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Abstract

A time-energy transient characteristics of pulsed neutron transport problem with an
inelastic kernel in the fast domain is solved exactly with a continuous energy transfer
operator. A discrete time eigenvalue is found which is asymptotically dominant. The
complete solution consists of three parts: a time-energy separable mode which is asy-
mptotically dominant and a non-separable mode which is made up by two parts;a pure

energy slowing-down transient and a mixture of time 'and energy transient which is

negligible asymptotically.
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1. Introduction

A very few progress is made in time-energy
dependent neutron transport problem. Either disre-
garding a complete energy dependence, the only
mono-energetic problems are solved by the classical
Case approach:?-? or the usual multigroup®-®
aopproaches depend on the essentially ad hoc assu-
mption of energy-time separability of neutron dist-
ribution. An essential difficulty of energy depen-
dent transport equation {lies in a nonseparability
of solutions: usually space, time and energy
variables are deeply mingled in an exact solution.

Furthermore, recent researches on neutron pul-
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sed, and wave experiments have proved a primary
physical importance of the continuous spectrum
of an energy transfer operator. Previously, a star-
ting point of too many theories was the existence
of some complete set of discrete energy eigenfun-
ctions. Corngold was the first to prove that, under
some condition (e.g. the thin slab geometry), discr-
ete time eigenvalues{(for a pulsed experiment) and
discrete space eigenvalues(for an exponential ex-
periment) could all disappear into the continvous
spectrum®,

It is obvious that any multigroup formalism
introduces the artificially N-discrete eigenvalues
and completely obscure the continuum character
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of energy operator.

Recently the very ingeneous method of Nicola-
enko and Zweifel has shown at the first time how
to treat the continuous energy operator in compl-
ete generality in steady case”.

The fundamental idea is that we restrict our
investigation to a spatially asymptotic behavior
and concentrate on the detailed study of time-

energy transient of neutron distribution.

2. General Theory

Consider the transport equation for a neutron
flux, in an infinite, multiplying, and fast medium.

We are interested in the fate of a pulse, isotropic
source of neutrons injected into a mixture of
moderator and fissionable material and deduce a
nature of the subsequent decay.

With a plane symmetry, the isotropic source at

=0, a linearized Boltzmann equation may be

written as follows:
é g
(Lt eu +v0)) T @ty =

%f e S ; Ve (V)T (2, i, v, E) 2.1)

1@ 3OS,

where the various symbols have the same mea-
ning as given in the time-dependent equation of
Case and Zweifel's book® “Linear Transport The-
ory” p.47.

Since we consider only the case of inelastic scat-
tering in fast domain, the elastic scattering cross-
section is negligible——which is very close to
physical reality, and the absorption cross-section
is inversely proportional to the velocity.”

Thus we shall assume in the following analysis
that v ¢ (¥)==1, of course we normalized here some
constant as 1.

Since we are interested in the time-energy spe-
ctrum of neutron density at a fixed point far away
from source, we perform an ordinary Fourier

analysis of the z-coordinate. Thus we introduce
Talput) = f " 0@, v, Hexp(—ik/v )d. (2.2)

Ultimately, ¢ (z, gz, v,t) will be found by Fourier
inversion:
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After the Fourier transform, we write our basic
equation of energy dependent equation with an
tnelastic kernel in terms of an energy variable as

follows:

a ;s i 1 ’ h '’
(Wﬂkﬁ- 1) T Et)= %—f_ldy fo dE
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where K;,(E'—E) is the energy transfer operator
for inelastic slowing-down, and ¢; is the number of
secondary associated with the inelastic scattering.

An exact shape of K;, (E'—FE) is poorly known,
and it is neither a self-adjoint, nor can it be sym-
metrized as in the case of thermalization.

We use here the synthetic kernel introduced by
Okrent et al'® !t inspired by Weisskopf’s statis-
tical evaporation model, which is adaptable to
experimental data or more involved nuclear theory.

We write it as simple as possible:

K..(E—E)=f(ENg(E), if E'=E,
=0, if B'<FE. (2.5)
The conservation of total inelastic cross-section
requires

f K. (E'—E) dE=1,

h(E)=1/f(E),
g(E)=d/dE h(E).

The incident neutrons are treated as a statistical

so that defining

we easily get

assembly and the compound nucleus is assimilated
to a Fermi gas from the theory of statistical
evaporation model.

Okrent found that the functions

g(E)=E/T2+ e 5T,

h(E)=1—(1+E/T)e "7, (2.6)
where T is the nuclear temperature, a measure of
the excitation of the product nucleus after emis-
sion of the inelastically scattered neutron, agree
reasonably well with the observed neutron en-
ergy sprectrum with the approximation T =~ constant

We note that g(E)=0 for E=0 and g(E)—0
for E—»oco, and A(E)=0 for E=0, h(E)—>1

for F—co.
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Therefore with this inelastic kernel, our equation
(2.4) becomes
(&t ikut1)0suBD= G 9B [

"L (B
Xf £ h(E)

‘We define the modified functions, as

FelpED
g(E)

Let us introduce the following fundamental energy

AE'+-5-6(t) S(E).

£
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transformations:
Foludt) =[ s EHGEENE  (2.9)
or equivalently, from Eq. (2.9)

Ti(uit) =[ FeuE WA (E)IE
=m @, (wEL), S2)=nSE).

(2.10)

The transformation M always exists provided,
[ W B IR <o,

-which is always valid for the subcritical reactor.

Applying M-transformation to Eq. (2.7) we find

(S-tikutt) e tuity= & duf dEg(E)

xhi(E) [ 98 (B aB+ P S ). 2. 11)

By inverting the order of intergation over Z and

E°, (provided i>0) we find easily our final equa-

tion to solve as follows.

o . = -1 =3 ’o
( §f+zkp+1) Tolpat)= g'[f_ld,; T (i)

(2.12)

+ "gf?-g (x)
This is the well-known time depencent “mono-
kinetic” equation with 2 as a plain pararieier, cnd
the only difference is that the average numbter of
The

(2. 12) is easily solvable by the classice! iz

secondary is C;/A. “monokinetic” ¢:uaticn
+hod
of Case.

We observe that m=nh(E) defines & onc-tc-ine

mapping of E€ 0,0<] onto m=70,1_,

since the Jacobian of the transformation is alw-

ays not zero:

NG

v th (E)=g(5)#0 for E< (0,00].

Then in terms of the new variable 57, the transfcrm-

ation &i can be written as
Titad) = g@h EYF (WEHIE

=fl(F < (um)mA-1dm, (2.13)

where we have used dm=g(E)dE and Eq.(2.13)
is nothing but a classical Mellinz transform in
terms of the new variable m,

Then having found solution for &,(mit) by
Case method, we get immediately its inverse tra-

nsform as

Fumty=5s [ Tauamdy @19

where integration path in the complex A-plane
must be to the right of all A-singularities of the

integrand.

3. Eigenfunctions and Eigenvalues

We write once more our ‘monokinetic’ transfor-

med equation as

3 . 7 G g,
(Z+iurt) Tsaty= 55 [ duutu/at)

+ 5§t-)--§<z). (2.12)
Consider the ansatz
T (paty=0{gA) e 1rikxt 3.1
by the time translation invariance.
Substitution c¢f Eq.(3.1) the above Zq.(2.12)
yields:
T N ,
(a-woind) =251 a(nd, 3.2)
with the ncrmzlization
1 . -
J' Doy Tu=1 (3.5)

The solution of £3.(3.2) may be written
in the form

p 1.
a—p

By ()5, = :f; +etai)dlp—a)  (3.4)
LA

1
where P sterds for the principal value in the case
of normalization integral and £(k,a,2) will be de-
termined from the condition of Eq.(3.3).

For ag [—:,. we get the solution:
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_ 1
[/ (FM) —275 Cor s (3 5)

where a,, is determined from the normalization to

be solution

ic; (1 dy

Ak =1+ f T

(3.6)

.t W1
1 W i tanh~ . 0,

where A(k,a,1) is analytic in the a-plane cut from
—1 to 1 along the real axis.

In case of a=[—1,1],
(3.3) yields

the requirement of Eq.

€(ha) =1+ Z/,l Pf 1 ,u—a @.7

=% [AF (B, 2) + A~ (K2, ) 1.

To determine the number of zeros of the func-
tion A(k, e, 2), we note that the value of « for
which 1(k,a,4) vanishes car be written from Eq.
(3.6), as

a=ti/tan(Ak/c;). 3.8

Considering this equation as a transformation
between the k-plane and a-plane we see that the

strip

|Re k| <rc;/24 3.9

transforms into the entire cut a-plane.
Thus for a given k inside the strip defined by
Eq.(3.9), there is one and only one value of q,

call it ap, which is zero of the function A(k,a,2).

For |Re k> 7;3’ , A{k,e,2) has ro zeros.
Sirce we are concerned only with real %, we
z0; ot-
227

herwise no zero.

Furthermore, we see from Eq. (3.8) that o is
pure positive imaginary for k>0, and pure nega-
tive imaginary for £<0; «os=—ao-; Thus we
note that ¢ka is a negative real wmumber. From Eq.
(3.1) we see that the solution will always decay
more slowly than e™.

From the defining equation for @.;, Eqs. (3.2)

and(3. 3),it readily follows that @.; are orthogonal.

A. Orthogonality

{ ‘]m,k(ﬁ,x)@a.,b(rz,z) du=o, atd (3.10)
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f Paon () dp= 2k2222 - i o
=Nao(k,2). (3.11)
[ Oek @) Ot (w D) du=N(@fe )5 (a—a), 3. 12)
where N(a,k2) =82(a,k,2) —C2r2/4k242, (3.13)
and &(a,k,2) =1—1ic;/kA tanh™a (3.14)

In order to prove Eq. (3.11), we have used the
usual procedure, i.e. Poincaré-Bertrand formula.
B. Full-Range Completeness Theorem

Theorem. A function ¥ (p,At) of Hélder class G
n p; defined on the full range —1=u=1 may be
expanded in terms of the continuuni modes @ay
and the discrete eigenfunctions for any value of
k such that ki< 02’; .

The completeness prcof is entirely similar to

the procedure of the monokinetic case” 2, we only
mention here that given the function & (g,2,f) of
class G the following expansion is unique and the
coefficients ay, and @(e,k) are uniquely determined,
_(A+tkao)t

F () =B (12)¢ (1t thetos)

+f~1_1“(a,k)¢a,k(y,1)e*“”"Wda.(s. 15)

C. Full range Green’s function
The expansion coefficients defined in Eq.(3. 15)
are obtained through boundary conditions and orth-
ogonality relations(Egs. (3.10), (3.11) and (3.12)
by the procedure similar to the monckinetic case.
In the full-space Green’s function, the source
term(5(t)/2) S(E) becomes -2 5(E—E,). Then

S =f “hiV(E)s(E—E,)=h(E)=1,  (3.16)
and the Green’s function
Gt =[" Fu(wat)dy (3.17)

is easily cbtained:

Goat) = [eT'p(N z(%,kkt) &

{‘lexp( takt)
Mg )

(3.18)
where Nao(k,2) and N(a,k,2) are explicitly given
by Egs.(3.11), (3.13) and (3.14). By the inverse
M-transform we get

GuED=2"{1E <E) " dan(E)-

exp(—iakt) da
TNk,

[exp( zan,kkt)+J_l

5 } (2.19)
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Finally, the full energy-space-time dependent
Green’s function will be found by the inverse

Fourier transform:

G@.El) = f Z-—’”G,, (Bt d(k/v) (3.20)

Observe that the continuum modes, « is real, so
that those modes all decay as e™*, therefore repre-
sent the transient term, which is negligible asym-
ptotically. The discrete mode, for a given k, always,
decays more slowly and thus represents the asym-
ptotically ‘'dominant behavior.

4. Isotropic Inelastic Scattering and
Fission

We start with the equation:

( ik 1) Bt = ! dux(E)

XI T, (.U B t) dE/‘I‘ g(E)j h(E')

x| Fu, B+ 55 S (E). (4.1

Notations are similar to the previous equation
(2.7), except here we have the additional term of
fission, where ¢y represents the average number
of fission secondaries per collision, and x(E) is
the fission spectrum.

Define the operator T by:

T(E) =crx (B) [ $(ENAE +0ig(B)

$(E") v
X[ 4B

We again consider function ¢(E)eL;[0,00] Such

(4.2)

functions always possess the M-transform defined

in Section 2:

FW=[ $Eh(E) 1B @3
Now, looking for the eigenfunctions of T
TY(E) =w4(E), 49

we take M-transform of the Eq.(4.2) and get:

B W=ex () [ ¢ B+ (), (4.5)
where 7()=[ x(E)R(E)*"E, T)=1 (4.6)
Let us note that

[(sE®ydE=5 ). )

Using Eq.(4.7), Eq.(4.5) becomes

B @) =erZMFW+-GFD. .8

Solutions of Eq.(4.5) are classified into two cate-
gories: (I) Eigenfunctions ¢(E) such that §(1)=0

or

[ s®dr£0.
Then, the solution of (4.8) is:
)= erX (D¢ (1) .

v/ (4.9

But Eq.(4.9) should be valid for all values of 2;
hence, for 1=1, it must yield an identity:

(4.10)

4
=%

Hence v—C;=Cp, v =CptcC;. (4.11)

So we have a unique eigenvalue y=Cp+¢;, to which

corresponds a unique eigenfunction H

CFX(;".)

HO) =g zoa>imy

(4.12)

Inverse }-transformation can be found easily sc
that

H(E)—c o x(E)+
- (B »
g(EYh(E) —E_ X ) dE
Cr +c fECp'I'C, h() T
(4.13}

(I) Eigenfunction ¢(E) such that ¢(1)=0 or
f “$(B)dE=0.
Then Eq.(4. 8) reduces to:

v FD =5 (4.14)

This is the plain slowing-down eigenvalue pro-
blem. The complete solution is exhaustively disc-
ussed in Section 2, 3.

The complete solution of Eq.(4.1) is now deco-
mposed into two groups (1) one discrete regular
eigenfunction corresponding to fission regeneration
(energy-time separable mode) and (2) a continuous
set of plain slowing-down eigenfunctions of #ul/
measure. There is a complete analogy between
this case and the case of isotropic elastic scattering

with fission discussed in a paper by Nicolaenko
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and Zweifel”. Using the completely similar proce-
dure and notations, we orly give its final result
for the full range Green's function including the

fission spectrum.

EH=2"] exp (—lanukl)
Gl t) = G JH(B) {ER (heatil) o

(k)

1 e(’l‘g(jg@ 9_@2 y. _
j-x Nia k) da}+2zi c—‘mdﬂr(l)
<h (E)-i{e_ﬂm_(z%icr_&»;_;ll@_l_

lexp (—ia(2) ki)
f TW‘Z&}} (4.15)

where a.=t/tan(k/c;4+cp), ax(2)=t/tan ki/c;.
(4.16)

G@ED=[ eap(k/zv) Gi(ENA/v). 4.17)

c.
i
For et 21,

a,(2) <e,, therefore the complete Green’s function

we note immediately that

consists of three parts: a time-energy separable
mode which is asymptotically dominant and a non-
separable mode which is made up by two parts—a
pure energy slowing-down transient and a mixture
of time and energy transient which is negligible

asymptotically.

5. Conclusion

So, we have successfully decomposed the initial
transport equation into two equations: a plain
slowing-down problem without regeneration and
the energy-time separable mode which is asymp-
totically dominant. We obtained analytical expre-
ssion for the full-space Green’s function corres-
ponding :o an inelastic slowing-down with
regeneraticn. A discrete time eigenvalue is found
which is the decay constant of whole system after

a long period of time.
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