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Abstract

More detailed calculations of extension to general anisotropic transport equation with fission
are studied. These calculations involve that the operator can be splitted into scattering
and fission operators when we prove the completeness of general anisotropy.

Applying these operators to the eguation makes it easy to extract the slowing-down
transient of zero-measure, and completely solves the transport equation.

In addition, the number of the eigenvalues of the second anisotropy is classified with Cs

unknown, B; and B; known constants.
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1. Introduction

The solution of neutron transport equation has
been greatly developed in recent years. Since Case
had been found a complete set of eigenfunctions for
the one-speed neutron transport equation for the
case of isotropic scattering?, one-speed anisotropic
scattering problem?®, space-angle-energy dependent
anisotropic

piene slowing-down problem®, and

scattering problem with fission” had been compl-

€

eiely solved for simple elastic scattering models.
In the case of time-independent neutron transport
equation, formerly published papers incicated well
how the full-range problems are soived.<? ! For
the full-range problems with the boundary condi-
tions specified over the whole g interve! [—1, +1],

the coefficients in an eigenfunction expzrsion are
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easily found from orthogonality properties. And
for the half-range problems where the boundary
conditions are specified over the whole g interval
[~1, 0] and [0, +12, the coefficients in an eige-
nfunction expansion satisfies a singular integral
equation. When we consider the coexistence of both
fission and slowing-down, such a singular integral
equation can be solved in the case of convolution
type kernels as Greuling-Goertzel kernels.

In this paper, we will extend the more general
anisotropic case with fission, parallel to those de-
veloped by Nicolaenko and Zweifel* .

We deal with some confined aspects of the static
energy-depencent neutron transport equation, using
the constant cross-section limit and Greuling-Goert-
ze] kernel. Furthermore, we restrict cur attention

to the case that regeneration occurs only through
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fission and elastic scattering.

We are primarily concerned with general ana-
lysis of Boltzmann equation with fission. And we
will classify the number of eigenfunctions of
second anisotropic scattering problem. By applying
the argument principle to the singular integral
equation, we can easily find out the number of
roots of regular parts, which is the numerator of
the argument.

At the interval [—1, +1], we can assume wi-
thout proof that the orthogonality theorem is
satisfled. Therefore, we shall firstly prove the
incompleteness of the given functions, and then
insert the slowing-down transient of zero-measure

to satisfy the completeness.

2. General Anzlysis
The general Boltzmann equation with fission? is
o2 ) +U @)
—_—%Cs f _':G,, (u—uydw :w (@0 Ay’
+%‘CFX (u)fj:duf :(B‘ (@, w)dy
—‘r%Cs{;;(Zn«kl)Pn(#)f:_G,,(u—-u’)du’
COf SP)¥ @) |+ Stapn) (2D

The P,(y) are Legendre polynomials and G,(u)
the Greuling-Goertzel kernels representing energy-
transfer in the n-th angular harmonic®.

In the case of second anisotropy, the equations

are
p—g% (%,p,0) + T (2,1,%)
_% Go(u-u’)duf U (apwydy
Gy aw(w @y
+§L s#f : Gl(u-u’)du/f “u ) wdu,
20 (32 1)f Gz(u"u/)d'“f 2 G

XU (@' )l +8 (a2 (2-2)

By using a Fourier transform of the lethargy

o0 () + T (20)

=%Ga (k)ftig. (xn”»/k) d,u'

J. Kovean Nuclear Society, Vol. 2, No.4, Dec. 1970
Coz iy (M7
+&100[ T @0t
+'§Csﬂ61 (k)_fﬂﬂ’f (x,wk)dy
+2C. 3D G| F o~ 1T K

+S(x:ﬂ’k)

where

(2-3)

T (k) = f U () e du
By setting k=o0, we find Mika’s one-speed equation
T 7
"o (@,00) +¥ (2,0,0)

=(_CF_{r_Cs_> f j‘gz* (z.0)dv’

CcllBl Il ZF(:I‘,;:, 0) du’
+7 C (3¢ —1)82 2 (3,/2—1)4 (2.¢,0)8y’
+S(,1,0) (2~4)
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The solution of Eq. (2-4) is well known?
In order to look for normal modes, we substitute

where

the expression
T (z,uk)=g(,uk)e ="
into Eq. (2~2) and put
8. (800 =[ Po(wg(tul)ds

then, we can write as follows;

(2-5)

$(tae) = 5P TCG (). + TR (o)
+30C.Gr (k) (LK)
+5 31 Ca(k) a(tk)]
3 (E— ) 2(tK) (2-6)
Integrating both sides of Eq. (2-6) over g, then
we have
(k) =4, k) —tC.Bo (4.1) (G, (k) Q, ()
—tCrd,(t,0) (X (k) Qo(t))
—3tC.g (1K) (G1(B) @1 (2))
—5tC.ga(t,k) (G2 (k) Q2(2)) (2-7)
Q,(z), Qi(z), Qa(z) are Legendre functions of
the second kind.
Generally,

Q@ =) L gy

If we assume ¢ (t,k) is zn arbitrary parameter,
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é:1(t,k) and 4-(£,k) may readily be obtained.
Multiplying both sides of Eq. (2-5) by (2m+1)
P,,(¢) and intergating over all g, and using the
relation
2+ D) P () = (0 +1) Por (o) + 0 Poci (),
then we obtain the recurrence formula
(2m+1)f¢m k) — (MA+1) $sr ) —mGy (8.E)
=tCsGm (k) ¢m (t,k) +tCFZ (k) ¢0 (t,O) 6}7:0
In the cases of m=0, 1, we have
$1 (k) =118, (tk) {1~C.G,(k)}
~Cr (k) ¢s(t,0)]
m=1, a(tl) =14 (R {3-C.G (R)
(1—C.G. () -1}
—§,(£,0)Cr{(8—C.G1 (k) ¥ (k) )1%} ]
(2-9)

m=0,
(2-8)

From Eq. (2-7), we look for the discrete ragular
modes. We notice that there may be four such
modes, corresponding to the eigenvalues —+L,,

+1L,, such that
(£ L,k) =0 (2-10)
The classification of these eigenvalues will be

discussed in the next section.
3. The Number of Discrete Eigenfunctions

The number of discrete eigenfunctions of second
anisotropic case will be classified in this section.

Since
Qi(2) =2Q,(2) —1
Q:(2) :—% (322—1)Q,(2) —%z

Substitution of the above formulae into Eq. (2-7)

vields,
A(tk) = [8.(4k) +3tCG1 (k) 61 (k)
+B620,Ga () (800
- [CsGi(k) 6o (t.k) +C ¥ (k) 4, (¢,0)
+3tC.G1 (k) 4, (4,K)

+5 ER-DCE R SERIQE  (2-T)

We introduce a new function

Q@ =E()—2Q,(x)N®
where R (2) =4, (k) +32C,G, (k) ¢, (2.)

(3-1

+§2zzcﬁz(k>¢z<z,k) (3-2)

and N(2) =C.G, (k) $,(2.k) +Cr (k) $.(2,0)
+32C.G1 (k) 41 (2.k)

+2@2-DCGEMBEE  (3-3)

The function Q(z) is analytic in the whole
plane with the cut along the real axis.
Following Mika’s procedure of finding the num-

ber of discrete eigenfunctions, we set

M=% arg Q*(1) (3-4)
From Eq. (3-1), we obtain
Q@) =R®) —1Q,O)N() i%tN ®, (3-5)
SR b 2N (&) g
arg Q*(¢)=tan lffR_(_f{)“—— 0, ON®] (3-6)

where + means the value taken by an analytic

function of z above and below the cut [—1, +1].

We may take arg Q*(0) =0.

Since the denominator of Eq.(3-6) has not zero,
we shall examine N(¢) to look for the number of
roots.

And the denominator approaches the negative
infinity at t=1.

Then we obtain M=n+1,
where n is the number of zeros of N(1).

Using Eqs. (2-8) and (2-9), we get

N@) =Cao 61) [Go () +382G1 (k) (1-C. G (k)
+2(302—1) Ga () {3—C.G1 (1))

A—CGo (k) t2—1}]
+Crf, (£,0) % (k) [1—382CG, (k)

—212(32—1) C.Ga(k) (3~ C.G1 ()]
(3-7)
For the sake of brevity, we set k=0 and
80 (t,0)=G,(0)=7(0) =1
therefore, we get
N =§cs (3—C.B) 1—C,—Cj) Bat*
+[3BC,(1—Ci—~C) —2C,Ba(3—C,B)

1-C—Cr) —LC.Be2

+CeASC.BACr) 3-8)
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where

Bi=(:,0), By=G,(0)

Let us put C+Cr=al; (a=1)

where a is the parameter which represents the

ratio of fission to scattering. The value of @ may

readily be determined by experimental works.
Then,

N@ =§Cs (3—C.B)) (1—aCy) Byt
(1 —al s) } J 2
+C.la+2B,) (3-9)

Now, we introduce

F&) =GN )

=153—C,B)) (1—aC,) Byt4
+[12B,(1—aC,) —5B: {3+ (3—C,B))
(1—aCy)}]t?
+[4a+5B;] (3-10)

Here

f(0)=4a+5B, (3~11)
f(1)=10aB,B,C2—2 (5B, By+6aB,+15a8,) C
+4{a+3B+58,) (3-12)
Since f(t) is quadratic in t?, we may argue that
if f(0) Xf(1) <0, N(¢) has only one root at the
interval (0,41)
N(f) has no root, of two roots

at (0, +1)

if fO)Xf)>0,

From Eq. (3-12), the discriminator D is
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D= (5B,By,+6aB,+15aR,)?
—40aB,Bs(a+3B;+5B.)
= (3B, By—6aB; —5aB,)?
+80a2B; By+200a2B,? 153-13)
If By and B, have the same sign, D is always
positive.
Alternatively, D is rewritten as
D=Bp?(6a—5B,)2+10aBB,(14a—58y)
+225a28,2 (3~14)
If B; is the only unknown constant, the discri-
minator of Eq. (3-14) is
D'=[5aB,(14a—5B5)]2—225a2By2 (6a—5B,) 2
=—200a2B:2 (2a—5B,) (8a—5B,) (3-15)
Let us examine the following two cases
i) %Bz <a or %B2>Q'
D <o.
This leads to D>0 for all By, B;
i) $Bs a =3B,
D=0

This corresponds to the following two cases:

A—yD Ly
@ Ga=sB)2 Bt °F (ea—sB,)2 B
D>0
A—uD A D
®) Ga=sBy?=B= (5B,
D=0,
where A’=—5aB;(14a—55,).

For convenience, the results are tabulated in the
table.

TABLE
B, a : B, \ C, ﬁ*'—WﬁA Remark) B
B=-t | e=-$m | B | AP e 3| B=GO
! ! i :101‘5‘,1/ gz >C, 1 1‘ :_Q%SCE_
i B |4 10(13132 =G, 2 ‘
: BB =C 2
‘\ D <o 1

10aBB; | 1|
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(continued)
B, a B, | C, M Remark
' 5, | | A—yD
BZ> '—'5~ \ a> - 432 | BIBZ>O i lOaB Bz > Cs 1
i A+/D
I
T0aB,B; <Ce 8
A—/D A+VD
1I lOaBle éCSé loaBlBg 2
' 5
=By <la<l5 B _A-D
4 8 B\B:;<0 —10aB,B;, = 2
or
A++v/D
a> ng ‘ lOaB]Bz _Cs 2
| A+\/D <C <A D 1
; 10aB B, 10aB, B,
, 5, 55 | A—JDs A~yD —
 gB=e=9B Gp 6y B | 0.8 =0 2 | A=—bab;
! i (14a—5By)
! ‘w or _é_'lf\{Dﬁzc 2
[ A+ /T <B 10aB B, =7°
| ©Bta) | _AtyD o A-vD | 4
) l 1OQB1 IOaBlBg
| | 4=y |
l(SBz—ﬁa)Z:BI all C, "
1 A+VD
i i '——(582_6&)2
. and define
leteness or Completeness of the _.
4. Incomple P Bluk) =8 (uk) — PO (1) (4-3)

normal modes

As the former printed case¥, we can state the
full-range hypothetical completeness theorem as

T (k) =S Ans§ L) 1[5t uk)at (a-1)

where

& (k) is an arbitrary function of g and of the
lethargy-transformed variable k.

In this paper, we are taking ¢,(t,k) as the un-
known expansion coefficient of the continuum
modes.

First, we set

@V (#:k) Ea_.(#rk) —ZAnt,d(iLmﬂ)k)

=P (p,k)
Sy I (LN OTAC)
+CrX (k) 65 (,0) +3uC.G1 (k) $1 (t.k)

+5BR—DCGE&HENIdE (-2

Splitting the kernel of Eq.(4-3) into singular and
regular parts¥,

i

¢
— +1

t—u
then regular parts of Eq.(4-3) are

(4-4)

Bres () =3 CGo) [, 100
+5Cex ) [ 4,0yt
+5CC W u [ g thydt

+5CG0 Ge=D [ g dt
(4-5)
and singular (dominant)parts are
2P G ms e
+Cp¥ <lc> b0 (t,o> +3uC.Gy (k) 61 (1)
+§<3y2—1>csG2<k>¢2<t,k>dt

-4[ed

B om (!"yk)

[C CAGTIAC)
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+Cri (k). (,0)1dE+Clpk)  (4-6)
where
Cluhy=-{" P L1 13,C.Gi (k) 01
+2 32— D)CGB) I Id (4-T)

Substituting Eqs.(2-8) and (2-9) into Eq. (4-7)
and splitting into singular and regular parts, we

get
Cresih) =52C.Gr 0] 1=C.G, (0 gt 0y
—Cr7 () .0y dt
+2 4321 C.Gr () B=C.Gr (1))
x[(l—CsC_;o ) Si 4+ o )
—Ca® | t+wstodt] @8
Corm (k) =2 5CG1 I A~CGo P
B8R gi—Cen | PH L0 ar
+316e-DCE®][ H{6-C.Gw)
(1-C.G,00) 21" PEER ay
~ 2 B—CG1(1) CrR (k) 12
fr4toa) o

We define
fz.” (ﬂxk) =?ZN (Pf:k) _Breg (ﬂ:k) _Creg (F:k)
=w (,uik) _EnAni- (iLmll:k)

~LeG.w [ s tma+Crmw
+1
(“ts.orat]

3 G ~ a1
—$CG W[ a=CG )| th o dt

—Cr2 () "4, t0) dt
—3CG B {a-C.G.0) | g thydt

—Cr70) | dot0)dt

~ 530G =D ([ 8.0k L3
—CG1 (k) 1—C.G, (k))t2—1]d¢
—C (k) 3=C.Gr () 124 (t.0)dt)

— 2432 —1) C.Ga (k)5 3—C.Gr (k)
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= +1
{a—cGoun " a+me.tha

—Cpi(k)S:(t+y)¢o(t,o)dt} (4-10)
then, & (g,k) has only singular parts.

Also, we define

Fzk)= (4-11)

L (g de
e (wh)— %

From Eq. (3-1),
principal value of Q (uk).

PQ (1) =4, (k)| 1= uC,Go (k) PQu ) =34C.C
(k) (1=CGo (k) PQ: ()
—24C.Ga (k) PQa() {B—C.Gr (k)
(A—-C.Go) 21} |
+ 0 (1) —uC7 () PQu ()
+3C2C.% (k) G (k) PQ1 (i)
+348C,Cr 3= CGr (BN X(0)Galh)
PQz(#)]
By inspecting the above equations, we define
Q.2 k) =1-2{C.G, () Qo(@) +32C,
1=C.G. (1) G ()@
+5CG00)] 3—CGi )
(1—C.Go)2—1|Q:2)]
Q (@) =—2{CLUOQu(2)
—32C.CrX (k)G (k)@ (2)
—522C,3-C.G: (1)) Cr7 (R)
G2(k) ()}

we can easily calculate the

(4-12)

(4-13)

(4-14)
Then,
02 (k) =PO, () £ 2L C.G. ()
+3C.G1(e) A—CG, () 2
+2 @21 CGa (k)

{6—CGik) 1—CG. 1) 21} |

(4~15)
08 (k)= PO (o) -2 Cr7 (k)
—3C,G1 (k) e (k)
—242C,(3—C.Ga () G (k) (3 =1) |
(4-16)
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Also we define

__L ("1 g (th)
Nk =g | e

where ¢y(t,k) is the unknown expansion coefficient.

The functions N(z,k) and F(2,k) are analytic
in the z-complex cut from [—1, +1]. And 2,(z2,k)
and Q7(z,k) are also analytic in the z-plane cut

4-17)

from [—1,+1] except some possible poles.
From Eq. (4-17),

N* (k) =t doiol) + 5| 0Bt (4-19)

First, we get

QF (pRYN* (1) =5 (k) N~ (k)
=¢0([1’k) Pa,

+£] CGok) +30,G1 (k) (1-C,Go () 12

+532—1)CGalk) (B—CGr(B)

+1

a-CGotk)—1 | BBy 400

And,
Q5 (”7k) N+ ([.’,0) —Q5 (F’:k) N- (;I,O)
=¢0 (/110) PQF (urk)

+£Cr7 (k) [1—30361 (k) 2
— 22321 C,3-CG(#) |

(><)S”%dt (4-21)

-1
Adding the above two equations, we get
F* (k) —F~ () =T" (k)
=[O (e, ) N* (u,f6) — 37 ()
N-(uk)]
+ [2% (o) N* (,0)
—QF (k) N~ (1,0)]
Thus we can write as follows:
Fk)=0,(2k) Nzk)+2-(k)N(E0) (4-23)
‘We have obtained quite the same formula as that

(4-22)

of linear anisotropy by Nicolaenko and Zweifel.
Since this equation behaves as fission or slowing-
down operator seperately, we can immediately get
the solu-tion of plane slowing-down problem in
this coexisting case.

Setting k=o,
N(z0) =%§§’)— (4-24)

where A(z) is the function used by Case and

Mika in the monokinetic case.

And we get
— 1 _Dr(=k) F(z,0) -
N(zk) —DT(Z,T){F(z,k) —F'—A(;,)—} (4-25)

From the former definition Eq. (4-17), the ana-
Iytic function N(2,k) can be found, if N(z,k) have
no singularties in z outside the cut [—1, +1].
But N(z,k) has some delicate points, i.e., the zeros
of A(z) and 9,(z,k).

First, in case of A(+L,)=0 (n=0,1),

F(+L,,0)=0
is fulfilled through the discrete modes.

And in the case of 2, [J(k),k]1=0,
Q.(z,k) has zeros. at z=]J(k),

This equation leads to the plane slowing down

(4-26)

problem, which is solved precisely by Jacobs and
Mclnerney®.
Following Nicolaenko’s procedure, the full-range

completeness theorem can be easily extended as
7 (k) =§1Au¢(ime,k) +BE)T (J) (k)
+1
+[ sttt

wher & (J(k),u,k) are the discrete regular modes

(4-27)

of the plane slowing-down problem, as introduced
by Jacobs and Mclnerney. The superposition of
these discrete regular modes of the plane slowing-
down problem has indeed a null measure, as we

called “slowing-down transients.”
5. Conclusion

It has been shown that, in the case of the coexist-
ence of elastic scattering and fission with the sec-
ond anisotropy, splitting of the operators is always
possible. When more higher order anisotropy is
concerned, it may be possible to have the same
operators as these by adding the corresponding
higher terms to Q; and Q.

Therefore, the extension to general anisotropy
may be readily made, but the calculation of finding
the roots of higher order is tedious.

More difficult problems lie in some limitations.
Previously we restricted our attention to the static
state and constant cross-section. In the thermal
region, these assumptions can not largely
influence on the exact; solution. But for the most

cases, energy-dependency of the cross-section can
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never be disregarded and some of the problems
derived from the static state, for instance, inelastic
scattering problem, must be considered.

If the appropriate kernel dealt with cross-section
and some factors related with inelastic scattering
are included, the neutron transport equation in
time-independent case will be completely solved.
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