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Abstract

The spectrum of continuous transfer operator arising in a time-energy dependent neutron
transport equation is analyzed. Four theorems concerning on the spectrum are proved. A

convolution theorem of the generalized Mellin energy transform is given.

Also the com-

pleteness theorem necessary for a final solution is proved. A unique time decay constant
1-c is found, which is dominant asymptotically.
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1. Intreduction

Most theoretical investigations on the eigenvalue
spectrum of the neutron transport equation origi-
nate from Lehner and Wing’s ¥'? fundamental
papers, where the time-dependent one-velocity
transport equation was first fully and rigorously
treated. These authors showed that the eigenvalue
spectrum of this equation(considered in a Hilbert
space of square summable function) is made of
the following parts: a comtinuous sprectrum and
a point spectrum consisting of a finite (but not
zero) number of real eigenvalues.

In this paper we will treat more general problem,
i. e., a time-energy dependent neutron transport
equation with a continuous energy transfer ope-
rator. An importance of a continuous energy
transfer operator is first pointed out by a pulsed

neutron transport problem by Corngold®. A theory
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of neutron transport equation is an application of
a singular integral equation® ® and a spectrum.
theory of integral transform operator®-?,

We will depend heavily upon the result of both
these two fields.

2. Spectrum analysis

A theory of a plane symmetric, pulsed energy
dependent neutron transport equation, with an
isotropic source at =0, after a Fourier transform

in z-coordinate, is described by the following

linearized Boltzmann equation®.
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where p=cos, k, ¢;, ¢r are some parameters,
»(E) is a known function of K and K;,(E'—E) is
the energy transfer operator, defined as below,
but neither self-adjoint nor symmetric, ¥;(s,E, t)
are unknown function to be determined.

The kernel K;,(E'—E) is defined as follows:

K., ,(E—E)=f(E)g(E), if E'=FE, 2.2)
=0, if B <E,
and
SfK (B'—>E)dE=1. 2.3)

From the Egs.(2.2) and (2.3), we have, defining

h(E)=1/f(E), @9
the important relationship
9(E) =—p-h(E). 2.5

From a physical model, an energy dependence of

the function g(E) is given explicitly as

g(E)=E/T?% =7, (2.6)

where T'=const, therefore integrating with respect
to E, we get

hR(E)=1—(1+E/T)e &7, @.7
We note that g(E)=0 for E=0 and g(E)—0
for E— oo and k(E)=0 for E=0, h(E)-+1 for E—co,
Next we will study a spectral properties of this
kernel K;,(E'—E) with the explicitly given form
of g(E) and h(E) in Egs. (2.6) and (2.7). So it
is quite useful to define an energy operator Of as

O (nEt) = g(E)S _wk“(é‘%tl_dE/

Notice that from the explicit form of g(E), g(E)

is everywhere positive, and so is A (E) =S

2.8

It is important to notice that for some fixed

positive number ¢> 0
9E©#0, h(e)70

and h(os) =S:g (B dE’ <oo (2.9)

We use the functional energy-space Cls,oc], ie.,
the Banach space of continuous functions on
[e,o0].

Let g(E)eLife, ].

In this space, the norm is defined as

1811={ 18148 (2.10)

Theorem 2.1. As an operator acting in the space

L1, Og is linear and continuous.

S (@) dE.
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Proof: A linearity of Of is obvious.

Let 0(E)=0r¢(E) =g(E’)S Z((%)) Ey L
Then

lo11={;
|I¢HSS:dE|g(E)|S l{gfg})ll iB

We may invert the order of integration. Thus

- (BB | (& 2
ol <[ dE ,ME,)IS l9(B) |dE

ol 1={ WL @) —reaE

|@(E") |dE”

Since ]g(E’)}Eg(E’), 1R(E)|=h(E),
sup h(E)—h(e) |
[o]1< M|]4ll,

since inf h(E)#0 for E< [e,00]

and where M is some constant. Q.E.D.

Theorem 2.2, In Cle,00], O is a compact operator.
Proof: Defining K;,(E'—E) through Egs. (2.2),
(2.3), (2.4), (2.6) and (2.7), and by physical
reason, ' and E have the meaning of incoming and
outgoing neutron energy respectively, therefore
it is true that E'<E' <FE, always. So we have

SSdE AB' | K,y (B'—E) |2 <oo
A

in the domain A defined by ¢<E' <F, and ¢<
E<FE, From Taylor's theorem? (p. 276), this
is enough to assure the compactness of Og in
Cle, E,]

Theorem 2.3. The point spectrum of Of contains,
at most, a countable set of points, and these have
no accumulation point, except possibly at co.
Proof: We quote Taylor’s theorem® (p.281); ”Sup-
pose Te[X] and T compact. Then P,(T) contains
at most a countable set of points and these have
no accumulation point, except possible at i=o0
Recall the definition of the spectrum being as the
complement of the set {2} such that: (I—i0g)~!
exists as an operator and is continuous.

Theorem 2.3 does not imply that the point spe-
ctrum is not empty. Let us look specifically for
eigenfunctions of Og; if 2 belongs to the point
spectrum )

(1 — 20£)$1(E)=0 (2.11)
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The ¢; (&) being the associated eigenfunction
——Eq. (2.11) can be rewritten as:

é2 (E)—Zg(E)S «;‘;((Eéj; dE'=0 for E> «.(2.12)
Put T (E)=¢,(E)/g(E). (2.12a)
And Eq. (2.12) becomes

{ — g(E) '  —
#(E) zSE A AT BB =0 (2.13)
We differentiate (2.13) and obtain

w __, "(E) E) 5y (2. 14)

dET T h(E)
Keeping in mind Eq. g(E’)—— -h(E), the sol-
ution of Eq. (2.14) is stralghtforward.
T(E)=K[h(E)]"?,
where K is arbitrary, and from Eq. (2-12a)
$2(E)=Kg(E) [h(E)]~*.
But Eq. (2.15) is not equivalent to the initial
Eq. (2.12) and we must verify that ¢, (E)=g(E)
Xh(E)~4is indeed a solution of the initial equation.

(2.15)

61 (E)—1g(E) f 0 *’;;((E? ) dE

=g(EYh(E) +—ig(E) XE gEYR(E") A1 dE
=g EDIE+g B[ RE) | =g )b (B340,

Since f(Ep)#0 even for Ey—co, Eq. (2.16) ex-
presses that g(E) h(E)~1 is not a solution of Eq.
(2.12).

This means that the point spectrum is empty.
Indeed, the result is stronger.

Theorem 2.4, The whole spectrum (continuous,

point, residual) of Og is empty, except for the
point at oo.
Proof: Let us show that the operator (I—i0z)™!
exists for any A, A5%co. Given S(E) arbitrary,
S(E)e CleFEp], the existence of I—20z)7! is
equivalent to the existence of a solution ¢(F)e
Cle,Ey] to the equation.

(-0 ¢(E) = S(E).
ie. $(E)— zg(E)S

2.17)

¢<E ) dE'=S(E). (2.18)

From the result (2. 16). we find easily that the
solution of more specialized equation

Py =19 E) | SB)_ap=sm-Fy

o (2.19)

is

$(B) =5 (B—Ep) + 29 ERE)™

h(Ep)1-2,
From Eqgs. (2.19) and (2.20) we find the final
solution of (2.18)

Eo
$(E) =S (B) +1g(EYR(E){

(2. 20)

_SE) g
Ty 9E"

(2.21)
This means that operator (1—A0g)~1 exists.
Then, since O is compact (Theorem 2.2), (1—
20g)"1 is continuous (as proved in Taylor?, p.281
“Suppose T=[X], T compact, and 15%0. Then
(A—T)-! is continuous if it exists.”). So Azoco
belongs to the resolvent set of Oj. Since the spe-
ctrum of any linear continuous operator is not
empty, (Taylor?, p. 261: “if T'=[X] and X is a co-
mplex Banach space, ¢(T) is not empty.”), it means
that, the spectrum Oy is reduced to A=oco0. Q.E.D.
Theorem 2.4 is also valid even if we extend Ej

to oo,

3. Generalized Mellin Energy Transform

We have found pseudo-eigenfunction of O na-

mely:
¢, (B)=g(E) h(E)~*.

This will be used for a new energy transfor-
mation of the original kernel of integral equation
(2.1) in order to reduce it to a known standard
form of time dependent monokinetic equation,
whose solution is well-known. Let us introduce

the following fundamental energy transform:

T 4tn,2) =S;m (WEDHgERE)dE,  (3.1)

or equivalent

Tid) ={ U EODE) 1 dE=00, (u Ef),
(3.2)
where ¥'; (1, EL,) =0 (n,EL) /g (E).
The transformation M always exists provided,

(1B 1aB <o (3.3)
Its inverse transformation is given as
FituB =5 Tt DR E A, 3.0

where integration path in the complex A-plane
must be to the right of all A-singularities.
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Later we need a “convolution” theorem for the
M-transformation:
Theorem 3.1, If F (2) and G(2) are the M-transform
of FI(E) and G(E), then the inverse-transform of
the product F_(l) :G() is

wF @GWI=g@) | P(2)6 -2,
where F'=F(E)/g(E) G'(E)=G(E)/g(E)
v=h(E) w=h(E")
Proof: Defining FV(E)=F(E)/g(E),
G(E)=G(E)/g9(E),
we can rewrite the transformation M as:

F () :S;F’ (vyvi-ide,
G (D) =S;G’ (v)vi-idy,

where we used the transformation defined in Eq.
(3.1), and

v=h(E). 3.5)
As we know from Eq.{3.2), this is nothing but
a classical Mellin-transform. Then, a classical

“convolution theorem” for the Mellin transform?
states that:

1 (M= A 11,1 v dw
s Vo F DG @rdi={F (L) G2
Notice F'(v)=G'(v) =0 for v>1.

So
Tl T \ v dw _ (T (v dw
SOF (%‘)G )= *LF (u,—)G W)=
And finally, taking into account the factor g(E):
WIF DG 1=gB [ F (L) )T
QED.

4. Completeress of Eigenfunctions

With these preliminary investigation we are
finally prepared to solve the Eq. (2.1) exactly to
find its Green's function.

We write Eq. (2. 1) once more with the explicitly
given kernel.

() +ikut1) P Bt =53 S ()

1 oo
—"g——f_ldwx (E) f I B D AE

c; =~ dE 1 130/ /
+50® § oy pwmnd
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Define an operator T by

T4(E) =cry (E) f ;¢ (B)dE

-_?(E/)

+cig(E) 112 dr”.

4.1y

We are considering function in the Banach space

L1[0,00], such that ¢(E)eL,{0,00], if and only
if

1g11={19(2) | <oo. (4.2)

Such functions always possess the 9-transform
defined in Section 3:

g = f ;¢(E) h(E)*-1dE. (4.3)

So we can, in fact, consider a broader class:

namely “tempered distribution.”, which according

to L. Schwartz!®, possess the M-transform. Now,

let us look for eigenfunction of 7.

TH(E) = v4(E) 4.4
We M-transform Eq. (4.1) and get
vE (D =crl (D) $(EB)dB+-S-3 (), 4.5)
where %(J) =f:x (E)h(E) -1dE,
7 (1) =1. (4.6)
Let us note that
[#mar=5q). 4
Using Eq. (4.7), Eq.(4.5) becomes
VW =e Z(MF W) +5-5 (D). “.8)

Solutions of (4.5) belong to two classes:
(I) Bigenfunctions ¢(E) such that @ (1)=£0 or

f;qS(E)qu&O.
Then the solution of (4.3) is

cADFL)

6 (Z) = p—c‘-/] (4. 9)

But Eq. (4.9) must be verified for all values

of 2 ; hence, for 1=1, it must yield an identity:

F)=—CE-F(1). (4.10)
Hence
v = opt; @ 11)

So we have a unique eigenvalue v=cCr3¢;,

to
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which corresponds a unique eigenfunction

— crX(2)
F) P ey (4.12)
In fact, we have already implicitly solved the
direct Eq. (4.4) in Section 2: using the solution

(2.21) we obtain the direct expression for H(E):

=_Cr L
H(E) =~ % - x(B) +; g (B)
- Ci o 4
h(E) CF+ci fE CF:_Fci X(E) dE/

—Cr
h(E) ertei (413
(II) Eigenfunctions ¢(E) such that §(1)=0 or

[“smyar=0.
‘Then Eq. (4.8) reduces to

TIOEE 108 (4.14)

The solution forms a confinuum of “pseudo-
eigenfunctions” such that

$,() = 6(2—120)

v = ¢/

with 2,1,

6.0 =2E " 015010 h(E)*
=g(E)h(E)™. (4.15)

Next we prove a completeness theorem for these
two classes of functions.

Theorem 4.1. The discrete eigenfunction H(E)
defined by Eq. (4.13) and the “pseudo-eigenfunc—
tions” defined by Eq. (4.15) form a complete set
for functions €L;[0,c0].

Proof: Let $(E)eL; [0, oo]. The completeness
theorem can be stated as:

$(B) =TH(E) + L (" 4 20y () -22d

with A(1)=0;J and A(4) being the unknown
expansion coefficient associated respectively with
the discrete eigenfunction H(E) and the continuum
eigenfunction h(E)~2°. Then we have obviously
J= S;¢(E) dE. Defining I'(E) =¢(E) —JH(E),

we have
| r@de=o.

(Since S;H(E) dE=1). Then, we must prove that
we can write

r @ =9E (" 400 h(E) " de.
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But, applying an inverse M-transformation, we
get, since I'(F) is M-transformable;

4 Qo) =j;'r (BYh(E)4-1dE.

Our expansion coefficients are therefore known.

We have only to verify that A(1)=0, which is
true since;

AQ) =ﬂr(E) dE=0 QED.

Hence the eigenfunctions of the continuous
energy transfer operator form a complete set, and
that they can be classified into two groups;(1)
one discrete regular eigenfunction, (2) a continuous

set of (pseudo)eigenfunctions of null measure.

5. Solution of the complete eguation

Let us now consider inhomogeneous term (so—
urce term) S(E) of Eq. (4.1). In general, the
source term is not proportional to H(¥). The idea
is then fo decompose the actual source through an
expansion using the complete set of energy-eigenfu-

nctions by theorem 4.1, since any source S(F) e

L4(0, oo].

S(Ey =JH(E)+T (&), G-1
where J=[ S(E)dE,
clearly f;[‘(E’) dE=0.
Then, from the completeness theorem 4.1
_ O(E) chie ~i
I'(E) _Wf TTOE (5.2)

with FQ) =j'or<E>h(E)“dE
r =0
Then transport equation (2.1) is linear; so its
solution can be expressed as the one speed solution
due to the component JH(E) plus the solution
due to a source I'(&) of zero measure.

Call the former solution H(E)¢z(t,z), and the
latter g;r($,u.E):

&y (t,[l,E) :H<E) ¢E (t,/l) +¢tr (t!/"E) (5 3)
éz (t,) obeys

(%+iky+ 1) 85w
=_Crrh 2+ G ﬂléf(t,;/) dy’-f-i%i. (5.4)

As to ¢, (.uE), it obeys
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( 0 ik -
6—t+2 y—l—l) G (t,#,l)
=£f" Butwndu+ I )P G.4)

Since both Eqs(5.3) and (5. 4) are a well-known
“monokinetic” equations. We can immediately
write down the complete solution.

Defining the Green’s function as

Gr(LE) = f ;aﬂ'k GE ) dy, (5.5)

we have

_ et exp(—iakt)
Gg- (t,E) ‘—"2— {JH(E) [’”*‘ NO (k')

exp(—zakt)
+f T NG@E ]
tuz,) etiv exp(—iag, () K1)
+Z B G by~ [ D o DH)

+j' e’cp((—azz%)kt) ]}
where

agp=t/tan(k/C;--cr), eu (2 =i/tan ki/c;
PTG/ LI

210 1—a0k2

—c2 1
Nao(k.2) =572 T 7"

N@k) _{1 7(CF+0) FC) tank-la [ (Cr'l"cz)r },

- w, 1 ] o P
N(ak,3) [1 tanh-ta | —| S

For 2<1, we note immediately that e,(2) <a,,
we find the unique asymptotically dominant decay
constant as 1—c, where —¢=fe,, which is neg-

ative real number, if £ > 0.

6. Cornclusion

We have found a complete solution of the
integro-differential equation of neutron transport
problem. Energy-time separable mode was found
to be asymptotically dominant with a unique decay
constant (1—c¢) which will persist after a long

period of time.
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