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Abstract

Previously determining the fuel loading pattern is based on the trial and error method. For
a candidate pattern, the core analysis is performed and the pattern is examined whether it
satisfies the imposed constraints such as the power peaking or not. The pattern, then, is re-
vised by the shuffling of assemblies and the revision is repeated until all of the conditions are
met. This method unavoidably requires many iterative diffusion calculations, computing times
and accumulated experiences.

To overcome these disadvantages, a new method which is called backward diffusion cal-
culation is introduced. If the most desirable power distribution is already known, the optimal
loading pattern can be obtained by solving the backward diffusion equation with simple cal-
culation.

In this study, the basic equation for the backward diffusion calculation is derived and the
optimal power and fuel distributions are searched in one-dimensional cylindrical geometry by
using the proposed method. In additon, the basis to determine the optimal power and fuel

distributions is suggested for the real core geometry.
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Nomenclature

v*° : Laplacian operator

Dy : fast neutron diffusion coefficient

D, : thermal neutron diffusion coefficient
S.1 - fast neutron removal cross section
212
vin:
v 3, rp: thermal neutron fission yield

: removal cross section

fast neutron fission yield

®; : fast neutron flux

&2 :thermal neutron flux

L; : fast neutron diffusion length

Lo, : thermal neutron diffusion length
€ : fast fission factor

K. :infinite multiplication factor. .
1. Introduction

Optimization of fuel management is closely con-
nected with economy of nuclear power plant.
Saving in fuel is directly related to low electricity
cost. Therefore, minimum fuel loading is one of
the most important requirements in designing the
reactor core. So optimization of fuel loading is
needed.

In the aspect of optimization, object functions
can be varied and subsequent various constraints
can be defined according to object function. There
are many different kinds of optimization problems
in the reactor design. Some of them are exampli-
fied as follows.

1. flux flattening problem.

2. minimum critical mass problem.

3. maximum power problem.

4. control rod sequence problem.

Each problem has various constraints which
must be satisfied for specific purpose. In this
study, power distribution and according loading
pattern that require minimum core fuel loading are
searched over the whole core to meet the critical-
ity condition. For this purpose, a new concept,
which is called fuel potential, is introduced. To

obtain such object function, “effective fast group
model” is developed to represent the behavior of
fast neutron and fuel enrichment by modifying the
two group diffusion equation.

Search for minimum object function must be
carried out in more realistic geometry. But there
are many difficulties in guessing various power
shapes. In this research, for simplicity one dimen-
sional geometry is adopted to obtain optimal pow-
er shape and minimum fuel loading. The “optimal
power” stands for the power distribution which
minirizes object function under imposed con-
strairits.

A new method which determines optimal load-
ing pattern using specified power distributions is
introduced in chapter 2. Then the concept of fuel
potential is discussed in slab and cylindrical
geometry in chapter 3. Chapter 4 presents the
method of mapping from 1-D to 2-D geometry
and chapter 5 and chapter 6 present results and
conclusions respectively. This study mainly follows
the backward diffusion method of Chao,” howev-
er the different method to choosing optimal power
shapz is adopted. The results show that K* dis-
different and the
peripheral region should be loaded with low en-

triburions are somewhat

richment fuels.
2. Bakcward Diffusion Method

Tc determine loading pattern conveniently,
backward diffusion method is used in this study.
This method is based on the assumption that fast
group corss sections are nearly constant over the
core and that mesh size is determined so as that
meshes are coupled only via fast neutrons.

In reality, however, thermal group cross sections
can ot be constant over the core. Spatial depen-
dent variation of thermal group cross section,
however, is assumed not to affect the fast neutron
distribution signifcantly. This statement can be veri-

fied by Eq. (2-9). It, then, can be said the above
approximation is legitimate. By using the above
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assumption, the backward diffusion method can
be derived as follows.

Two-group diffusion equations for the critical
system are derived as follows;

~DiVi® 1+ 310 1=v Su® i+ v Spda2-1)

—DovP 0ot 52®p=312®:. 2-2)
Eq. (2-2) can be modified as follows;

p 1
Dp=—ae @y, (2-3)

22 1 —LQZVZQZ/TD;

If Eq. (2-3) is inserted into Eq. (2-1), Eq. (2-1)
can be rewirtten as follows;

*‘D1V2<I’1+ 1P,

(2-4)
212
=v3Ind1+vp

(3]
1-12,20,/ @,

Rearranging both sides of Eq. (2-4), it is possi-
ble to represent the above equation only with fast
neutron flux if the infinite multiplication factor and
fast fission factor are introdued.

~L21V2®1+<I)1
2-5
_ v3.n 4 v3ip Z12 29
pRY ! 3 S2

D,
1—L22V2(I)2/q>2

Meanwhile the infinite multiplication factor can
be stated as follows;

v3q Y3 22
Koo= . . 2
S + 22 31 (2-6)
V3 212
Y € = 9
Keo/ € 3, 5, 2-7)

Thermal neutron leakage probability, & o, is the
ratio of thermal neutron leakage to absorption.
This term is introduced to consider the effect of
the thermal neutron flux to fast neutron flux dis-
tribution.

ngvzcbz
D7

(2-8)

It is well known that this thermal neutron leakage
probability is very small compared with fast neut-
ron leakage probability. Then taking account of
thermal leakage probability, two-group diffusion
equations can be rewritten as follows

8o/ €
12920, 4+ @ =[1— K @1,  (2-9)

1462

212
— 15O+ Oy=—— D).

3, (2-10)

In the similar way, fast neutron leakage prob-
ability, &1, can be defined as
LZIVZ(D

o1=—- (lef.

(2-11)

Using Eqs. (2-8), (2-10), and (2-11), Egs. (2-9)
and (2-10) can be represented in terms of thermal
and fast neutron leakage probabilities.

62/6

—[l— -1

S1+1=[1 1_{_(?Z]KOC, (2-12)
212 ©)

So+1= s, o, (2-13)

Dividing Eq. (2-8) by Eq. (2-11), it is obtained

as

d2 _ <I>1L22V2(I)2

= (2-14)
d1 ®2L21V2 (O3]

Using Eq. (2-13), Eq. (2-14) can be expressed

with fast neutron flux only as follows;

312 1
—_— o —— _1
@2 S 1+ 62)(1)1’ (2-15)
1 L% ?[@1/(1+
82= 1+ ¢ L% 1@ 1/( 52)]. 2-16)

g1 L21v2 [ 21

Because the thermal neutron leakage probabil-
ity is small quantity, the thermal neutron leakage
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Table 1. Fast Neutron Diffusion Length L, for Typical PWR

Enrichment Burnup D, b L,
(Wt%) (MWD/MTU) {cm) {em™1) (cm)
2.1 0.0 1.4676 (.025788 7.544
2.1 12,000 1.4739 (.026180 7.503
2.1 24,000 1.4571 0.026776 7.377
2.6 0.0 1.4622 0.025578 7.651
2.6 12,000 1.4695 (.026014 7.516
2.6 24,000 1.4677 0.026593 7.429
3.1 0.0 1.4556  (.025443 7.572
3.1 12,000 1.4661 (1.025892 7.525
31 24,000 1.4773 0.026446 7.474
3.6 0.0 1.4562 (.025356 7.578
3.6 12,000 1.4635 0.025807 7.531
3.6 24,000 1.4757 (.026331 7.486

probability can be kept only first order terms.
Therefore the ratio of both leakage probabilities is
same as the ratio of both migration areas. Then
Eq. (2-12) can be represented in terms of thermal
neutron leakage probability as follows;

(L2/12) - (Ko—1)
8 2= 3 .
14+(L%/L%) - (1—Ke+Ke/ €)

(2-17)

Inserting Eq. {2-17) into Eq. (2-9), two group
diffusion equations can be restated with fast neut-
ron flux only.

—15%®+ ®1=K*®; (2-18)

where
1+(L22/L21 € ) K
1455 K.,

(2-19)

Fast neutron diffusion length, thermal neutron
diffusion length, and fast fission factor are
assumed constant so that K* in Eq. (2-19) is inde-
pendent of thermal neutron flux. Eq. (2-18) which
is called “effective fast group model” is expressed
as if it were 1-group diffusion equation.

In deriving the backward diffusion equation,
thermal group cross sections except for fission
cross section are assumed constant, but in real
core they are different in each assembly. Howev-
er, the variation of the thermal neutron leakage
probability due to the change in thermal neutron

cross section does not affect fast neutron distribu-
tion. Even if there are burnable poisons which in-
fluence thermal neutron absorption only, thermal
neutron leakage probability becomes smaller so
that effective fast group diffusion is more legiti-
mate.

The physical meaning of K* in the effective
fast group model is the same as the multiplication
factor, excpet for including of the thermal neutron
diffusion correction term, and represents the usa-
bility of fuel.

From the above effective fast group model, K*
distribution can be determined by the predeter-
mination of fast flux distribution, and vice versa.

In this derivation fast diffusion length, L;, is also
used as constant. The values of L, are listed in the
following Table 1. It can be seeh that L;’s are
nearly constant regardless of burn-up and enrich-
ment.

3. Determination of Optimal Power Distrbution
and Fuel Loading Pattern

A. Optimal Power Distribution
In the sense that K* is analogous to the infinite

multiplication factor, the optimal power distribuion
is the one that necessitates minimum global fuel
loading ro achieve the criticality of a system hav-
ing fixecl dimensions.
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To obtain these optimal power distribution, the
concept of fuel potential is introduced. The fuel
potential is the references to select the optimal
power distribution. From the effective fast group
model, derivation of fuel potential in the slab and
cylindrical geometry is performed.

B. Fuel Potential

b-1. Slab geometry

The effective fast group equation is expressed in
slab geometry as

d2

L 0100— @100 =~ K0 @10 (3-1)

For convenience, the spatial variable, x, is made
dimensionless by dividing the variable by the fast
neutron diffusion length. Boundary conditions are
adopted as the finite fast flux at the core boundary
and the zero neutron current at the core center.

d®(x)
— g | x=0=0, 3-2)
& 1(x=x0)= ®10. 3-3)

Eq. (3-1) is a kind of Sturm-Liouville nonho-
mogeneous boundary value problem. This prob-
lem is solved analytically by introducing Green
function as follows.

The effective fast group equation is deduced as
Green function G{x);

d2
— G -G = (3-4)
dx?
The constraints that Green function G(x) should

satisfy are as follows;

dG(X) I X= 0_0 G(X) | x=xy" ’ (3—5)
G(X) | x=x'+O=G(x) | x=x"—0 (3_6)
Aok O | vro=1, B

dXV x=x"+0"" d

Above constraints are derived from the fact that
Green function should vanish at boundary, that
Green function must be continuous and that de-
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rivatives of Green function must be discontinuous
at one interior source point.

Then the above Green function can be solved
depending on the position of the source point, x’,
and the detection point, x

Glx,x)=Ale*+e M(eX —e®% ¥), x<x  (3-8)

Glx,x') =Ale*—e?)(e* + e ), x>x (3-8)

where
A=[2(1+e®9] 71,

Therefore the fast neutron flux can be express-
ed in terms of Green function.

b-2. Cylinderical geometry

For a cylindrical model, the effective fast group
equation is written as follows:

d
dr

|

r %@1(1’)— ®4(r)

= — K*(r)@l(r) (3_14)

The boundary conditions which fast flux must
satisfy are the same as those for the slab geometry

d®q(r)
ar | 1=0=0, (3-15)
@ 1(r=r10)=D10. (3-16)

In the same way, the Green function can be writ-

ten as follows;

1 48 6m-Gu=o0, (3-17)
40U | =0, G | 1=0=0, (3-18)
G) | r—r+0=Gl0) | r=r—o0 (3-19)
LSNP N

dr dr

R (3-20)

The Green function which fulfills the above
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constraints in the cylindrical geometry is written in

terms of modified Bessel functions.

(),
Glrr) = Io(r)[KO‘}‘)’ olr)— Kofr'),
r<r’ (3-21)
1 .. Kolro)
Gltr )= ol ) lole) — Kot
r>r (3-22)
where,

Ip=zeroth order modified Bessel function of first
kind,

Ko=zeroth order modified Bessel function of
second kind.

With the Green function for cylindrical geometry,

fast neutron flux can be expressed as follows;

@)= f R*r)@,(r)G(r,r) 2z rdr  (3-23)

+2 7 1y® (1) G (1)

where

, dG(rr’
Glrro) =90

r r'=ry

Boundray condition can be defined as follows:

—(Dy/L1) @7 4{xo)

D1 (rg) - (3-24)

Then the fast flux in the cylindrical geometry is

®100)=— [ KH),4()Glrr )2 7 v dr
+DL() [ KA @4 )r dr (3-25)
And the power distribution, P(r), is:
P(r)=K*{r) & ,(r) (3-26)
K*(r) = P(r) /[ Dio(r) f Pl ) dr’
- f r)plr)2 rrdr’] (3-27)
where
D= Jrololro)ly({ro) + ( @ 1L1/Dy)y(xo)i
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Since the object of this study is to reduce the
amouni of total fuel loading as low as possible,
the object function can be expressed in K*(r) inte-
grated over the core volume.

= [TKe@2 nrdr. (3-28)

Because K*(r) is functional of P(r), optimal
power distribution can be determined via selecting
the power distribution which minimizes the object
function.

This object function is notated as ‘“‘J”’ and is
called as the fuel potential which means the
amount of total fuel loading to meet criticality.

b-3. Determination of power shape

It is possible to express the power shape in
analytical form, since K*(r) is dependent on the
power distribution. In determining the global pow-
er distribution, considered constraints are; the
power shape is symmetric and the peak power
does not exceed the limit. Taking into account of
these constraints, the trial power distribution is ex-
panded in 3rd order polynomials.

To search for the optimal power distribution,
the position of a peak of the power distribution is
moved from core centre to boundary by adjusting
the coefficients of the polynomials.

The power distribution, of course, can be ex-
panded with other function such as trigonometric
functions. But when other expansion function is
used and peak position and global power shape is
similar, the value of the object function must not
be appreciably different from that of the expan-
sion case. For demonstration of above statement,
the cosine function has been checked as an ex-

pansion function.
4. Method of Mapping from 1-D to 2-D

For practical use of the 1-D calculation, follow-
ing algorithm, mapping the result of the x-y coor-
dinates, is proposed. First, consider a uniform dis-
tribution of fuel potential throughout the

two-dimensional core in question and calculate
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Fig. 1. K* and Power Distribution

the critical value of the fuel potential and the cor-
responding two-dimensional power distribution.
Then find an equivalent one-dimensional cylin-
drical core by adjusting its radius so that it has the
same density of fuel potential at critical condition
as for the two-dimensional core.

Now compare the normalized power distribu-
tion for the two cores to determine the mapped
positions of the assemblies. This is done at first by
matching the positions where the power levels are
in its peak in 1-D and 2-D geometry. The same
process is then repeated for the other assemblies
by descending order of power level. Fig. 10
shows how the 1-D results are mapped on the

2-D plane when the above strategy is used.

5. Results

Using the effective fast group model and the
procedure described in the previous chapter, the
optimal power distribution is predetermined and
accordingly optimal fuel enrichment distribution is
obtained for a reactor whose core radius is four
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160
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Fig. 2. K* and Power Distribution.

times of fast neutron diffusion length.

Calculated power distribution and K* distribu-
tion are plotted in Figs. 1 to 7. From Fig. 1to 4 a
polynomial power shape is used in cylindrical
core, and cosine power shape is used in from Fig.
5to 7.

As a summary, the variation of core average K*
with power peak position and with power peaking
limit is plotted in Figs. 8 and 9. It can be seen in
these figures that the optimal loading is obtained
when power peak is positioned at around a half of
the radius, and that the average K* is decreasing
as the power peaking limit is relaxed.

6. Conclusions

From the above figures, it can be concluded as
follows.

1) If high enrichment fuels are loaded in core
center region, the value of object function is
usually high. Thus, it can be said that high enrich-
ment fuels must not be loaded at central region.

2) In case of high enrichment fuels loaded in
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( begin )

power guess

N

backward diffusion
calculation

K™ distribution peaking position
calculation shift

fuel potential
calculation

no

yes

optimal power and K™
distribution

end

Fig. 11. Flow Diagram of Calculation.

core periphery, it is also undesirable, since at
boundary the gradient of flux is so high that neut-
ron leakage rate is high.

3) High enrichment fuel, therefore, should be
loaded in the middle of the core and low enrich-
ment fuel should be located in the peripheral and
central region.

4) It can be seen that the fuel potential is in-
versely proportional to the power peak limit so
that the more reduction in fuel potential leads to

the higher power peak.

Up to now, the optimal power distribution and
K* distribution are obtained for a 1-D cylindrical
reactor. The entire calculation sequence is di-
agramed in Fig. 11. However, the difficulties im-
posed in real reactor application are that Green
function should be seeked in real core geometry
and power shape is to be expressed in multi-
dimensicon.

To surmount these difficulties, a mapping which
matches 1-dimensional ring with 2-dimensional
node is suggested.
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