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Abstract

This paper develops a new method for reconstructing neutron flux distribution, that is based
on the maximum entropy principle in information theory. The probability distribution that
maximizes the entropy provides the most unbiased objective probability distribution within the
known partial information. The partial information are the assembly volume-averaged neutron
flux, the surface-averaged neutron fluxes and the surface-averaged neutron currents, that are
the results of the nodal calculation. The flux distribution on the boundary of a fuel assembly,
which is the boundary condition for the neutron diffusion equation, is transformed into the
probability distribution in the entropy expression. The most objective boundary flux distribu-
tion is deduced using the results of the nodal calculation by the maximum entropy method.
This boundary flux distribution is then used as the boundary condition in a procedure of the
imbedded heterogeneous assembly calculation to provide detailed flux distribution.

The results of the new method applied to several PWR benchmark problem assemblies
show that the reconstruction errors are comparable with those of the form function methods in
inner region of the assembly while they are relatively large near the boundary of the
assembly. The incorporation of the surface-averaged neutron currents in the constraint in-
formation (that is not done in the present study) should provide better results.
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1. Introduction

The modern coarse-mesh nodal method de-
veloped in the last fifteen years or so allows
routine neutronics calculations in the reactor de-
sign and safety analysis with reasonable computing
cost. The features of the nodal method are
summarized as follows. The reactor core is parti-
tioned into large (typically, size of an assembly
20cmX20cmX20cm) homogeneous nodes. The
number of meshes is reduced remarkably resulting
in saving of computation time. The unknown to be
solved is the node-volume averaged neutron flux.
In derivation of the nodal balance equation from
the neutron diffusion equation, node surface-
averaged neutron currents appear as additional
unknowns. Thus, auxiliary spatial coupling equa-
tions are necessary. One type of the nodal method
is distinguished from another by treatment of the
transverse leakage terms that appear in the auxili-
ary spatial coupling equations. The detailed de-
scriptions of the modemn nodal method are avail-
able in Refs. 1,2 and 3.

The nodal coarse-mesh method provides the
nodal neutron fluxes and power densities in the
core with both accuracy and high speed. Howev-
er, its result is the volume-averaged flux in a large
size of node, while local quantities are required in
addition to the global ones for calculation of pow-
er peaking or for analysis of heterogeneities. [4, 5]

So, the reconstruction of the pointwise flux and

the power densily is necessary and several
methods are available.[1, 6] The reconstruction
methods are divided into two-categories : the im-
bedded method and the form function method.
These methods reconstruct the local quantities
from the information given as the results from
nodal calculation.

The imbedded method is to perform heter-
ogeneous fine-mesh assembly calculation with
boundary source conditions determined by infer-
ence from the information given by the nodal cal-
culation. [7, 8] It is expensive due to the fine-mesh
calculation, although it provides good accuracy.
The form function method is to determine the
coefficients of the form function that represents the
reconstructed flux with combination of the results
from the assembly calculation. [4, 6] Its accuracy
is acceptable while it is less accurate than the
imbedded method. This is faster than the imbed-
ded method because it does not require any fine-
mesh calculation.

Reconstruction of the distribution of pointwise
flux and power density is an inverse problem in
the sense that it finds detailed pointwise quantities
from the limited information given in the from of
e.g., average quantities.

The maximum entropy method proposed by
Jaynes [9] can be used for inverse problems. The
maximum entropy method in information theory
provides the most unbiased probability distribution
within the given partial information. Cho [10]
used it for the most objective prior probability



A New Formulation of the Reconstruction-—-W.J Na and N.Z.Cho 195

distribution to be used in Bayesian reliability
analysis.

In this paper, the maximum entropy method is
used for the reconstruction of pointwise flux dis-
tribution. The results from the nodal calculation
constitute the partial information to the inverse
problem of reconstruction. The boundary condi-
tions {flux values at the boundary of the node) that
maximize the entropy are found and then used in
the heterogeneous fine-mesh assembly calculation
in a procedure of the imbedded method.

2. Reconstruction Methods
2.1 Introduction

The nodal calculation provides only the node-
averaged quantities. Sometimes, it is necessary to
know the local quantities such as the pinwise pow-
er densities. In problems such as the determination
of the power peaking factor, the maximum power
density among the pinwise power densities is of
interest rather than the volume-averaged power.
Thus, a method to reconstruct the pinwise fluxes is
required. The methods introduced in the literature
are divided into two categories.

2.2 Imbedded Method[7, 8]

Boundary conditions for the heterogeneous
diffusion calculation are deduced by using the re-
sults of the nodal calculation. From the surface-
averaged fluxes and currents, the boundary condi-
tions on the assembly is determined, for example,
by curve fitting. The heterogeneous boundary
source calculation is performed with the boundary
conditions thus determined. If it is possible to
determine accurate boundary conditions, recon-
struction can be accomplished with good accura-
cy. Determination of the accurate boundary condi-
tions is the most important step in this method.
However, this method is expensive due to the

heterogeneous fine-mesh calculation.
2.3 Form Function Method[4, 6]

A form function with unknown coefficients are
assumed. The form function is designed to multi-
plicatively correct the assembly flux. In other
words, the assembly flux reflects local het-
erogeneities within an assembly and the form
function represents smooth flux distribution in the
global core. These unknown coefficients are deter-
mined by using the results from the nodal calcula-
tion. If the coefficients are determined, the recon-
struction is completed. The form functions usually
used are bi-quadratic polynomials or hyperbolic
functions. In the form function method, the forms

of the functions must be assumed a priori.

3. The Principle of Maximum Entropy for the
Reconstruction Problem

3.1 Introduction

Given partial or incomplete information about
the state of a system in question, we may hope to
solve following two problems. One is to determine
the complete probability distribution of the system
state that is the basis of the partial information.
This may be considered an inverse problem in that
it tries to find the cause by knowing the effect. As
prior information has the information about the
system state, we can disassemble this to get the
cause. The other is to assess the uncertainty of the
prior information whether we have missed any
other prior information or not.

Jaynes [9] proposed to solve the problems
above by using the concept of statistical entropy in
information theory. It leads us to the way to get
the prior probability distributions (causes) or to
assess the uncertainty of the prior information.

Information theory [9, 10] tells us that the en-

tropy
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S=— 3 P.InP, (3-1)
i=1

where P is the probability of outcome i and n is
the total number of mutually exclusive and ex-
haustive outcomes, represents a measure of mis-
sing information or uncertainty and that those P’s
that maximize S subject to constraints of available
prior information correspond to the most unbiased
(objective) and noncommittal description of the
state of knowledge within the information.

3.2 The Most Objective Probability Distribution

There are a number of probability distributions
that match the constraints given by the prior in-
formation. However, what needed is the only one
probability distribution that is closest to the true
one. In other words, it is to required determine
the probability distribution that is most probable
and at the same most objective.

The probability distribution found by the max-
imum entropy method is the one that maximizes
its entropy among those distributions that satisfy
the prior information. The fact that it has max-
imum entropy means that it is the most unbiased
one among those many possible distributions and
that still satisfy the prior information. And it is free
from other information that is not articulated. This
consideration is plausible and convincing because
there is tendency in nature that the entropy of a
system increases as far as it is allowed by the
degree of freedom.

A prior information to be used as constraints
should be “testable”, The prior information is test-
able if, given any proposed prior probability
assignment p(4)d 6, there is a procedure which
will determine unambiguously whether p{8)d 8
does or does not agree with the information.

First, the prior information is expressed in
mathematical terms. The inverse problem then be-
comes an optimization problem. The objective
function is the entropy of the probability distribu-

dJ. Korean Nuclear Society, Vol. 21, No. 3, September, 1989

tion and the constraints are the mathematical rep-
resentation of the prior information. The solution
is the probability distribution that maximizes its
entropy while satisfying the constraints.

4. Applications to the Reconstruction of Point-
wise Neutron Flux

4.1 Introduction

The key step in this study is the determination
of the most unbiased boundary conditions for the
node to be used in solving the neutron diffusion
diffusion equation by a finite difference fine-mesh
method. The boundary conditions are determined
using the results of the nodal coarse-mesh calcula-
tion via the maximum entropy method. The
boundary conditions are transformed to the prob-
ability distribution and the results of the nodal
calculation to the prior partial information. The
results of the nodal calculation are the average
quantities : node volume-averaged flux, node sur-
face-averaged fluxes and currents.

Since the average quantities are “summary” de-
scriptors of the pointwise quantities, they represent
partial or incomplete information. Mathematically,
specification of the boundary conditions at the
node boundary for the diffusion equation is
equivalent to the knowledge of the pointwise
quantities, i.e., complete information. Thus, the
problem of reconstructing pointwise neutron flux
may be formulated as an inverse problem that is
to find accurate boundary conditions that will give
the average quantities obtained by the nodal cal-
culation.

The reconstruction approach investigated in this
study thus belongs to the imbedded method
where accurate boundary conditions are first de-
termined using the results of the nodal calculation
and then the neutron diffusion equation is solved
over the heterogeneous node with the boundary
conditions determined in the first step to obtain



A New Formulation of the Reconstruction--W.J.Na and N.Z.Cho 197

the pointwise neutron fluxes.
4.2 Mathematical Formulation

Since the boundary conditions, i.e., the flux dis-
tributions at the node boundary are considered as
probability distributions to be determined, they are
the independent variables in the optimization
problem of the maximum entropy method.

Constraints given as partial information are the
assembly volume-averaged neutron fluxes, the
assembly surface-averaged neutron fluxes and the
surface-averaged neutron net currents. These are
the results of the nodal calculation.

The maximum entropy method of information
theory provides the most unbiased boundary con-
ditions (i.e., flux distributions at the boundary) that
are consistent with the given constratints.

Since boundary conditions are the neutron
fluxes on the boundary surfaces of a node, prob-
ability distributions are related to the surface fluxes
as follows.
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where u denotes each side of the assembly that is
subject to reconstruction. I is for left side of the
assembly, r for the right side, t for the top side and
b for the bottom side. 1 designates group 1 (fast
group) and 2 designates group 2 (thermal group).
H denotes the assembly size. ADF is the assembly
discontinuity factor described in Ref. 11, which
represents the relationship between the
homogeneous surface-averaged neutron flux and
the heterogeneous surface-averaged neutron flux.
ADF multiplied by homogeneous surface-averaged

flux is the heterogeneous surface-averaged neut-
ron flux on the boundary of the zssembly.
It is easy to check that

Zptv=1
and
Spti=1

The terminology used up to now was that for
the three dimensional case. From now on, the
problem considered is of the twodimension. Axial
consideration is discarded and only x—y plane is
considered. Thus, volume-averaged quantities re-
fer now to surface-averaged ones, and surface-
averaged quantities correspond to line-averaged
quantities.

The entropy for the probability distributions de-
fined in Egs. (4-1) and (4-2) is as follows :
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where w: and w: are weighting factors for the fast

4-3)

and thermal groups, respectively. A trivial choice
for wi and w: is

wi=w:=1,
Probabilities are defined for each side of the
assembly because it is easy to handle them separ-
ately.

The partial information given as constraints is to
be represented in mathematical terms. Formula-
tion is straightforward from the normal definition
of these quantities. Total of eighteen constraints

are obtained as follows :
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e | v#?x vidx dy=$2 (4-8)
0<Pru<1 (4-10)
0<Pev<1 (4-11)

u=lr t b

¢ 9 denotes the surface flux at point x of the
boundary surface of the assembly, which is the
boundary condition for the diffusion equation. ¢ ©
¥ is the surface-averaged flux given by the nodal
calculation where the “surface” means line on the
boundary of the assembly in two dimensional
problems.

J9 (x} denotes the current at point x of the sur-
face. J** is the surface-averaged flux given by the
nodal calculation.

$ 9 (x, y) is the pointwise flux within the assem-
bly. ;“g’ is the volume-averaged flux given by the
nodal calculation.

The right-hand sides are given by results of nod-
al calculation and all are known terms. The left-
hand sides are unknown terms as they contain the
boundary conditions. Constraints (4—-10) and
(4-11) come from the definition that P is the
probability. The constraints above are rewritten in
the finite difference form as follows :

1 nw
W El ¢i11‘u)h’,(u): a W, ADF (4_12)
1 rw
W $ Pup= § 2w . ADF2W (4-13)
=1
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1 nful  n -
HoHw 2 j=21 ¢ Vhih=¢® (4-16)
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Hopa 2 5 #hh=¢ (4-17)
OSR“'M)SI (4"18)
0 SR(Z,u) < 1 (4'_19)
u=lLr t b
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where j in Egs. (4-14) and (4-15) denotes the
next inner mesh to the boundary.

Note that Eq. (4-12), Eq. {(4-13) and the right-
hand side inequalities in Egs. (4-18) and {4-19)
hold trivially because of the definitions Egs. (4.1)
and (4.2).

The problem formulated above is mathematical-
ly an optimization problem of maximizing a non-
linear objective function subject to linear equality
constraints, i.e.,

Maximize S=F( ¢ [s*) (4-20)
subject to G( $ #)=0 (4-21)
$ 89>0 (4-22)

Note that Eq. (4-21) is a set of constraint functions
that are linear (albeit, not written explicitly).

4.3 Solution of Neutron Diffusion Equation

During the procedures for solving the optimiza-
tion problem defined by Eqgs. (4-20) through
(4-22), a number of feasible points are searched
as candidates of the solution. If a new candidate of
the solution is chosen, it is checked whether it
satisfies the constraints and the gradient of the
entropy at the point is zero, i.e., the entropy is
maximized.

Constraints (4-14), (4-15), (4-16), and (4-17)
contain $; that is a function of the boundary
conditions, $“. ¢,9 is determined by solving the
neutron diffusion equation with boundary condi-
tions, #©". Thus, it is necessary to solve the neut-
ron diffusion equation whenever ¢/ is changed
during the optimization procedures.

5. Computer Programs

5.1 Finite Difference Fine-Mesh Calculation

Solution of the neutron diffusion equation is
required during the optimization procedure to pro-
vide the volume-averaged neutron fluxes and the
surface-averaged neutron net currents whenever
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the values of the constraints on the volume-
averaged fluxes or surface-averaged currents are
required to check whether a candidate of the
optimal solution (boundary conditions) is truly the
optimizer or not and also when the new candidate
is to be searched. The problem was formulated in
such a way that the neutron diffusion equation is
solved with Dirichlet type boundary conditions.

The neutron diffusion equation is approximated
by the finite difference fine-mesh method. A com-
puter code for the finite difference fine-mesh cal-
culation was written in this study following the box
scheme [12] and with the following assumptions :

1) Two neutron energy groups

2} No upscattering

3) Fission occurs at both energy groups

4) Fission neutrons appear only in group 1

(Thermal neutron source is only the downscat-
tering of the neutrons from group 1.)
The finite difference fine-mesh diffusion calculation
with box scheme is

di $-utd $utd untd - tdi $0=S

5-1)

where superscripts LR, T and B denote the direc-
tion that is left, right, top and bottom side of the
nodes in fine mesh, respectively. The coefficients
dj are the same with those described in Ref. 12. In
incorporation of the Dirichlet type boundary con-
ditions, the coefficients in Eq. (5-1) corresponding
to the sides of the node are changed to the
boundary conditions for the neutron diffusion
equation. Also, the fluxes in Eq. {(5-1) correspond-
ing to the changed coefficients are changed to the
surface fluxes on the boundary.

Finite difference diffusion equations for all
nodes are cast into matrix form as

AX=-FX+C
—_—= keﬁ'—— =

Vector C contains the boundary conditions,
which are the surface-averaged fluxes on the sur-
faces of the boundary nodes. It is easily seen from

the appearance of the matrix equation that it is

not an eigenvalue problem but a source problem
whi%h can be solved by inversion of the matrix A
ket "

1
A-1-F]x=C
Matrix A and F are sparse and invariant. Only

vector C varies along optimization procedure. X is

la

to be determined according to the various C. The
value of ke is taken from the results of the nodal
coarse-mesh calculation. Since the matrix in the
parenthesis is large, a direct inversion is inefficient.
Thus Gauss-Seidel iterative schemem is used.

15X 15 nodes are used for a PWR assembly
that is subject to reconstruction in this study. One
node corresponds to one fuel cell. The configura-
tion of a typical PWR fuel assembly is shown in
Fig. 1.

21.0cm

Water only

- Control Rod for rodded fuel assembly
Water for unrodded fuel assembly

D Fuel
Fig. 1 Heterogeneous PWR Assembly Geometry

5.2 Optimization Program

The optimization procedure used the CONMIN
algorithm. [13] The algorithm incorporates the
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constraints into a modified, unconstrained objec-
tive function using the method of multipliers com-
bined with the penalty functions. The modified
objective function is then optimized by the uncon-
strained optimization technique of Fletcher and
Powell. [14] That is, the optimization problem
Egs. (4-20} through (4-22) is transformed into

Naximize ®=F— 2 A«G+B Z G& (5-2)

subject to Pi>0 (5-3)
where A« are Lagrange multipliers and B is a
penalty weighting parameter. These are further
transformed into

Maximize F=® +UX10?
where

-4

U=min(P, 0)
Eq. (5-4} is then optimized by the algorithm of
Fletcher and Powell.
Fig.2 shows the calculational flow diagram of
the maximum entropy method for reconstructing
the pointwise flux distributions.

¥. F AS CONSTRAINTS
FROM NODAL CALCULATION
1
ASSUME PROBABILITY
DISTRIBUTIONS

1
T

BOUNDARY CONDITION FOR
DIFFUSION CALCULATION

T
X

[ FDM —I NEW PROBABILITY
T DISTRIBUTION

¥, ¥ FOR GIVEW

BOUNDARY CONDITION

[ VALUES OF F,G
A

| [ seance rox wew romnt |

| GRADIENTS OF F,G ]

F : Objective Function
G : Constraints

Fig. 2 Flow Chart for the Optimization Problem

dJ. Korean Nuclear Society, Vol. 21, No. 3, September, 1989

6. Results and Discussions
6.1 Benchmark Problems

The reconstruction method based on the max-
imum entropy principle was tested [15] to Ben-
chmark Problems 3 and 4 described in Ref. 6.
Results of the nodal calculation are taken from
those obtained by Jeong in his thesis. Benchmark

Problems 3 and 4 were devised to simulate the
inner and the peripheral region of PWR reactor
cores. The configuration of a typical fuel assembly
is described in Fig. 1 with dimensions. Table |
shows the nuclear data for the fuel assembly in the
benchmark problems. Fig. 3 shows the definition
of Benchmark Problem 3.

Reference pointwise neutron fluxes are calcu-
lated by VENTURE [16] with 15X 15 nodes per
assembly. VENTURE solves as an option the
eigenvalue problem of the neutron diffusion equa-
tion by the finite difference method.

J=0
F-2 F—1 F-2
W) (CR1) W)
F—1 F—2 F—1
=0 =
J (CR1) W) cry | =0
F2 | F-1 F—2
W) (CR1) W)
J=0

Fig. 3 Benchmark Problem 3
6.2 Results of Applications
Incorporation of the surface-averaged neutron

current constraints should lead to better results

than otherwise because the solution in an inverse
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Table 1. Heterogeneous, Pin-cell Two-group Cross Section Data for Benchmark Problems
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Cross Fuel Fuel Fuel Fuel Control Control
Section | ° 1 2 3 4 Rod1  Rod2 0
Dy 1 1,500 1.500 1.500 1.500 1.1133 1.1133 1.700
(em) 2 0.400 0.400 0.400 0.400 0.18401 0.18401 0.350
S 1 0.020 0.020 0.020 0.020 0.037529 0.0037529 0.035
{em™) 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sag 1 0.013 0.010 0.010 0.011 0.049890 0.0836661  0.001
(em™) 2 0.180 0.15 0.160 0.190 0.96726 0.96726 0.05
vZg 1 0.0065 0.005 0.0065 0.0055 0.0 0.0 0.0
(em™) 2 0.240 0.180 0.240 0.2100 0.0 0.0 0.0
K2 1| 8.850E-14 6.600E-14 8.850E-14 7.260E-14 0.0 0.0 0.0
(Ws/cm) ¢3. 168E-12 2.376E-12 3.168E-12 2.772E-12 00 0.0 0.0

problem is closer to the true one as more informa-
tion is included. However, in the present study the
surface-averaged neutron currents are not included
in the set of the information due to some numeric-
al difficulties whose causes are unknown at this
time.

Figs. 4 and 5 show the results of the reconstruc-

value from reconstruction —value from VENTURE %

tion for each assembly in Benchmark Problem 3.
The distribution of the neutron flux is symmetric to
the diagonal of the problem. Results in the blank
boxes can be known by the symmetric configura-
tion of the problems. Values express the relative
errors in the reconstruction:

100

Relative error={

In Benchmark Problem 3, the maximum error is
7.55% for the fast flux and 8.15% for the thermal
flux. The larger error for the thermal flux is due to
the more tilted flux than the fast flux due to its
longer diffusion length. Error increases as the node
is closer to the boundary. This phenomena is due
to the flux tilt near the boundary and can be seen
in the boundary not only of the core but also of
the assembly. Similar results are obtained also for
Benchmark Problems 4 and are provided in Ref.
15.

Computer time required is from 4000 to 7000
seconds in cpu time. The computer used was SUN
3.280 microsystem. Most of the time consumed is
for the solution of the neutron diffusion equation
by the FDM subroutine because this is called ab-
out 1000 times during the optimization procedure.

value from VENTURE

J=0
a) 155% | 0.766%
b) 755% | 4.42%
0.428%
J=0 _
1.911% =0
J=0

a) Average Ermor

b) Maximum Error

Fig. 4 Reconstruction Resulis for Benchmark Problem
3 (Group 1:Fast Group)
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J=0
a) 1.58% 0.835%
b) 8.15% 5.59%
0.429%
4=0 1.94% J=0
J=0

a) Average Error
b) Maximum Error

Fig. 5 Reconstruction Results for Benchmark Problem
3 (Group 2:Thermal Group)

6.3 Discussions

Figs. 6 and 7 show the pointwise relative errors
in reconstruction for the center assembly of the
Benchmark Problem 3. They show the two
dimensional tendency in the distribution of errors.
The “row” written on the figures means the row of
the fuel cells in the assembly. Numbering starts
from top and goes to bottom of the assembly. So
row 1 is the top row in the assembly. The num-
bers in abscissa represent the column numbers of
the fuel cells in the assembly. Numbering is from
left to right. Node no. 1 is for the left-most node
of the assembly. Row 1,2,3 and node numbers
except 5 through 11 may be classified as outer
region of the assembly. The other rows and nodes
may be classified as inner region.

Seen from the figures is the deviation of the
relative errors that become larger as the node gets
to be closer to the boundary of the assembly. This
tendency is common in reconstruction of point-
wise quantities. [6]

The apparently excessive errors should be re-
medied by incorporating the surface-average cu-
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rent constraints which was not done in this study.
The currents have information on the gradients of
the fluxes. Thus, if the current information at the
boundary is included in the maximum entropy
method of reconstruction, the resulting neutron
flux would be better shaped near the boundary of
the assembly. However, the computing time will
be increased accordingly as more constraints are
included in the optimization procedure.

2.0

= 1.0+ 3rd row
R4

x 2nd row
2

& 0.0 +4——-~==

=

< -1.0 4

ro]

[

|
g
o

3 8 7

§
NODE NO. ( GROUP 1 )

20

= 107 3rd row
<

P 2nd row
e

& 0.0 +d=—m=a>

< =10+

i

o

|
»
o

E)

5 7 9 1 15
NODE NO. ( GROUP 2 )
Fig. 6 Results of Reconstruction, Pointwise Errors for
the Center Node of Benchmark Problem 3 (Out-

er Region)

2.0
3 1.0 4
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< 0.0
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2.0
= 1.0
2
'Y 6th row
<]
o
o
w
ot
ul
4

-2.0

13 15

5 7 § 1
NODE NO. ( GROUP 2 )
Fig. 7 Results Reconstruction, Pointwise Errors for the

Center Node of Benchmark Problem 3 (Inner

Region)

7. Conclusions and Recommendations

A new method based on the maximum entropy
principle in information theory showed possibility
of reconstruction of the distribution of pointwise
neutron fluxes. The maximum entropy method
works reasonably well in the pointwise flux recon-
struction which is characterized as an inverse prob-
lem. The errors in reconstruction are comparable
with those of the form function methods in inner
region of the core or the assembly. [6] However,
they are large in the boundary region of the core
or the assembly.

In this study, surface-averaged neutron currents
are not included in the constraints, although they
are available information given by the nodal cal-
culation. Inclusion of the surface-averaged currents
into the constraints would provide better results.

The computing time was long. Most of the com-
puting time were spent in the solution of the diffu-
sion equation by the finite difference fine-mesh
method. The FDM subroutine is called about 1000
times to obtain the solution. It is recommended to
replace the expensive finite difference calculation
with a computationally efficient method for solu-
tion of the neutron diffusion diffusion equation.

Acknowledgements

We like to express gratitude to Hun Young
Jeong of Korea Electric Power Corporation for his
valuable help during the course of the work.

References

1.R.D. Lawrence, “Progress in Nodal Methods
for the Solution of the Neutron Diffusion and
Transport Equations,” Prog. Nucl. Energy, 17,
271(1985).

2. H. Finnemann, “Nodal Expansion Method for
the Analysis of Space-Time Effects in LWR’s,”
NEA/QOECD, 257(1979)

3.K.S. Smith, “An Analytic Nodal Method for
Solving the Two-group, Multidimensional, Sta-
tic and Transient Neutron Diffusion Equation,”
Nuclear Engineer’s Thesis, Department of Nuc-
lear Engineering, M.I.T., Cambridge,
MA.(1979).

4. C.L. Hoxie, “Application of Nodal Equivalence
Theory to the Neutronics Analysis of PWR’s,”
Ph.D Thesis, Department of Nuclear Engineer-
ing, M.L.T., Cambridge, MA.(June 1982).

5.H.S. Khalil, “The Application of Nodal
Methods to PWR analysis,” Ph.D. Thesis, De-
partment of Nuclear Engineering, M.L.T., Cam-
bridge, MA.(January 1983).

6. H.Y. Jeong, “The Reconstruction of Pointwise
Power Distributions in a Light Water Reactor
Core From Coarse-Mesh Nodal Calculations,”
Master Thesis, Department of Nuclear En-
gineering, Korea Advanced Insitute of Science
and Technology, Seoul (December 1987). See
also H.Y.Jeong and N.Z. Cho, “On the Recon-
struction of Pointwise Power Distributions in a
Fuel Assembly From Coarse-Mesh Nodal Cal-
culations,” J. of the Korean Nuclear Society,
20,145(September 1988).

7. K. Koebke and M.R. Wagner, “The Determina-
tion of Pin Power Distribution in a Reactor
Core on the Basis of Nodal Coarse Mesh Cal-
culations,” Atomkernenergie, 30,136(1977).




204

8.

10.

11.

12.

13.

14.

15.

16.

A. Jonsson, S. Grill and R. Rec, “Nodal Im-
bedded Calculation for the Retrieval of Local
Power Peaking from Coarse Mesh Reactor
Analysis,” Proc. of the International Topical
Meeting on Advances in Mathematical
Methods for the Solution of Nuclear Engineer-
ing Problems, Vol.2, pp.23-41, Munich, W.
Germany(April 1981).

. E.T. Jaynes, “Information Theory and Statistic-

al Mechanics,” The Physical Review, 106,
620(1957).

N.Z. Cho, “Maximum Entropy Method for
Prior Probabilities,” Trans. Am. Nucl. Soc., 47,
327(1984).

K.S. Smith, “Assembly Homogenization Tech-
niques for Light Water Reactor Analysis,” Prog.
Nucl. Energy, 17, 303(1985).

S. Nakamura, Computational Methods in En-
gineering and Science with Application to
Fluid Dynamics and Nuclear Systems, John
Wiley and’ Sons, New York, N.Y.(1977).

J.L. Kuester and J. H. Mize, Optimization
Techniques with Fortran, McGraw-Hill, New
York, N.Y.(1973).

P.C. Haarhoff and J.D. Buys, “A Ngw Method
for the Optimization of a Nonlinear Function

Subject to Nonlinear Constraints,” The Com-
puter Journal, 13, 178(May 1970).

W.J. Na, “An Information-Theoretic Approach
to the Reconstruction of Pointwise Flux Dis-
tribution in Nodal Calculations,” Master Thesis,
Department of Nuclear Engineering, Korea
Advanced Institute of Science and Technology,
Seoul(December 1988).

D.R. Vondy, T.B. Fowler and G.W. Cunning-
ham, “VENTURE : A Code Block for Solving
Multigroup Neutronics Problems Applying the
Finite Difference Diffusion-Theory Approxima-
tion to Neutron Transport,” Oak Ridge Nation-
al Laboratory, ORNL-5062(October 1975).

dJ. Korean Nuclear Society, Vol. 21, No. 3, September, 1989



