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The Generalized Likelihood Ratio (GLR) method performs statistical tests on the innovations
sequence of a Kalman-Buchy filter state estimator for system failure detection and its identification.
However, the major drawback of the conventional GLR is to hypothesize particular failure type in
each case. In this paper, a method to solve this drawback is proposed. The improved GLR
method is applied to a PWR pressurizer and gives successful results in detection and identific-
ation of any failure. Furthermore, some benefit on the processing lime per cach cycle of failure

detection and its identification can be accompanied.
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input matrix

Nomenclature C linearized pressurized model output matrix
E expectation operator
linearized continuous pressurizer model f nonlinear pressurizer mode] state function
system matrix g nonlinear pressurizer model output function
argumented state G failure signature matrix
inches of pressurizer water level per unit GLR Generalized Likelihood Ratio
water volume (in./ft?) ' enthalpy of water in primary loop cold

linearized continuous pressurizer model

leg (Btu/lbm)
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pressurizer saturated liquid enthalpy (Btu/
Ibm) .

pressurizer saturated vapor enthalpy (Btu/
lbm) _

enthalpy of fluid mixture in pressurizer
(Btu/lbm)

enthalpy of pressurizer spray flow (Btu/
Ibm)

enthalpy of pressurizer surge flow(Btu/
ibm)

argumented discretized pressurizer model
output matrix

failure hypothesis associated with failure
type ¢

no failure hypothesis

failure type index

identity matrix

cost function or units conversion factor
(ft3-psi/Btu)

failure type ¢ information matrix
discrete current time index

Kalman filter gain matrix

average pressurizer water level (in.)

pressurizer water level (in.)

LOFT Loss-of-Flow Test

mass of fluid mixture in pressurizer (lbm)
mass of vapor in pressurizer(lbm)
mass of water in pressurizer (lbm)

MLE Maximum Likelihood Estimate
MLLR Maximum Log-Likelihood Ratio
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number of possible failure types

Kalman filter estimate error covariance
matrix

finite sampling duration

pressurizer pressure (psia)

Apeurge pressure drop across the pressurizer

surge line (psid)

PWR Pressurized Water Reactor
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thr

Kalman filter process mnoise covariance
matrix
total pressurizer heating (Btu/s)

Kalman flter measurement noise covaria-
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nce matrix

time (s)

sample time step(s)

actual pressurizer saturated liquid temper-

ature (°F)

measured pressurizer saturated liquid te-

mperature (°F)

pressurizer model input vector

valve of u at linearized model operating

point

perturbation of # from the operating point

measurement noise vector

pressurizer saturated liquid specific volume

(ft3/1bm)

pressurizer saturated vapor specific volume
(ft3/1bm)

specific volume of fluid mixture in press-

urizer (ft3/lbm)

innovations covariance matrix

total volume of pressurizer (ft®)
pressurizer spray flow capacity (ft3/s)

volume of water in perssurizer (ft%)

process noise vector

pressurizer total relief valve flow (lbm/s)
pressurizer spray flow (ibm/s)

Waurge' pressurizer surge flow (lbm/s)
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pressurizet model state vector

Kalman filter estimate of z

value of z at linearized model operating
point

perturbation of x from the operating
point

quality of fluid mixture in pressurizer
pressurizer model output vector

value of y at linearized model operating
poin{ '

perturbation of » from the opefating point
Kalman filter innovations vector
unfailed system innovations vector
Kronecker delta function(impulse fﬁnction)
maximum log-likelihood ratio failure det-
ection threshold
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0 discrete failure time index.

17 most likely or estimated failure time

2] discrete pressurizer model input matrix

v failure magnitude vector

a estimated value of failure magnitude vector

8 unit step function

T pressurizer water temperature sensor time
constant (s)

0] discrete pressurizer model state transition
matrix

2 failure perturbation matrix

I. Introduction

In rather a complicated, delicate but large-
scale system such as nuclear power plant, it is
imperative to monitor the behavior of sensors
which continuously check the plant status and
also to provide the operator with the stable in-
formation for plant parameter identification and
compensation. Several instrument failure detect-
ion schemes have been studied in the past few
years [1-10].

Kalman-Buchy filter is a mathematical algor-
ithm that generates optimal estimate of the plant
states using the system dynamics.

One of these instrument failure detection sc-
hemes is the GLR technique which performs a
statistical tests on the innovations sequence of
Kalman-Buchy filter designed for the operating
dynamic system and produce a extremely powe-
rful ability of identifying failure type, detecting
the failure time, and estimating the magnitude
of failure. The innovations can be obtained by
subtracting the estimated measurements, which
are obtained through Kalman-Buchy filter dyna-
mics from the actual plant measurements.

However, the major difficulty of the conven-
tional GLR approach to failure detection is to
hypothesize particular failure types, which may
preclude the detection of all possible failures
[5]. In coventional GLR- method to detect and

identify a system failure, specific failure types
are hypothesize and their effects on the system
dynamics arc modeled using failure signature
matrices.

Next, it is assumed that a failure of a certain
type at a specific time has occurred and the
failure magnitude is then estimated.

For each assumed failure, the computed and
maximized log-likelihood ratio, as a final step,
is compared to a predetermined threshold value
to seec whether a failure occurred or not.

But, there are actually various types of
failure that can happen to appear from the
implementation of digital computer to the
actual system, plant operation, environmental
noises, and the wrong calibration of the instr-
ument, etc.

Unfortunately, it is almost impossible to ass-
ume all kinds of failure type in mathematical
models, that is, failure signature matrices in
advance.

One way to settle down this problem is pro-
possed by using a idea from the concept of
“impulse” function in this study [11]. In disc-
rete time domain, the “step” function in conti-
nuous time domain can be regarded as sequential
collections of a series of impluse train with the
same magnitude. Similarily, “ramp” function
can be thought of as sequential collections of
impulse train with the growing or decreasing
magnitude.

Based on these facts, anyfailure type can be
represented as a series impluse train so that all
that should be done is only to hypothesize the
“impluse” failure type. Therefore, this method
can be used as a tool of generalization of almost
all the possible types of failure with proper fa-
ilure identification scheme.

In the process of the failure identification, it
is possible to identify what kind of failure it
is and to determine when the failure occurred

based on the information from color CRT (cath-
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Fig. 1. Kalman Filter and Improved GLR Logic for Detection and Identification of a Failure.

ode ray tube) graphics and alarm system if the
color CRT graphics can display at least 20~30
past values of the magnitude of each type of
failure,

The overall schematic diagram is shown in
Figure 1. The following sections consist of
Kalman-Buchy Filter Equations, the method
description of the improved GLR technigne, the
application of the improved method to PWR
pressurizer, and results and discussion.

II. Kalman-Buchy Filter Equations

Kalman-Buchy filter is simply a mathematical
algorithm that generates optimal estimate of the
plant state X (k) using the system dynamics and
the noise model.

Without using the current measurement Y (%),
we already have a prior estimate of the state,
X(k|k—1), at the time of the current measure-
ment. Then the problem is to update this esti-
mate based on the current measurement.

The optimal state estimation solution is basi-
cally given by the recursive weighted least-
square solution.

As a result, the following equations can be
formed. The estimate of the current plant state
using the current measurement can be given as

follows:

X(k|k)=Xkik—1)+ K& [y(k)
—HRE) Xk R—-1)]. o))
The propagation goes ahead in time using the
following equation;
Xh+1|k)=¢k+1, )X kIR +6R)ulk),
2
where X(k|k—1) is state estimation vector at k
based on measurements up to time k—1, and
K(k) is the steady state Kalman-Buchy  gain
matrix, given in the following from;
K(k)=p(k|k—1) H(k) [H(k) P (k|k—1)
HE)T+R] 3
where p(k|k—1) is the steady-state estimator
error covariance matrix which is obtained by
solving the algebraic Riccati equation, and cal-
culated from following equations;
The update equation
p(klR)=[I—K(k)]p(kik—1) €]
and the propagation equation
PR+1E)=¢k+1, ) Pk|IE)$(R+1,R)T+Q
®
where R: measurement noise covariance matrix.
Q: process noise covariance matrix.
II-A. Filter Innovations
The filter will generate a r(k) vector that is
zero-mean and white as follows;
r() =y --¥ (&) =y(k) —H® X (k1 £~ 1).
(6)
where r(k): innovation (or residual, vector).
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Furthermore, for a steady-state Kalman-Buchy
filter, the innovation covariance matrix is cons-

tant and given by

E{fr(B)r(5T) =V (k)s(k,) P,
where
V(E)=H(k)pCk k—1)HT (k) +-R 8
0, kg )
o(k,j)=
1, k=j

II1. Method Description for Improved GLR

The conventional generalized likelihood ratio
(GLR) technique performs statistical tests on
the innovations sequence of the Kalman filter
state estimator. By using the results of these
tests, failures in the sensors of any system
are detected and identified. However, this con-
ventional GLR technique involves some difficu-
lties. Some of these are;

(1) A special failure type must be hypothes-
ized in each case in advance, which may prec-
lude the detection of all possible failures because
there are actually various types of failure that
can happen to appear from the implementation
of digital computer to the system, plant opera-
tion, environmental noises, and the wrong cali-

sampler
1
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Fig. 2. Block Diagram of a Finite-Pulsewidth
Sampler.
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(3) Much processing time is required for ide-
ntifying a failure type, which may lead to fai-
lure in real-time operation with other purposes
(i.e., control, etc).

So that, one way to solve these problems is
proposed in this section by using an idea from
the concept of “impulse” function. Let us first
consider the analysis of a sampled-data system,
which is the output of the finite-pulsewidth sa-
mpler with an uniform sampling period T and
a finite sampling duration p. Fig, 3 illustrates a
set of typical input and output signals of the
sampler in Fig, 2.

With the notation of Figs. 2 and 3, the out-

put of the finite-pulsewidth sampler is written;

rj@):r@%%[U&@—kT)flhu~kT—pﬂ,

(10)
where U,(¢): the unit step function,
1, t20
U () =
0, <0 an

For p<<T, the narrow-width pulses of Fig, 3
may be approximated by flat-topped pulses. In
other words, Eq. (10) can be written

rj@)sé?(kT)[UXL—kT)—lLU—kT~pﬂ

(12)

Multiplying both sides of Eq. (11) by ji; and

taking the limit as p approaches zero give;

limL () =lim3 Sr RT) (U.(t—kT)
-0 P p-0k=0 P

ll

) b lJnﬂﬂfl. 5 ¢
e

|

Fig. 3. Input and Output Signals of a Finite-Pulsewidth Sampler.
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— U (t—kT—p)] (13) domain also can be expressed as the sequential
= collections of a series of impulse train as shown
—5 r(kT) 3(t—kT), a0 P
k=0 in Fig., 5.
or Supposing unknown failure type happen to
limlr’;(t) =r*(£) (15) occur, this unknown failure can be treated as
ro P impulse at the sampling instant.
where Therefore, it is only necessary to hypothesize

5 Alim-[U,(0) ~ Ui (e—$)]: impulse

function. {16

The significance of Eq.(15) is that the output
of the finite-pulsewidth sampler can be approx-
imated by a train of impulses if the pulsewidth
approaches zero in the limit.

If input r(¢) in Fig.3 is passed through the
ideal sampler whose output is a train of impul-
ses with the strength of each impulse equal to
the magnitude of the input at the corresponding
sampling instant, figure 4 illustrates the typical
input and output signals of an ideal sampler.

In view of these considerations, the ideal
sampler is used to represent the discrete data,
rkT).

Similarly, the step function in continuous time

failure type “impulse” to generalize almost all
the possible failure types.

Consider the jump impulse failure in the
sensor output and in the state. This failure will
appear as additive term in the state and meas-
urement model equations of the form

z(k+1)=¢G+1, D)z k) +gk)u(k)

+w(k) +vi(k, 7)), an
and y(k) =Hz (k) + V(&) +vé(k, j). 1)
1, k=j
where 5(k,j) =
0, k+J, (19)

v=failure magnitude vector.
This failure takes the from of perturbation in
output measurement, 6y(k).
This effect of a system failure is modeled as

follows:
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Oy(k) =0k, ) vi(k, ), - (20)
where 2;(k, 7) =the failure perturbation matrix
for impulse failure type at time j,
0, 2j
and &;(k,§) is Q;k, )= I k=j @1
0, k>j.
where I=a identify matrix.

Since the Kalman filter equations are also lin-
ear, the resulting perturbation in the plant me-
asurement will propagate through the equations
yielding a new innovations equation of the
form

() =G:(k, j)v;(k, j) +7rs(k), k=], (22)
where

r(k) -=innovations of the failed system at
time k&,
Jj =time of system failure,

v;(k, j) =impulse failure magnitude vector,

ro(k) =innovations sequence of the unfailed
system,

G;(k, j) =failure signature matrix for imp-
ulse failure.

To evaluate G;(%,j), Eq. (20) is substituted
into the Kalman filter equations and the resul-
ting effect on the innovations is calculated.

This results in the recursive equations:

Gi(k, j)=0;(k, j) — HOF;(k—1,), @3

F;(k,j)=KG;(k, j) +OF:(k—1,), @4

G:(k, j)=Fi(k, j)=0, k<. (25)
where K=the Kalman gain matrix.

At each time %, one must determine whether
impulse failure has occurred or not.

This requires the selection of one of the hy-
potehses: No failure hypothesis H, is

VE=ry(k). (26)
A impulse failure hypothesis H; is
r(k) =Gk, Hvi(k, 1) +ro(k). @n

We can then perform the GLR test to decide
if a impulse failure has occurred. Essentially,
we compute the maximum likelihood estimate
(MLE), v(k) of the failure magnitude based on
(1), -r(k) and G;(k, ).

These values are then used in computing the
log-likelihood ratio I(k) for H; versus H,, given
the observed innovations r(1), ---, r(k).

After some mathematical manipulations, we can

have
vilk, ) =J 7 (k, Ddi(k, 1), (28
Ji(k, j) =G (k, H V' (B)G:(k, 5, 29
d;(k, ) =Gl (k, DV 1 (B)r (), (300
Li(k, §)=d(k, )vi(k, D). (3D

Our decision rule is
. H,
Lk ji=e. (32)
H,

where ¢ is a threshold value chosen to prov-
ide a reasonable trade-off between false and
missed alarms.

Accepting Ho indicates that no failure exists.
If H; is accepted, however, the assumption is
that “impulse” failure has occurred. Following
this detection, failure identification is made
when j=Fk, namely, the instant that the failure
occurred with the display of the 20~30 past
values of the magnitude of the faiure on the

color CRT graphics.
IV. Application to PWR Pressurizer

The nonlinear LOFT pressurizer model deve-
loped by J.L. Tylee is admitted without great
modification in this study. The required discre-
tization step for the use of failure detection is
presented here. In the model introduced in this

section, steam and water in the pressurizer are

[ volume, Vp
— l fluid mass, M,
Wspray pressure, Pp
Steam Fnthalpy, hp

specific volume,

Water
(!snfn) Der
I _d
1- Wsurge
l Hot leg

Fig. 6. Pressurizer Model.

quality, *p
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assumed to be in a homogeneous saturated
mixture. The typical PWR pressurizer is shown
schematically in Fig. 6.

Applying mass and energy balances to this

mixture results in the following two equations;

aM

dtﬁ = Waurge + Wapray. (33
d(Mh,) _ V, 4P,
. ‘dt _‘Jﬁ -~~dt> +thr+ Wsprﬂvhf

+ WeprayPspray— Wevk,. 34)
The desired state variables for the pessurizer
mode] are P,, pressure, and X,, mixture quality.
Equations for these variables are obtained by
noting the following equations;

V,=V,/My=v,+X,(v,—v,), (35)
hy=h;+X,(hs—h)). (36)
where

t : the continuous time variable,
J : a units conversion factor
hy : the saturated water enthalpy.
hg : the saturated steam enthalpy.
hypray : the known spray flow enthalpy.
vs, Ug . the specific volumes of saturated
water and stream, respectively.
By substituting Egs. 35 and 36 into Egs. 33 and

34, one can solve simultaneously for dz’ and
%. This rather lengthy manipulation yields;
de ahp

— Y -
Tdt TV, te, aXp(Ws"“'eJr Waorsy = W)

ov
+ —aT’;‘Ethr + Wsurge (hf - hp)
+ Wspray(hspray - hp) - er(”z— hp)]} »

37
dX
dtp = {_VL;()‘ {vﬁ ( Wsurge -+ Wspray — rv)
Ohy v 7 ., Y,
[ P, 7 ]+ P, Qo
+ Wuurge (h/"_ hP) + Wspray (}l!P"Y - hP)
- v (hg_hp)} ] (38)
where

An additional state of interest is the measured

J. Korean Nuclear Society, Vol. 17, No. 2, June, 1985

temperature of the saturated fluid mixture
Tym. Assuming first-order dynamics for the
temperature sensor, this measurement can be
characterized by the following relation;
dTpm _ Tp—Tpm
-= . 40
dt Ty (40)

where 7, : time constant.

The surge flow is computed as follows;
Ks (APsixrge> 1/2:APsurge>0

’_Ks(APsm-ge) 1/2, APsurze<0. (41)
where K : constant which is determined empe-

surge —

rically.
The following pressurizer water level is descr-
ibed by;

L,=A,(~z,)

v
11: Yy, (42)

where A, : conversion constant water volume to
water level.
Finally, the nonlinear model is summarized

as follow;
z=f(z,u), (43)
y=g(x). (44)

where z,u, and, y be represented in the follow-

ing vector forms

xz=[{z,P,T,n)", (45)
u= [ W-urzthtr Wspray rvj T, (46)
y=[(L,P,T,.]". “n

By expanding Eqs. 43 and 44 in Taylor series
about a nominal operation point (&, &) (ignoring
terms higher than the first order), the linearized
form of pressurizer can be obtained. In the fo-
llowing equations, the linearization will provide
A, B, and C matrix so that the model can be
written in linear, constant coefficient state var-

iable form;
o2 () =Adz (t) + Bou(t) (48)
and
y(&) =céx(t). (49)
where
dx(t)=zx(t) — =z, (50)
ou(t) =u(t) —a, (6D
dy(®)=y({) 5. (62)
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Generally, an IFD (Instrument Failure Detec-
tion) scheme will employ a digital computer to
make the state estimation and failure detection.

For this reason, the continuous time model Eqgs.
48 and 49 must be discretized in the following
form;

dx(k+1)=0(k+1, k) sz (k)
+Ok+-1,k)oulk) tw(k)  (53)

and
3y (kY = H(k) 8z (k) +v (k). GH
where
P(kh+1,k) =expA)dt). (5%
At=tpp—ty. (56)

7)

<l

Ok+1,k)= f ::+"’)(‘*+” OB()dr. G

Finally, Esq. 53 and 54 are the forms required
by Kalman-Buchy filter, the improved GLR to
failure detection and identification and control.

Note that the matrices @,6, and H are shift-
invariant for the fizxed operating point (&, @).
(Refer to Appendix A)

V. Results and Discussion

The computer simulation has been made on
LOFT pressurizer in case of a system failure to
test the improved GLR method. The program is
programmed in FORTRAN and runs in real
time.

Several sets of simulation are stored on mag-
natic disks and compared with actual LOFT
data in Fig. 7,8, For the verification of the
pressurizer model have been performed in Fig.
8 for the system transient where the surge flow
is treated as the system transient.

One cycle of failure detection and its identi-
fication requires 170 msec of IBM~370 processing
time. This is desirable since preliminary simul-
ation studies showed that sampling the plant
measurement every second provides excellent
failure detection and its identification. The rem-

aining time (830 msec) in each cycle of the

Ysury

(1bm/s)

1
60 80

20 40

Fig. 7. The Simulated Disturbance for Verificat-
ion of Pressurizer Model.
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3 87 5 tisen

Fig. 8. Pressurizer Pressure Resopnse for System
Transient in Fig. 7.

—=—meme ddentified failure tyae

t(sec)

0.0 33 67 100

Fig. 9. Jump at 20sec and Step at 40sec in
Pressure State.

process allows for further expansion in pressu-
rizer modelling and some considerations on Ka-
Iman-Buchy filter gain.
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Table 1. Comparison of Processing Time on IBM
370 Computer.

Method Improved GLR , Conventional GLR

Processing Time 180 msec ‘ 290msec

In this study, the threshold value ¢ was cho-
sen 20 based on the sensitivity analysis at a
norminal condition. Fig. 9 through 18 shows
the assumed failure types and the corresopnding
identified failured types.

Note that the solid lines in Fig. 9 through
18 are the assumed failure types while the dotted
lines in Fig. 9 through 18 are the correspondi-
ng identified failure types. Table 1 shows the
comparison of the processing time per cycle of
the improved GLR method with that of the
conventional GLR method for failure detection
and its identification. As shown in Fig. 9 thr-
ough 18, Table 2, and Table 3, the improved
method for online any failure detection and its
identification gives successful results.

Note that each magnitude of identified failure

for failure type “step” may have some range

Table 2. Results of “Jump” Failure Type Case.

{°F) Tom (U

20 Jﬁ
s U
40
-2

=17 e {52

0.0 33 67 10U

Fig. 10. Jump at 20sec and Step at 40sec in
Temperature State.

because failure type “step” is based on the coli-

ection of a series of failure type “jump”. Each

time the failure is detected and identified, there

can be a little overestimation or underestimation

over failure magnitude due to estimation error

Assumed failure Detection time [Identified Failure MLLR
—0.015 jump in in quality state 20 sec ~0. 0155 0.1956E +4
—10 jump in pressure state 20 sec —10.5 psi 0. 3960E +2
—-2.5°F jump in temperature state 20 sec —2.53°F 0.6250E 42
—0.5 inch jump in level sensor 20 sec —0.417 in. 0.3722E +2
10 psi jump in pressure sensor 20 sec 9.55 psi 0.3266E +2
—2.5°F jump in temperature sensor 20 sec —2.53°F 0.6250E +2

where MLLR means maximum log-likelihood ratio.
Table 3. Results of “Step” Failure Type Case.

Assumed Failure Detection time |Identified failure. MLLR
0. 015 step in quality state ‘ 40 sec 0. 0157 0.1831E +4
10 psi step in pressure state 40 sec 10.5 psi 0.4167E +2
2.5°F step in temperature state 40 sec 2.62°F 0.6536E +2
0.5 inch step in level sensor 40 sec 0.515 in 0.5695E +2
—10 psi step in pressure sensor 40 sec —9.46 psi 0.3410E +2
2.5°F step in temperature sensor 40 sec 2.13°F 0.6536E +2
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Fig. 14. Ramp at 40sec in Pressure State.
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Fig. 15. Ramp at 40 sec in Temperature State.

s ren

------- identified failure type
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t(sec)

0.0 : 13 . 67 : 100
Fig. 16. Ramp at 40sec in Level Sensor.
and noise. Therefore, the magnitude of each

failure type and maximum log-likelihood ratio
(MLLR) were averaged over some identification

P (t)
s> ] P

20 ¢

16 ,

w=—~=-- identified failure type

12 =~ assumed failure type

t(sec;

v T L8 g - )

0.0 K 67 100

Fig. 17. Ramp at 40sec in Pressure Sensor.

(°F) , Tou(t)

g 0 mememee indentified failure type

assumed fallure type

-2

4

-6 4

-8 1

-10 = g > 5 g 7 t(sec)
0.0 33 67 100

Fig. 18. Ramp at 40sec in Temperature Sensor.

period in case of “step” type as indicated in
Table 3.



VI. Conclusion

In this paper, improved GLR method to detect

and identify a failure is developed and is applied

to PWR pressurizer. Several capabilities of the

improved GLR failure monitor for type of failure

have been described and evaluated.

Summarizing

some points to consider as

follows;

1.

It is developed to generalize any kind of
failure type by using only “impulse” function
concept instead of modelling each failure
case by case as does in the conventional GLR
method.

The
PWR pressurizer

improved method is applied to the
and could perform the
tasks of the detection and identification of
any failure very successfully.

The improved method also have some benefit
on processing time compared to the convent-
ional GLR method.

This improved GLR method would improve
safety and availability by using on-line digital
computer to provide information about plant
status for the operator via color CRT grap-

hics and alarm system.
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Appendix A
(Failure Decision System Specifications)

Pressurizer model operating point:
0.0059] (=)
2260.0| (psia)
647.4) (°F)

0.07 (Btu/s)
0.0{ (Ibm/s)
0.0] (Ibm/s)

z=2 (2P Tpm ) =

== Quty Wepray W, 7 i

d : disturbance
d=6' Wyge; 0'=[—2.927Xx10"* 0.818
1.336x 10737

41.907 (in.)
y={(L,P,T,.)"= |2159.20| (psia)
647.60) (°F)
. Linear, continuous pressurizer model system
matrices:
z(t)=Ax () +Bu(t)
y(©)=Cz (1)
0.0 0.0 0.0
A= 0.0 0.0 0.0
0.0 0. 00332 —0.05
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[—2.927X10™* 4,291 x1077 —3.582%x10™* 1.065x107*
B= 0.818 1.008x 1072 —0.7221 —5.194
L 0.0 0.0 0.0 0.0
[—194.3 0. 01507 0.0
C= 0.0 1.0 0.0
L 0.0 0.0 ’ 1.0
. A Matrix Eignevalues, 2;, and Eigenvector Matrix Z:
[ A 0.0 .o 0.0 0.0
L= 2 | = |-0.05], Z=10.0 0.0 L0
L 4 0.0 0.0 1.0 0. 06641

. Discrete Pressurizer Model State Transient Matrix, and Input Matrix(calcaulted using a sample
time step of T—=1 sec)

(1.0 0.0 0.0
¢= (0.0 1.0 0.0
0.0 0. 003238 0.9512
[4.291X1077 —3.5682X IQ“1 1.065x107*
6= [1.008x107* —0.7221 —5.194
1. 647X 107° —1.179%x1073 . —8.481x1073
.. Initial Estimate Error Covariance Matrix Prior to Updating:
7.526%107° 0.0 0.0
P(j—-1)= |0.0 8.410 0.0
0.0 0.0 0. 0625
. Preocess Noise Covariance Matrix
2.300x 1078 0.0 0.0
Q= 10.0 1. 150 0.0
0.0 0.0 0.02
. Measurement Noise Covariance Matrix
[0. 0025 0.0 0.0
R= 0.0 1.0 0.0
10.0 0.0 0. 0625

. Compurted Steady State Kalman Gain Km, and Innovation Covariance Matrices
[ —0.0222%x 1072 0.2694x 107* 0.9237X107% 1
K= 0.1684 %101 0.6268 0.8865x 1072

| —0.1147x107® 0.5540%x 1073 0. 4080 )
r 0.4772x107% 0.2154x 107! 0.1091%x107* T
V= 0.2154x 107! 0.2777 x 10 0.2557x 1072
0.1091X10™  0.2557X107* . 0.1056

Appendix B
(Pressurizer Model Parameters)

1. Pressurizer volume 1 V,=34.75 it?

2. Pressurizer level conversion constant : A,=2.02 in./ft?
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3. Spray flow rate  Vepray=0. 0446ft3/s(if on)
4. Back up heater capacity * Qoup=11.37 Btu/s
5. Cycling heater capacity : Qcyc=34.12 Btu/s
6. Power-operated relief valve capacity : W,,=2.0 lbm/s
Safety relief valve capacity : Wiar=12. 6lbm/s
(Pressure diagram)
(psia)
2550 ——Safety relief valve resetpoint
2525 -——Safety relief valve setpoint
2425 ——PORV setpoint
2405 ——PORYV resetpoint
2185 ——Spray flow setpoint
2180 —|—Cycling heater resetpoint
2160 —|—Back-up heater, spray flow resetpoint
2159. 2——Normal operating point
2150 ——Cycling heater setpoint
2140 ——Back-up heater setpoint

!
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