equili-
srium cyele. The dynamic programming tech-
nique has also been applied’ to the optimization
of fuel management schemes. Wall®  applied
dynamic programming to a one enrichment
three region PWR. It is noted - that 'in these
schemes: it is necessary to perform an eifumera-
tion calculation in order to find an optimum
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peaking factor.

In this paper, the variational calculus is used
to obtain an optimal fuel distribution in a batch
reactor. The profit functional, which is the
dollar profit from burning a fuel isotope less
interest charges for that isotope, is subjected
to the constraints of criticality and the burnup
eqﬁationé with an inequality constraint on the
maximum allowable power density. It is shown
that the maximum profit is obtained by operating
the reactor to peak power density at some
points -in the core, not necessarily the same
point, at all times during the core cycle. This
inequality constraint is then applied to a three
region batch reactor and a three region out-in
cycled reactor. It is shown that the optimum
enrichment in these reactors can be found by
the standard optimization techniques of the
graciient method and the Newton-Raphson
method.

II. Mathematical Formalism

To analyze a problem by use of the calculus
of variationals, it is necessary to obtain a
function to optimize. There are two functional
of interest to the fuel management problem. The
one is chosen when one wishes to obtain the
maximum profit from operating power plant,
and the other is chosen when one wishes to
minimize the cost per unit energy of generating
electricity.

The profit is equal to the dollars received
for producing power less the cost of fuel burned
and the interest charges for the fuel. The net
grofit (NP) can be written as:

NP:f :f m;E(P"Zk:"ff?‘k-Ci)Ns]da:dt )

where,
T : certain time,
P;: net income received from burning

isotope 7,

ok absorption cross section for isotope 7 in
energy group &, )

¢* : neutron flux in energy group %,

N;: number density of isotope i,

C,;: interest rate paid for isotope i,

To obtain a more compact notation, we will
use an inner product form. The inner product
notation for functions of a real variable is
given by:

(f0)= [ f@) g(x)dz. @)

In Eq. (1), we see that we have an integra-
tion over two variables and a summation of
ok ¢* over k. This summation can be written
as a dot product and if we consider our inner
product to be an integration over two indepen-

dent variables, we can rewrite Eq. (1) as:
(Paa.¢—c> N)

:f 0 f TP okt —C)N,)dzdt

vol § k
where the quantities P,C, and N are vectors
and the product includes the summation over
these vectors.

There are several constraint equations which
are to be applied to profit functional. These
constraints are included by multiplying each
constraint by a Lagrange multiplier and adding
the result to the profit functional. This yields
modified functional which is optimized by
applying the variational method. The constraint
equations which are included for this study
consist of the group diffusion equations, the
isotope burnup equations, and the inequality
constraint equation on power peaking.

Let us study the burnup equations more
closely. Any isotope of interest is produced
either directly by fission, by decay from a
precursor isotope, by neutron capture in the
next lower isotope number or was there in the
first place, thus:

i&=1jiNi+0ai—1'Ni—1* (i+0.-9)Nit7;

dt
@
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where y;=7Y;; N;a,;+¢ is the source equation for
isotope 7 from direct fission yield. Y;; means
the partial fraction of isotope 7. Eq. (4) can
be written in mairix notations:

dN
— —aN+r (5)

where
N: nuclide number density vector,
« : nuclide net production matrix operator,
7 : nuclide source from fission vector. When
the nuclide of interest, 7, is a heavy
isotope, 7; is zero.

If we write =TI 7‘;;-—«, this becomes

AN=7. (6)
Associated with the operator g is the adjoint
operator % defined by the relation

(B*N*, N)=(N¥, gN). ' ¢p)

Consider the equgtion B*N+t=¢* where, for
the present, N+ and 7+ are not given an inter-
pretation. Now multiply Eq. (6) by N*, the
adjoint equation by N and subtract gives:

(N*, AN) — (B*N*, N)=(N*, p) — (y+, N).

®
The left hand side (LHS) of Eq. (8) is zero
from the definition of g*, thus:

(NY, =% N). ®

Now to arrive at a meaning for ¢* and N¥,
let us consider the functional (7%, N) where 7+
is arbitrary, and attempt to choose 7+ in such a
way that the functional is one of interest in a
particular problem. The vector N* is the adjoint
number density, and if we wish to interpret it
as an importance function, we must give N+
the units of a probability. Thus since dN*/dt

has the unit of inverse time, 7+ must have the

units of inverse time. As an example, suppose
7+ is the reaction rate per nucleus in group %
for the ith fission product at time ¢, Then
rr=dki ¢t 8(t—t), v<T, t<T (10)
where 8(¢t—1t’) is the Dirac delta function.
Substituting Eq. (10) into RHS of Eq. (9)

yields:
(NEhn= f : f 09 S@E—tHN; (¢ dzdt!
=AB}®) an

where ABY(z) is the absorption in fission product

i in group k at time £. Thus N* must be the
importance of fission products of absorbing
neatrons in energy group % at time ¢, Here we
see that N*+(¢/) is the probability that a fission
product source at ¢ yields an absorption reaction
at a later time £, We now see that the sense
of time for N* and N is reversed. In the case
of N, a source at ¢ yields the nuclide inventory
given by N at all later times . The adjoint
number density N* is considered to be an event
at time ¢, ‘in this case the absorption in group
k, and to be the contribution of sources at all
eadlier times. This arbitrariness of the source is
important for it allows us to compare different
problems for a property of interest without the
necessity of solving the equations for each case.
Another adjoint source, 7+, which could be

considered is the decay energy produced at time
¢, In this case:

rr=hEdG—1) da—2'), 5 TS5 (12)
where A; is the decay constant and E; is the
decay energy of nuclide 7. From this

N+ 7)

=[] SHE—t) e N dadt

= SEN®)6@—a) de=Er(z,0)
13
where the quantity Er(z,t) is the total decay
energy at time ¢, and N¥(z,£) is the impor-
tance of a nuclide of type ¢ for producing decay
energy at time ¢ and point X in the core.
The modified functional which is to be
optimized can now be written as:
J=(Po,+¢—C, N) — (¢*, Lp) — (N*, pN—-7)
— {4, (1-H(z—4))(0,-¢N-C)} (14
where
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¢*, N+, 4: Lagrange multipliers,
Lé=0 : matrix operator form of the
group diffusion equations,

BN—r=0: matrix equation for the nuclide

densities,
H(X—A): Heaviside operator,
A : transition point from the cons-

traint region of the core to the
unconstrained region,

A : the time at which the region of
the core from 0 to A is in the
fully constrained state.

The form of the power constraint in Eq. (14)
is chosen from the knowledge that the flux level
is raised until the inequality constraint on the
power density is satisfied. If the power level is
to be raised even higher, there will be a region
of the core which will operate at a constant
power density, and this region of the core can
be maintained at a constant power density only
at time, #, during the core cycle.

It can be seen that variations of Eq. (14) with

respect to ¢ and N will yield adjoint equations
of the form:

(74, 69) — (Li*g*, 3¢) =0, (15)

(rk, 6N) — (8*N*, 3N) =0, (16)
Since the variations d¢ and 6N are arbitrary

and independent, we have:
ri=L"¢%, an

ri=B*N*, 13
The units for ¢+ and N* result from our
choice of a profit functional. The profit is given
in dollars, the quantity L¢ integrated over time
and space has the units of neutrons: therefore,
¢t has the units of dollars per neutron. The
quantity 8;N; integrated over space and time
has the units of nuclear reactions in isotope 7;
therefore, N+ has the units of dollars per reaction
in istope i.
For an example, we will assume only one
burnable fuel isotope, and that all neutron
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absorptions in this isotope occur in the thermal
group. All fission neutrons are assumed to be
born in the fast group. The two group diffusion

equations for this problem are:

Dy o Ng—Zip=1 % (g
1
D,y — @N+32g,= L
2 P2Ps+ Zrdhy— (O N+ 2D o= v, 3t
@0

where 3! and X2 are the absorption cross
sections for the nol-fuel isotopes in the core and
the remainder of the notation is standard.

The burnup equation for the fuel is:
oN

5 = 9a$2N. 2
The power constraint equation is:
7, N ¢,—C"<0. (22)

To maximize the profit for this problem it is
necessary to raise the power level as high as
possible. This leads us to the modified profit rate
function given as:

J=(P 0, $,—C, N) - (¢*, L¢)
— {4, (1-H(X—A)](0s 6. N-C"}}.
23

In order to find the optimizing equations, it
is necessary to take variations of J with respect
to N, ¢, ¢, and A, also ¢* and 4 but these
do not lead to interesting results and therefore
Eq. (23) must be written in explicit form:

T rX
J= f 0 f  (Po,Ng,—C, N)dXat
— [T [CstDiprg 4o N,
_3ig L 9%
Sip—— ] axa

[T [ st Dws Zus:

— N+ 501 L2 | axar
T (X aN

—fofo N [ ot

- [T [P A0-B&X-2)350-t) (@.N¢,
0 0

—CP)ydXd: ¢y
where X is the outer dimension of the core.

+a,¢2N] dXds
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:The first equation is found:by computing the
wafiation of J with respect to- N thus
. 3J (ON) =0

=f :f:@"#z'—-C)ENJXJt ‘
, “f Tf Gt — "7a¢2)1¢;6Ndth
+fof 5

~ [ oN+oN|p1ax

;ac¢2N+] oNdXd:

TX

R N IS (e SV RUICEARY S

Xdt. (25)

Since this equatxon must be true for arbitrary
Variations of 4N, we obtain: -

Po—C— oyt ~adDpet T

=8N - A1~ H(X~ A)]6a¢z5(t tl) 0

(26)

f (N (TN (D) N )N )Xo,

@D
The term vo,¢t— 0,4 is the net neutron im-
portance of an “interaction in fuel The term
=i/![f«H(X A)Jo, is the penalty one must pay
for des:gmng ‘theé reactor for a ﬂat pOWer dis-
tributlon ‘ '
N Eq (26) is integrated over space and ‘time,
and the condition Eq. '(27) is applied, we get

f f (Pda¢2 C)dth »
~[LJ oot —ostrpana
+ f : f :oa¢zy+ant

+ (A0 -B X~ Do (X, 1. 28)

This equation implies that the aivefage- profit is
equal to.the met value of neutroms per unit
volume plus the value of neutron reactions per
unit volume plus thie cost of ‘aintaining flat
power per unit. volume, all on a per atom basis.
This ‘interpretation is & direct result of Eq.
®7) and is in the form of a cost halance.

If  the inner product. of Fq..(26) is taken

with N and the direct number density equation
is - inser - multiplied by N+'and added -to Eq.
(26), we obtain-
Poop—C, N)= (o6t — 6upt, M)

+ [l oNE,0

“NHX, TIN(X, T)1dX

+ {A(1—H (X~ A)J0,, $:No(t— 1)} . (29)

Eq. (29) implies that the net profit is equal

té the ‘net value of neutrons plus the change
itt' value of the fuel plus the cost of achieving
flat power over a region of the reactor at time
b -
' Variation$ with respect to ¢, and ¢, are taken
in' thé same thanner and yield the following
difféi'éﬁtiaf“‘etluations and initial final value con:
ﬂitmns - ‘

. +
D+ It~ Sip=— L B

L1

Dspagt + v Ngt— (vaN+22>¢2

'=»—-v—L 3¢2 a-Po.,N—kaaNN’f-}—Ad,N

]
(a1
[lwr@ Dapx, 1) |
~HE 0 X 01X=0, @)
[l Tysgpux, T
~$5(X, 004X, 00JdX=0.  (32)

I Eq. (30) is multiplied by ¢; and added to
Eq.’ (31) multiplid by ¢, and.the .resaltant
equation is:dubtracted from the corresponding
groﬁp dlﬁusli;n equations multlplied by ¢+ and

¢2, -we get ’ ‘

(PMzs N) (0.Ngy, N+) (34)
' Eq.>{84) dmplies that the gross: profit from
neutroty interaetions in N is equal to the value
of burning isotope N. These adjoint equations
which result from variations with respect to
N, ¢y, and ¢, have interesting physical inter-
pretations.
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The equations which are necessary are derived
by computing the variation of the profit func-
tional with A and ¢. It will be recalled that
when the variation of A was computed, all
contributions from the constraint equations were
zero. This also occurs when we take the varia-

tion with respect to ¢ and leaves:

JoJ o [Po 28D —c B ) ax i
(35)

The variation with respect to A yields:

[N S P,

aA
(36)
Egs. (35) and (86) are solved in conjunction
with the group diffusion equations and the

constraint equations to yield the optimum time
t; and flat power dimension A. Since these
equations are implicit for & and A, we need
non-linear methods to compute the optimum.

IIL. The Search Method

Some type of non-linear search method was
required to solve for the optimum enrichments.
Since it is necessary to apply search methods
to locate the optimum enrichments, even when
the equations for the cost function are solved
explicitly, it is just as practical to solve the
cost function equation and constraint equations
numerically and use modern optimization proce-
dure to locate the optimum.

The search method proceeds in three stages:
(2) search for

the optimum distance in the gradient direction,

(1) compute the cost gradient,

and (3) after gradient procedures net no further
gain, end the calculation with a Newton-Raphson
search.
A. The Method of Gradient

The following derivation closely follows the
work of Wilde and Beightler®. The fuel cycle
cost (CS) can be written as a function of the
three enrichments, thus

CS=f(ey, €5, €3). (37
The gradient of the cost about e;,e, and e3
can be computed by computing the cost of per-
turbations of these enrichments and using the

results in
aCS f(€1+551, &5, €3) — fe,—dey, &3, €3)
ael 6581 ,
oCS f(el, ez+5e2, ) — f(el, €y — dey, e3)
6e2 6682 ’
0CS _ fle, es, e3-+8eg) —f(ey, ey, £3—be3)
ae3 8583 :

(38)
The gradient of the cost function can now

be written as

aCS , . aCS , , aCS ,
POS=—, b1t bt —5 —ba.

Let us now consider a small sphere and

(39)

compute the point on the sphere

|de|2re (40)
which gives us the maximum change in fuel
cycle cost. To affect this, we scalar multiply
Eq. (39) by the enrichment wvector, and to
this the consttain Eq. (40) multiplied by the
Lagrange multiplier, 2, gives

ACS=pCS-de¢+a[|de|?—rZ]. 4n
Differentiating Eq. (41) with respect to the
enrichment vector gives

pCS+2de=0 (42)

From Eq. (42) it can be seen that since

1 is a constant, the optimum enrichment
vector must point along the gradient vector.
Solving Eq. (42) for the differential enrichment
vector, and substituting this result into Eq.
(40), yield the value of 2

1
2—i7 |pCS|. (43)

This value of 2 substituted back into Eq. (42)
gives us the value of the enrichment

4 CS.
de= IVCSI e (44)

Note that Eq. (44) contains a plus and minus
sign in front of the gradient; this says that the
maximum increase in fuel cycle cost is found
by traveling in the positive gradient direction
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to the sphere and the maximum decrease in
fuel cycle cost is found by traveling in the
nagative gradient direction to the sphere.

Now that it is known in what direction to
travel to seek minimum fuel cycle cost, it is
necessary to learn how far to travel in this
direction before no further improvement is
made.

B. The Section Search

It is shown in Wilde and Beightler that a
Fibbonacci® search is most efficient over a
known region with a known number of trials
allowed to reduce the region of search. In this
search, however, the number of trials is not
known; therefore, the golden-section search is
used to compute trials to reduce the search
region size.

Let us suppose we are searching over a
uninodal function such as shown in Figure 1.
If the cost is evaluated at 0 and 1, and two
calculations are performed within this region,
a and b, the region between & and 1 can
be eliminated from the search domain. This
conclusion can be reached because the search is
over a uninodal function and therefore since

P

o -3 b {

Fig. 1. Uninodal Function

a F |

Fig. 2. Golden Section Search

the cost at .a is less than the cost at b, the
region to the right of » can be eliminated.
Another point. can be compuied within the
region zero. to b and by comparing costs, a still
smaller search domain can be established.

Let us now choose our points @ and & symme-
trically in the search region such that when an
elimination of part of the search region is made,
the remainning section is the same fraction of
the samller region as the other point did for
the large region, as shown in Figure 2. This
leads us to

Sfi=1—f (45)

The only positive root satisfying Eq. (45) is

F=0.618. This value of f rapidly reduces the

size of the search domain as shown in Table 1.

Table 1. Golden Section Convergence

Trials Cases Total cases relf:agii:?; .
1 2 2 0.618

2 1 3 0.618)?

3 1 4 (0. 618)°

N 1 N+1 (0.618)¥

For this study it was found that a search
region which changed any enrichment by . a
maximum of 0.2 w/o U-235 from the base
calculation always included the optimum distance
along the gradient direction. Once this optimum
distance was found a new gradient was com-
puted about this optimum and the search was
continued. After a few gradient searches were
carried out, it was found that the optimum
could not be improved:

C. The Newton-Raphson Method

A Newton-Raphson extrapolation was used to
find the “true” optimum enrichments. This
method of optimum seecking consists of expan-
ding the cost function in the second order
Taylor series form

Cs(els eé’ 83) =CS (E?, eg; eg)

Fa(e,—ed) +ble,—ed) +c(es—ed)
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+a (o1 )b (e — )P/ (es—e)?

+a' (e;— €9) (e, —e€f) +b""(ey—ef) (e3—ef)

+c’’ (ey—ef) (es—e)) (46)
where:
= aCS b aCcs
ael e?’ ega egv - aez e(l), e(z), eg,
o= aCS o 102CS
Oez e, e, €3, T 20%2 |é), €, €,
B 162CS _1&#CS.
20%.% |eY, €3, ¢, =052 ed, éd, ed,
. a2CS . 0°CS
Oei0es |é€f, €3, €5, T 0ei0es |9, ), €,
e *CS

" exdee 1ef, €l €.

The constants of Eq. (46) can be evaluated
by computing the cost at ten points in the
vicinity of ¢}, ¢, and e}, The partial deriva-
tives of Eq. (46) with respect to each of the
enrichments can then be set to zero and the
resulting equation can be evaluated to give the
true optimum.

The matrix form of the equations which are
obtained by setting the partial derivatives with
respect to the enrichments to zero given by

(A)(461=—(D] or (4&)=~[AJ"(D] (47)

where:
(48)T=(e;—e€} e;—ef e3—ef)
aCS

or= % S )
9*CS 92CS 9°CS
0%,? Oej0e,?  Oej0es”

2 2 2,

(A)= a(’jel(a:es2 aaz(i? aaezges3
_pCs oS oS
Oej0e; Oesde; 0%

The solution, Eq. (47),
Raphson equation for the extrapolation to the

is the Newton-

optimum enrichments e;, e¢;, and e

1V. Computational Model and
Computational Results

The optimization procedure described in JI

was used to locate the optimum enrichments
for two different fuel management schemes: (1)
a three region batch loaded reactor and (2) a
three region out-in cycled reactor. The cost
function for both schemes is identical because
no attempt was made to include the cost of
refueling the reactor.

The reactor which was designed had the cell
dimensions and uranium loading of a typical
pressurized water reactor with water to metal
ratio of 4,2. Two group microscopic cross sec-
tions were obtained from the mit-life of a
Westinghouse LEOPARD' calculation for 2.7
w/o U-235. The fast to thermal flux ratio from
this case was used to develop one group micro-
scopic cross sections. These one group cross
sections were used for all the calculatons de-
scribed below.

The reactor was calculated as a slab reactor
with three equal volume regions each 27cm
thick. A gem thick water reflector was added
to the outer region.

The finite difference calculation was performed
using the one dimensional diffusion code
MAIDS@2, Burnup calculations were performed
region-wise in 2000 hour time steps. Equilibrium
Xe-135 and Sm~149 was assumed at all time
steps, and the production of heavy isotopes was
computed for U-235, U-236, U-238, Pu-239,
Pu-240, Pu-241, and Pu-242. The gross fission
products were assumed to burn linearly with
time.

In order to properly incorporate the power
peaking factor into the cost function, it was
necessary to carry out the calculations such that
the peak power density was achieved at all
times throughout the core life. At each time
step a search was performed to locate the peak
power density and all fluxes were normalized
to this peak power density. The peak power
density that was used was 100 watts/cm® for

all cases. Since the reactor was assumed to be
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a cube 132cm on a side, this yielded a maximum
thermal power of 425 MW.

The end of core life inventories were com-
puted by interpolating between two successive
E’s, one greater than 1.0 and one less than
1.0, to an effective & of 1.0. Inventories from
this end of life case were then inserted into
the cost code to compute the fuel cycle cost.
The net fuel cycle cost was found by computing
the cost for each region and then weighting
this cost by the energy produced from the
region.

Four complete cycles of core operation were
computed for each case of the cycled reactor.
The reactor was cycled from the outer most
region to the inner most with fuel from the
central zone being discharged from the reactor.
The eorichment which was assumed to become
the equilibrium cycle enrichment was fed at
the beginning of the second cycle and this
same enrichment was fed for both the third
and fourth cycles. As the two outer regions of
the fourth cycle had only been in the reactor
for one and two cycles. respectively, the appro-
priate increment of burnup, as computed during
the fourth cycle, was added to these regions to
yield an effective three cycle burnup on these
regions.

A. Batch Reactor

Table 2 gives a summary of the approach to
the optimum reactor. Each different gradient
direction is given as a step number, and the

distance along that gradient direction from the
preceding step is labeled R. Step zero is the
obtimum one enrichment reactor which was
obtained by a golden section search in the
enrichment range zero to five weight per cent.
In the past it has been common practice to
correlate the obtimum fuel distribution with the
optimum power distribution at the beginning
of core life. For this reason Table 2 also
includes the ratio of the maximum power in the
reactor to the average power, Ppax/Pav.
Although the optimum reactor has the best
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Fig. 3. First Cycle Power Distribution for a
Batch Reactor

Table 2. Batch Reactor Calculations

Step Average Cost Enrichment, w/o
R P max / Pay
No. mills/Kwh € & e3
0 - 1.87751 1. 4371 4.55 4.55 4.55
1 0.2 1.87267 1.2874 4. 39 4.66 4.61
2 0. 09 1. 87196 1. 2998 4.41 4.59 4. 66
3 0. 0474 1.87142 1. 2646 4.37 4.60 4.68
4 0. 0382 1.87126 1. 2625 4.36 4.57 4.70
5 Newton-Raphson 1. 87094 1.2420 4.31 4.52 4.70
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power distribution the improvement in cost in
moving from step 1 to step 2 is accompanied
by a decrease in power capability at the
beginning of core life. Thus one should be
reluctant to optimize a reactor only from be-
ginning of life power capability considerations.

The comparison of power distribution at the
beginning of core life is a superficial comparison,
for the power distribution changes with burnup.
In Figure 3 we plot curves of the power capa-
bility as a function of time for the optimum
three enrichment reactor. Here we see that the
power capability increases for a while with
burnup, but then decreases toward the end of
core life. Indeed for the obtimum three enrich-
ment reactor, the power distribution is the
poorest at the end of core life by a very narrow
margin.

We also see from Table 2 that our optimiza-
tion procedure continually moves in the direction
of decreased cost, and that the final application
of the Newton-Raphson procedure does yield
the lowest fuel cycle cost. The optimum three
enrichment reactor shows very little improve-
ment in cost, 0. 006mills/Kwh, over the optimum

Table 3. Cycle Reactor Calculations

Step Average Cost| Enrichment, w/0

No. R mills/Kwh el ! e es l e
0 — 1.70983 3.26f 3.26] 3.26| 3.26
1 0.3 1.70298 3.20 3.36] 3.39] 3.02
2 0.2 1. 69975 3.18! 3.35 3.55] 3.14
3 0.1 1. 69886 3.22] 3.35 3.59! 3.06
4 0.1% 1. 69754 3.25 3.40{ 3.63| 3.13
5 0.2 1. 69576 3.36) 3.50] 3.73 3.04
6 0.05] - 1.69499 3.37| 3.51] 3.74f 3.09
7 ** o 1.69441 3.47| 3.61] 3.74 3.09
8 *F 1. 69418 3.47| 3.61| 3.84 3.09

*Beginning with this step number all gradient
were computed using central differencing. Prior
to this point the gradient was computed by for-
ward differencing.

*#The last two step numbers were obtained while
" computing cross-derivatives for the Newton-
Raphson method.

one enrichment reactor.
B. Cycled Core

In Table 3 a summary of the cycled core
calculation is presented. Again the step numbers
refer to different gradient directions with step
zero corresponding to a golden section search
performed for one enrichment. The optimum
normalized distance along the gradient direction
is given as R.

A result of Table 3 shows that there is little
net improvement in fuel cycle cost as we move
from the optimum one enrichment case to the
best four enrichment case, 0.015 mills/Kwh.

We also notice that the enrichment for the
first core in the optimum four enrichment case
are higher than the equilibrium cycle enrich-
ment, ¢;. This result is unusual in fuel cycle
studies in that the first core of pressurized
water reactor is designed for lower enrichments
than the equilibrium enrichment. By using
enrichments in the first core, one increases the
first core cycle time and burnup thereby par-
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Fig. 4. Comparative Fuel Cycle Cost for a
Cycled Core



192 J. Korean Nuclear Society, Vol. 16, No. 4, December, 1984

Table 4. Power Ratios for a Cycled Reactor

: Averge Cost Ratio of Pnax/Payv
Step No. R

mills/Kwh cycle 1 cycle 2 cycle 3 cycle 4
0 — 1.70983 1.4371 1.5750 1.5472 1.5166
1 0.3 1.70298 1.2841 1. 3916 1. 4022 1. 3615
2 0.2 1. 69975 1.2283 1. 4754 1. 4068 1. 4366
3 0.1 1. 69886 1.2322 1. 4173 1.4221 1. 3853
4 0.1 1.69754 1.2225 1. 4652 1. 4645 1. 4393
5 0.2 1. 69576 1.2357 1. 4192 1. 4082 1.3711
6 0.05 1. 69499 1.2363 1.4313 1.4385 1. 4029
7 * 1.69441 1.2771 1.4288 1.4386 1. 4026
8 * 1. 69418 1. 2417 1.4373 1.4373 1. 4018

* Results of Newton-Raphson cross-derivatives.

tially eliminating the penalty one usually obtains
for discharging a partially burned region of
fuel.

Figure 4 is a curve of the region-wise fuel
cycle cost as a function of the mnet thermal
energy produced. In this figure, each region is
represented by an ordinate of constant value
and the distance along the abscissa represents
the thermal energy produced. From this curve
it is seen that there be still a penalty for dis-
charging the partially irradiated first region of
fuel; however, this penalty is compensated by
the improvement in cost in the highly irradiated
regions two and three.

It is again interesting to see if there is any
correlation of the beginning of cycle power
distribution with the fuel cycle cost. Table 4
shous the ratio of Ppnq./Pay with the gradient
direction and fuel cycle cost.

We can see from Table 4 that each of the
beginning-of-cycle power distributions for step
4 is better than the corresponding power dis-
tribution for step 9, and that the average fuel
cycle cost for step 9 is 0.004 mills/Kwh lower
than for step 4. Thus we again conclude that
there is no simple correlation of optimum fuel
cycle cost with power distribution.

We finally observe that the absolute optimum
for the cycled core study was not obtained,

The Newton-Raphson calculations was carried
out for steps 6 and 7. For the both cases the
method moved the optimum far from the base
point, and the fuel cycle cost for cross-derivative
calculations proved to be lower than the costs
computed from extrapolation.

Since the expense of carrying out the cycled
core calculations were prohibitive, it was im-
possible to pursue them to a satisfactory con-
clusion. It is noted, however, that when the
Newton-Raphson calculation was performed for
the batch reactor, the apparent optimum, the
optimum obtained by the gradient method
yielded a lower fuel cycle cost than any of the
perturbations which were introduced to compute
the cross derivatives. Therefore, the Newton-
Raphson calculation for the batch reactor was

actually an interpolation for the optimum.
V. Conclusions

The variational problem which was studied
in this investigation demonstrated the relation-
ship which exists between reactor fuel inventory
and power capability. It also demonstrated the
power manner in which to handle inequality
constraints which arises in fuel management
studies. Finally we found that the Lagrange
multipliers which are used to handle constraint
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problems are actually importance functions
deriving their exact interpretation from the
functional to be optimized.

Trial functions for the fuel distribution con-
sisting of a constant fuel loading in each region
of a three equal volume region reactor were
used in conjunction with the equality constraints
of the heavy isotope burnup equations and an
inequality constraint on the maximum allowable
power density, to minimize the fuel cycle cost
of a typical batch and cycle loaded pressurized
water reactor. It is that this could be optimized
using standard optimization procedures, the
method of gradients and Newton-Raphson inter-
polation.

In this study we find that there is little im-
provement in fuel cycle cost, within the frame-
work of a given fuel management when the
region enrichments are varied. This is partially
because the plant capital charges are not in-
cluded in our cost function. It also indicates
that fuel cycle economics are more readily
improved by: (1) improving core performance,
designing the core to operate at higher allowable
power densities, and (2) changing the possibilty
of using the concept of “fuel sharing”.

The physical model and the economic model
which were used for this study are quite simple;
a one-group slab reactor with region-wise fuel
depletion and did not incorporate refueling costs,
plant capital charges or a constraint on annuual
refueling.

It must be noted, however, that the inclusion
of a more complicated physics or economics
model does not alter the optimization procedure.
The procedure which is described would be
particularly useful to optimize a very detailed
model of a reaactor in which the fuel remains
stationary during its core resident time, such
as a roundelay fueled reactor.

The variatioal approach which is used herein
is quite general and can be applied to many

reactor problems. The drimary concern for ane
engineer using this procedure is to be certain
that the functional being optimized is actually
the functional of physical importance to the
problem at hand.
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