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Abstract

An example application of the fuzzy set theory is first made to a simple portion of a given
accident progression event tree with typical qualitative fuzzy input data, and thereby computa-
tional algorithms suitable for application of the fuzzy set theory to the accident progression
event tree analysis are identified and illustrated with example applications. Then the procedure
used in the simple example is extended to extremely complex accident progression event trees
with a number of phenomenological uncertainty issues, i.e., a typical plant damage state ‘SEC’
of the Zion Nuclear Power Plant risk assessment. The results show that the fuzzy averages of
the fuzzy outcomes are very close to the mean values obtained by current methods. The main
purpose of this paper is to provide a formal procedure for application of the fuzzy set theory
to accident progression event trees with imprecise and qualitative branch probabilities and /or

with a number of phenomenological uncertainty issues.
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1. Introduction

An important issue faced by contemporary risk
analysists of nuclear power plants is how to deal
with uncertainties that arise in each phase of risk
assessments. In general, assessment of risk from
the operation of nuclear power plants is compris-
ed of five major principal steps: (1) accident fre-
quenicy(system) analysis ; (2) accident progression,
containment loadings, and structural response
analysis, (3) radioactive material transport(source
tem) analysis, {4) offsite consequence analyses,
and (5) risk calculations.”) There are multiple
sources and types of uncertainty in these proces-
ses of risk assessment. The major uncertainty
addressed here is the one that arises in the second
part of the risk analysis which treats the physical
processes affecting the core after an initiating
event occurs. The type of phenomenon that con-
tributes the most to uncertainty in risk analysis is
the phenomenon that is poorly understood so that
there may be several competing models, each in-
complete with respect to various aspects of the
problem. For example, there is no single accepted

scenario for both the high pressure melt ejection

and the subsequent effects leading to direct con-
tainment heating(DCH). The physico~chemical
processes for these phenomena are exiremely
complex and varied. Major uncertainties involve
the impact of DCH on early containment failure,
and the impact of core—concrete interactions on
both early and late containment failure.

In the most recent risk assessment, ! an expert
opinion polling process was used to assess the
uncertainty related to physical phenomena, in
conjuction with the limited Latin hypercube(LLH)
sampling approach(a modified Monte Carlo
method) for the propagation of uncertainty.
Though- it seems that the expert opinion polling as
a means of identifying issues and estimating un-
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certainty is an acceptable part of the current PRA
process, a clear disadvantage of this approach is
that the final results can not be more robust than
the information upon which the experts base their
judgement. More efforts are certainly needed to
make it effective and it is desirable to develop and
explore some alternative methods or procedures.

Recent advances in the theory of fuzzy sets
make it possible to study the complex and ill-de-
fined concepts where uncertainty is due to fuzzi-
ness, or degree of vagueness. To date, however,
the use of fuzzy set theory in risk and reliability
analyses has been very limited. In an effort to
explore the full potential of fuzzy set theory as a
methodology for dealing with phenomena that are
too complex or too ill-defined to be susceptible to
analysis by conventional means, example applica-
tions of the fuzzy set theory are made first to the
portion of a simple accident progression event
tree(APET) with imprecise and qualitative branch
probabilities and then to extremely complex acci-
dent progression event trees of Zion? with a
number of phenomenological uncertainty issues.

The main purpose of this work is to (1) show
how the fuzzy set theory can be used to represent
the imprecision which surrounds the probabilities
under certain circumstances, while retaining the
structures of a given event tree and consistency
which the probability theory provides, and (2) pro-
vide a formal procedure for application of the
fuzzy set theory to APETs with imprecise and
qualitative branch probabilities and/or with a num-
ber of phenomenological uncertainty issues.

2. Example Application of Fuzzy Set Theory to
An APET

In conventional event tree analysis, the branch
point probabilities have been treated as exact
values, As already mentioned, however, for many
top event questions of the APETs regarding the
phenomena encountered during severe accidents,
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it is often difficult to assign exact branch probabili-
ties(e.g., ‘probabilities concerning the location of
induced failure of the reactor coolant system
pressure boundary’) or parameters(e.g., ‘the mag-
nitude of pressure loading at vessel breach due to
DCH and steam spike’ and ‘the containment fai-
lure pressure’) from the current state of know-
ledge. To examine the applicability of the fuzzy
set approach to this type of problem, first, a sim-
ple portion of a given APET with typical qualita-
tive fuzzy input data has been analyzed by fuzzy
set approach in the following.

2.1 Formulation of a Fuzzy APET Analysis
Problem

To illustrate how the fuzzy set theory can be
applied to APETs with qualitative and imprecise
input data, suppose one is given with a portion of
APET as shown in Fig.1. A typical portion of the
given APET has three questions A;,A;, and Asfas
summarized in Table 1), and each question is
assumed to have only two branches(success or
failure of a system ; andr occurrence of nonoc-
currence of a phenomenon) for simplicity in pre-

sentation. Suppose, because of the nature of the
top events considered, it is not possible to assign
unique numerical probability values between 0
and 1 to the branches of three top events shown
in Fig.1, and assume, therefore, that they are spe-
cified with imprecise and qualitative fuzzy vari-
ables as summarized in Table 1.

The major difficulty of the given problem is that
a unique numerical value between 0 and 1 is not
assigned to each branch probability. To overcome
this difficulty, the concept of fuzzy probability can
be introduced in the analysis of the event tree and
the branch probability can be defined as a fuzzy
set on [0,1]. That is, the fuzzy probability can be
described as a fuzzy set defined in probability
space and its functional form can be represented
by the combination of a range of the potential
probability(instead of the unique probability) and
the degree of possibility ot a probability value
within the probability range. This fuzzy probability
is often used as a linguistic representation of the
probability such as ‘highly probable’. More specifi-
cally, the ‘possibility’ of occurrence of a phe-
nomenon{or success of a system) defined in a
certain range on [0,1] is used instead of a unique

Table 1. Three Top Event Questions and Specified Fuzzy Variables.

Top Event Number -

Top Event Questions

Specified Fuzzy Variables P,

A

Is the reactor cavity d-
ry when a small LO-
CA has occurred?

‘approximately between 0.2 and 0.4’ =
P

What is the probabilit-
y of occurrence of di-
rect containment hea-
ting (DCH) and steam
spike(SS) events?

‘highly probable’ =P,

Az

What is the probabili-
ty of occurrence of
hydrogen burn(HB) at
vessel breach?

‘improbable’ =P;
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value of probability.

The remaining problem is then to calculate the
‘possibility’ of occurrence of accident path-
ways(i.e., combination of accident sequences and
containment events) as a fuzzy set, given the ‘pos-
sibility’ of occurrence(or success) of top events as
shown in Fig.1. In essence, one is dealing with a
fuzzy number on [0,1], viz. ‘fuzzy probability’ or
‘possibility’ of occurrence, instead of a specific
value of probability. A detailed procedure to
handle this problem is given successively in the
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sents numerically the degree to which an element
belongs to a set.® This function takes on values
between 0 and 1. The membership function is
assessed subjectively in any instance, small values
representing a low degree of membership and
high values representing a high degree of mem-
bership. The assignment of membership to ele-
ments in a fuzzy set is very difficult and is still
unsolved. It is a matter of subjective opinion, but
the membership of an element is not a statistical
quantity as expounded by some authors.”” Since

Membership Functions

In order to quantify the event tree shown in
Fig.1 using the fuzzv set theory, the qualitative
fuzzy variables must be first converted into quan-
titative fuzzy probabilities. This can be done by
introducing the membership function of the fuzzy
set theory. The membership function is the central
concept of Zadeh’s fuzzy set theory and it repre-

following. the question of how to assess the degree of mem-
bership is not the major concern here, it is
Top Evenus: .'C_mm..:"'__ﬂ assumed throughout this example that mem-
A, A, Ay T bership functions are given.
_ §x Following are the linear membership functions
= P 3 assumed for the three fuzzy qualitative variables
Success P2 Sz P(i=1,2,3). Here #p(z) indicates the mem-
P ‘ 3 bership function corresponding to the potential
1 1‘:53 3 probability z, of fuzzy variable P;:
Initiating ‘ [ . ]
»EV_en_t__ 4 P, : “Approximately between 0.2 and 0.4”
- § 52, if 0<2;<0.2
P, 3 10,  #02<z<04 1)
Failure P, 3 Bplz)= $30-5z, it 0.4<2<06
- - 0, otherwise.
1-P, P S1 5 e »
3 - P, : “highly probable
Ss 52-4, if 0.8<2,<1.0
Fig.1. Sample Event Tree and Outcomes. Ep,lz)= 0, otherwise. ' 2
1.0, if 0<23<0.1
2.2 Conversion of Qualitative Fuzzy Variables l1_5_523’ if0.1<2;<0.3 3)
into Quantitative Fuzzy Probabilities by Hoplza) = 0 otherwise.

The linear membership functions given by Egs.
(1), (2), and (3) ave depicted in Fig.2.

2.3 Calculation of Fuzzy Probabilities for Each

Pathway

For the given event tree in Fig.1 there are eight

possible pathways(or outcomes): The fuzzy out-
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1.0
Probability (%)
Fig.2. Membership Functions Specified for Three
Qualitative Fuzzy Variables(P,).

comes S,(j=1,~--,8) are comprised of the product
or subtraction arithmatics of three fuzzy variables.
The pathway S, for example, is given by
$,=P, XP, X (1-P3) @)
The calculus of fuzzy sets, on the other hand, is
based on three specific operators of set comple-
ment, union, and intersection.®# A basic principle
that allows the generalization of crisp mathematic-
al concepts to the fuzzy framework is known as

the ‘extension principle’ of Zadeh.” That is, to
calculate the fuzzy probability for each pathway S;
via the input membership functions #pi(z) (i=
1,2,3), these relationships have been used in the
following way.®

Let Sj be a real function of three variables(P;,
P,, and Ps) and let P;,P;, and P3 be three fuzzy S
sets of R. The ‘extension principle’ allows one to
define the image of P;,P,, and P; through S;=
f(Py, P2,P3) whose membership function is :

H g(2)=Sup Imin[ # 5, (z1), # p,z2), # p3lzsll | (5)
212223 € F,’(z)

where fX2)= l(21,22.23) € R | fi(z1,22,23)=2} .

This principle can be interpreted as follows : the
possibility for the quantity(P; P, P;) to be repre-

sented by (z1,25,23) is

K5, X pp X pal21,22,23) =min [ # 5, (21), # s, (z2), #
55(29)] ©)
The pr9duct of three fuzzy variables P; XP;XP;3 is
the Cartesian product of P;,P,, and P3. The possi-
bility for Sj=fj(151,152,153) to be represented by z is
the greatest possibility value for the quantity
(z1,22,23) in the converse image of z, f}_](z), to be
in P; XP,XP3. Note that whenever {%z)=0, #s(z)
=(. Thus, fuzzy numbers can be processed in this
manner similar to the non—fuzzy case, and the
operations are sometimes called the ‘extended
operations’(extended addition, extended subtrac-
tion, etc.).®

In practice, however, the implementation of the
solution procedure is not trivial, although the solu-
tion of the various extended operations is defined
by the extension principle of Eq.(5). The reason is
that the solution procedure corresponds to a non-
linear programming problem which is very com-
plex except for the simplest mapping functions. In
the present work, the extension principle of Eq.(5)
has been implemented by the ‘fuzzy weighted
average’(FWA) algorithm proposed by Dong and
Wong.® The computational algorithm of the FWA
operation is based on ideas from the «-level
representation of fuzzy sets which indicates any
membership grade, nonlinear programming imple-
mentation of the extension principle, and interval
analysis. The method provides a discrete but exact
solution to extended algebraic operations in a very
efficient and. simple manner.©

For example, to obtain the simple product of
three fuzzy probabilities S;=P;XP,XP3 by
means of the FWA computational algorithm, it
requires the following steps :

(1) Select a particular a —level value(shown on
the #g(z)—coordinate in Fig.3) where 0<a
<1.

(2) Find the interval(s) in fuzzy probabilities of
P,,P,, and P; which correspond to @ {these
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are the @—levels of P;,P,, and Pj).
(3) Using interval operations, compute the in-
terval(s) in S; which correspond to those of
P, XP,XP; (the results are the @ —levels of
Sy.
The above steps are repeated for as many values
of @ as needed to refine the solution.

The eight fuzzy outcomes S,—(j=1,-~,8), ie.,
possibilities of occurrence of accident pathways as
a fuzzy set, given the possibilities of occurrence of
top events P, (i=1,2,3) shown in Table I have
been obtained following the procedures outlined
above and they are shown in Fig.3. The output
fuzzy probability distributions Sj0=l,"°,8) shown
in Fig.3 are the result of repeating the above steps
for 100 values of «,

2.4 Comparison of Output Fuzzy Probability
Distributions

The next question is how to compare the out-
put functions(i.e., the eight fuzzy outcomes) SjG=
1,---,8) obtained in the previous step and shown
in Fig.3. This question is equivalent to the prob-
lem of ranking n fuzzy subsets of the unit interval.
A number of methods for comparing fuzzy subsets
of the unit interval have been suggested and
tested in the literature.”’ For the purpose of pre-
sent work, only two methods are selected and
used to compare the output functions Sj: One is

(7.8) and

the ‘ranking function’ proposed by Yager
the other is the ‘interval of confidence’ suggested
by Freeling.”

A simple method to order the Siﬁ=1,---,8) con-
sists in the definition of a ‘ranking function’ F
mapping each fuzzy set into the real line, where a
natural order exists. This approach has been fol-
lowed by Yager® and the ranking can be
obtained from the index proposed by Yager. The
ranking function used here is the following® :

If S is the a—level set of §; and if M(S) is the
mean value of the elements of $°. then
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FS)= M(S%)da 7

* a max
0

where @ =[0,1]

Consider, for example, a fuzzy subset S; with
the membership grade shown in Fig.3, where for
each grade of membership the dashed line repre-
sents the average value of the elements having at
least that grade of membership. Then F(S,;) is
equal to the area between the dashed line and the
membership axis. The advantage of this method is
its ability to compare crisp members, discrete fuz-
zy subsets, and continuous fuzzy subsets of the
unit interval. It doesn’t require convexity, nor does
it require normality of the sets compared.® There-
fore, this method has been selected here to com-
pare output fuzzy probability distributions S,(j=
1,---,8), and the results obtained by Eq.(7) are
shown on the first row in Table I

Freeling,® on the other hand, has made an
initial attempt at providing an axiomatic basis
where the ‘possibilities’ are to be interpreted as
‘degrees of confidence’. An ‘interval of confi-
dence’ in R is an ordinary subset of R which
represents a type of uncertainty. The symbolic
representations of an ‘interval of confidence’ is

usually written as®®

$5=[za @l ()

© shows that if the ‘intervals of confi-

Freeling
dence’ of @ -level in the membership functions
are intervals (as in Fig.2), then the ‘interval of
confidence’ at @ —level in the fuzzy outcome is an
interval. The endpoints of this interval are defined
by the extremes of the ‘intervals of confidence’ at
a _level of the membership functions. Therefore,
if the ‘intervals of confidence’ of the inputs are
interpreted as defining the range within which the
input membership functions lie at degree of confi-
dence @, the range for the output at that level of
confidence is simply the ‘interval of confidence’ at
a —level in the output. Figure 4 shows the ‘inter-



Application of the Fuzzy Set Theory to Analysis---K.I. Ahn and M.H. Chun

Table II. Ordered Rank of F(S,) Values and Intervals of Confiderce for 8 Fuzzy Outcomes Sj.

Outputs Se S, Ss S, Ss S4 S, Ss
FS)+ | 06401 02920 00926 00522 00472 00270 00112 0.0064
FS)* | 05485 02539 00783 00439 00389 00222 0.0091 0.0052
FS)++ | 05002- 0.1552- 0.0- 00- 00— 00— 0.0- 0.0
08200 04200 00984 00504 00164 00084 00020 0.0010
FS)** | 04828~ 01498 00— 00- 00— 0.0 0.0- 0.0-
07915 04054  0.0950 0.0487 0.0158 00081 0.0019 0.0010

+ : Fuzzy Averages of Unnormmalized Fuzzy Outcomes
' % : Fuzzy Averages of Normalized Fuzzy Outcomes
+ + : Intervals of Confidence at 0.9-level of Unnomnalized Fuzzy Qutcomes
% * : Intervals of Confidence at 0.9-level of Normalized Fuzzy Qutcomes
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vals of confidence’ at a =0.9 level in the output
fuzzy S;values. The numerical values of S; ~°° §57°*
that correspond to Fig.4 can be obtained direct-
ly from Fig.3 and they are also listed on the third
row of Table II for direct comparison with those
values calculated by Eq{7). In Fig.3, in particular,
notice that the range of Sg values that corresponds

to @ =09 level is indicated by dashed lines.
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In general, a fuzzy set is called ‘normalized’
when at least one of its elements attains the max-
imum possible membership grade. However, the
term ‘normalized’ in the present work is used to
denote that fuzzy probabilities satisfy él F(Sj)=l.
More specifically, 8if the eight fuzzy pr?babilitiesS,-(j
=1,---,8) satisfy ,=21 F(S)=1, where §; values are
such that they satisfy the following equations, then

[

0.0 0.1 0.2 03 04

0.5 0.6 0.7

i 3 A 1 A
0.8 \).9 1.0
0.5002 0.82

Probability (z)
Fig.3. Output Fuzzy Probability Distributions(S) obtained by the FWA Algorthm.
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the fuzzy outcomes S; are normalized in the con-
text of present definition :

S 1 za a

$3=1{,S5/N" da )
N“=3 [(S9" +S)Fl2 (10)
where

S;"=normalized fuzzy probability for pathway j,
n=number of fuzzy outcomes(8 in the present
work),

(S ‘;)L——‘left extreme value of Sj at a—level,

(SR=right extreme value of S; at « -level,

N® =algebraic mean value of (S9" and (S9®
corresponding to @ -level given by
Eq.(10).

The normalized values of fuzzy probabilities $%
obtained by this approach are shown on the
second and fourth rows of Table II for direct com-
parison with unnormalized quantities.

3. Application of Fuzzy Set Theory to Zion Acci-
dent Progression Analysis

To further examine the applicability of fuzzy set
theory to actual evaluation of extremely complex
APETs with a number of phenomenological un-
certainties, an application of the procedure used
in the foregoing example is made to a typical
plant damage state(PDS) ‘SEC’ of the Zion. The
representative accident sequence for the PDS
‘SECS’ is a small LOCA, ECCS failure on injection,
and with operational containment sprays but with-
out operational fan coolers.? That is, for the pur-
pose of comparison between the two approaches,
one by the NUREG-1150 methodology" and the
other by fuzzy set theory approach, Zion APET for
‘SEC’ has been evaluated by the two methods.

For convenience in discussion, a brief summary
of (1) the methodology of Zion accident progres-
sion analysis, (2) Zion APET analysis of ‘SEC’ by
statistical methods, and (3) Zion APET analysis of

dJ. Korean Nuclear Society, Vol. 23, No. 3, September 1991

‘SEC’ by fuzzy set theory is presented successively
in the following.

3.1 Methodology of Zion Accident Progression
Analysis

The risk from a nuclear power plant can be
defined by

Rk=§ fi ? Cij ﬁ((sll) (11)

where
R* = risk of type k (associated with consequ-
ence k),

f, = frequency of PDS i,

C;= conditional probability of containment re-
lease category j given PDS i (i.e., contain-
ment matrix),

S;= fission product source term for contain-
ment release category j of PDS i,

r}‘ = consequence of type k, given fission pro-
duct source term Sy, for release category
j.

The first part of the risk analysis(‘accident fre-
quencies’ f) represents the estimation of the fre-
quencies of accident sequences leading to core
damage. In this part of the analysis, combinations
of potential accident initiating events and system
failure frequencies are calculated.

os L
07 &

06 |

Probability
a
T
o

04 |

03 |-
02 | .
01 5§
i S LI § 5
0.0 T T e s:- s’
§; G=1-d)

Fig.4. Interval of Confidence at a = 0.9-evel in
the Fuzzy Qutcomes.
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The major concern in the present work is the
second part of the risk analysis(accident progres-
sion, containment loading, and structural response
analysis to obtain C;) which deals with the prog-
ression of the accident after the core has begun to
degrade. For each general type of accident, de-
fined by the PDSs, the analysis considers the im-
portant characteristics of the core melting process,
the challenges to the containment building, and
the response of the building to those challenges.
Event trees were used to organize and quantify
the large amounts of information used in this
analysis. The event trees combined information
from many sources, e.g., detailed computer acci-
dent simulations and panels of experts providing
interpretations of available data.”

The principal steps of the ‘accident progression
analysis’ are : (1) development of APETs, (2) prob-
abilistic quantification of event trees, and (3)
grouping of event tree outcomes into a smaller set
of‘accidecnt progression bins’. In the Zion study,®
the APET in the form of computer codes(such as
EVNTRE and EVNTREISS) provided the necessary
framework for quantification of the likelihood of
various failure modes. The structure of the Zion
APET is based on 59 top events, many of which
have multiple outcomes or branches. The list of
top event questions for the Zion APET can be
found in Ref. 2. Depending on the type of input,
there are six different types of top events as
shown in Table III

Table Ill. Six Types of APET TOP Events.

3.2 Zion APET Analysis of ‘SEC’ by Statistical
Methods

The uncertainty analysis in Zion APET relies on
the selection of key uncertainty issues that can
have a significant impact on the estimated risk at
Zion. The approach used in the selection and
evaluation of key uncertainty issues for Zion APET
is essentially the same as that used for Surry!?:
Uncertainties in the estimates of containment load-
ing and performance were ftreated through a strati-
fied Monte Carlo sampling procedure called LLH.
The elicitation of expert judgements was necessary
to develop the probability distributions for some
individual parameters in this uncertainty analysis.
For certain key issues in the uncertainty analysis,
panels of experts were convened to discuss and
help to develop the needed probability distributi-
ons.V

For statistical quantification of the Zion APET,
the EVNTREISS code® is used with ‘issue’ and
‘sample’ data along with the three input data re-
quired in the EVNTRE code(i.e., data for ‘bin-
ning’, ‘branch-point probability’, and ‘de-
pendency’).

The product of the accident progression and
containment loading analysis is a set of accident
progression bins. Each bin consists of a group of
postulated accidents(with associated probabilities
for each PDS) that have similar outcomes with

Dependency Upon Prior Events
Type of Input Independent Dependent
(1) Branch Point Probabilities Only Type 1 Type 2
(2) Branch Point Probabilities and Parameter Values Type 3 Type 4
(3) A Set of Parameters to be Summed and Com-
pared to Reference Parameters to be Obtain Type 5 Type 6
Branch Point Probabilities
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respect to the subsequent portion of the risk
analysis(i.e., analysis of radioactive material trans-
port). Quantitatively, the product consists of a
matrix of conditional probabilities, with rows and
columns defined by the sets of PDSs and accident
progression bins, respectively.?’

The results of statistical APET analysis for the
plant damage state ‘SEC’(selected from 14 PDSs
of Zion) is shown in Table IV to provide a direct
comparison with the results obtained by fuzzy set
theory approach. The numbers shown on the
second column(in Table IV) are the mean con-
ditional probabilities obtained by the LLH
approach. These LLH results were obtained by
application of the EVNTREISS computer code
that has incorporated the LLH sampling technique
for the key uncertainty issues of the containment
loading and performance. The number of LLH
samples was limited to one hundred.

3.3 Zion APET Analysis of ‘SEC’ by Fuzzy Set
Theory Approach

In order to analyze the Zion APET for the plant
damage state ‘SEC’ by fuzzy set theory and com-
pare directly with the results obtained by the LLH
procedure, the following steps are taken: Except
for the eight containment loading and perform-
ance issues, all other input data for the Zion APET
remain unchanged(sample input data for the Zion
APET can be found in Ref. 2).

For the key eight issues included in the Zion
APET uncertainty analysis by the LLH
procedure,‘Z) the ‘issue data’ for the EVNTREISS
code are replaced by fuzzy inputs prepared for
each issue. In addition, the EVNTREISS code has
been modified to treat the fuzzy set theory proce-
dure used in the example application.

In the Zion analysis,’” the different sets of
values for branches of each issue are called ‘level’.
The levels may represent different opinions about
the severities of a certain physical phenomenon.

dJ. Korean Nuclear Society, Vol. 23, No. 3, September 1991

However, the probability of occurrence of each
‘level’ can be different from each other. The
‘weighting factors’ are used for this subjective
probability of occurrence of each level. To pre-
pare fuzzy inputs, the weighting factors and
branch point probabilities for each level used for
each issue in the uncertainty analysis of the Zion
APET have been transformed into ‘triangular fuzzy
numbers(TFN)"'? as shown in IN Fig.5: A ‘TFN’
can be defined by a triplet(z,min,Zj,m,2max). For a
given dependency case in a given issue, the ‘mini-
mum’ and the ‘maximum’ values shown in Fig.5
comrespond to the minimum and the maximum
probabilities of all levels given for a branch point
in the given dependency case. The ‘mode’ of a
branch point shown in Fig.5, on the other hand, is
the summation of the products of the weighting
factors and the branch point probabilities for each
level. These quantities can be more concisely ex-
pressed in mathematical forms. Suppose that
Table V is the given LLH issue data, then the
minimum, maximum, and modes of triangular fuz-
zy numbers that correspond to the values shown
in Table V can be expressed as:

Ejmin Zjm (mode) Zimar

Fig.5. Fuzzy Input Constructed from LLH Issue
Data.

4
MOdeS : Zj,m =i:212ijWi’ j: 172;37
Minimum value : z min=min [21,29;,23;.24; ], (12)

Maximum value : zjma=max (24, 25;,23),24;] .

These fuzzy inputs are obtained based on the
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Table IV. Mean Conditional Probabilities Obtained
by LLH Approach and Fuzzy Average
Outcomes for PDS ‘SEC’.

Bin Mean Values of Fuzzy Average
No. LLH Results Outcomes
Binl 0.0 0.0
Bin2 0.0 0.0
Bin3 3.908-3 4.308-3
Bin4 1.2404 1.405-4
Bin5 0.0 0.0
Bin6 0.0 0.0
Bin7 2.302-3 2.263-3
Bin8 6.908-2 2.349-2
Bin9 3.150-2 3.257-2
Binl0 8.507-3 2.187-2
Binll 0.0 0.0
Binl2 0.0 0.0
Bin13 0.0 0.0
Bin14 0.0 0.0
Binl5 8.664-1 9.088-1
Binl6 0.0 0.0
Binl7 0.0 0.0
Binl8 4.447-3 1.845-3
Bin19 1.373-2 4.681-3

assumption that the mode(z,,,) is the most possi-
ble value(possibility approaches one) in a given
range and the extremes are the least possible
values(possibility approaches zero). Fuzzy numbers
of this type are very simple to manipulate. The
membership functionis then obtained from these
triangular fuzzy numbers. The rest of the proce-
dure to obtain the final fuzzy probabilities for each
pathway on the APET is essentially the same as
the steps used in the example application.

The results of the Zion APET analysis for ‘SEC’
obtained by the fuzzy set theory approach are
shown on the third column in Table IV. To allow
for meaningful comparisons with the mean values
of the LLH results, only the fuzzy averages(that is,
the values calculated from ranking function F) of
the fuzzy outcomes are given in this table.

Table V. Representation of a Typical LLH Issue

Data.
Branch Point — | Weighting
by by b;

Level No. Factors
level 1 251 212 %3 wy
level 2 Zy 23y 23 wo
level 3 231 232 zg3 w3
level 4 241 Zgp 23 w,

4 3
Constraints : lei= lei,: 1,
i =

where : b;=branch point for a given issue{top event)
z;= probability for bronch point j and for
“level i

w; =weighting factor for level i
4. Results and Discussion
In the preceding sections, an effort has been

made to establish a formal procedure of applica-
tion of the fuzzy set theory to APETs with qualita-

-tive and imprecise input data. In addition, the

computational algorithms suitable for application
of the fuzzy set theory to the analysis of APETs, in
particular, are selected and illustrated with exam-
ple applications.

In the example application, it is shown that the
major computational steps of the fuzzy set theory
application to the analysis of APETs with impre-
cise input data are:

1. Conversion of qualitative fuzzy variables into
quantitative fuzzy probabilities by means of
membership functions.

2. Calculation of fuzzy probabilities for each
pathway using the computational algorthm
of FWA operation.®®

3. For meaningful comparisons between the
output fuzzy probability distributions, the

(7.8 or

‘ranking function’ proposed by Yager
the ‘interval of confidence’ suggested by

Freeling® can be used. In addition, normal-
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ized values of fuzzy probabilities can be
obtained by Egs.(9) and (10).

The applicability and validity of the above proc-
edure have been re—examined by extending the
same procedure to the more complex and repre-
sentative problem, j.e., the plant damage state
‘SEC’ of the Zion. From the final results shown in
Table IV, it can be observed that the fuzzy aver-
ages of the fuzzy outcomes are very close to the
mean values obtained by the LLH approach
shown in the same table. It should be recalled,
however, that the fuzzy inputs used in the form of
TFNs are based on the same weighting factors and
branch point probabilities used in the LLH analy-
sis of the Zion APET. This fact implies that when
the membership functions are constructed in the
form of TFNs based on the same input data and
judgements of experts, then the LLH procedure of
the APET uncertainty analysis can be effectively
replaced by the fuzzy set theory approach sug-

gested in the present work without considerably
changing the final outcomes.

From the applications made here, it can be
inferred that there are some advantages and dis-
advantages of the fuzzy set theory for practical
applications. The main advantages of the fuzzy—set
calculus are that it is well suited for APET analyses
when the phenomenon and evidence is itself fuzzy
in nature and that it is very flexible. The major
disadvantage, on the other hand, is that it is not
always clear how to construct reasonable mem-
bership functions. Various methods have been
proposed including the use of statistical data and
the composition of simpler functions, but no com-
pletely general approach seems to exist yet.

dJ. Korean Nuclear Society, Vol. 23, No. 3, September 1991

However, this problem is beyond the scope of this
paper.

5. Concluding Remarks

In conclusion, fuzzy set theory is proposed to be
used in the analysis of the APET with imprecise
fuzzy branch probabilities as an altemative to the
methods currently used in the risk assessment of
nuclear power plants. This paper provides a for-
mal procedure for applying the fuzzy set theory to
APETs with imprecise and qualitative branch
probabilities andor with a number of physical un-
certainty issues. In addition, the computational
algorithms suitable for application of the fuzzy set
theory to the APET analysis for each step are

_identified and illustraited with example applica-

tions.

However, a considerable further research is
necessary to find the most reasonable methods to
construct proper membership functions, in particu-
lar, for the application of the fuzzy set theory to
the APET. More comparative studies of fuzzy and
probabilistic approaches to the APET analysis are
also needed. The results presented in this paper
should be viewed as a first attempt at constructing
a formal procedure for practical applications of the
fuzzy set theory to the analysis of APETs with
imprecise and phenomenological uncertainties.
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Nomenclature

A :top event numbers in the event tree

APET : accident progression event tree
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Zj,m
Zj,max
Zjvmin

Wi

#pi(z)
Hsl2)

: barnch point for a given issue(top event)
: containment matrix

: direct containment heating

: emergency core cooling system

: ranking function suggested by Yager

: frequency of PDS i

: fuzzy output function for pathway j

: converse image of z

: fuzzy average of fuzzy outcome S,

: fuzzy weighted average

: limited Latin hypercube

:loss of coolant accident

: minimum

: mean value of the elements of S

: number of fuzzy outcomes

: algebraic mean value of (S5 and (SR
: plant damage state

: fuzzy input probability{qualitative variables)
: probabilistic risk assessment

:real line

: consequence of type k for containment release category j

:risk of consequence type k

: fission product source term for release category j of PDS i

: fuzzy outcome for pathway j(fuzzy probability)

: @-level set of Sfor interval of confidence of @-level in the membership func-

tion)

:left extreme value of the @ —level set of S,
: right extreme value of the a-level set of Sj
: normalized fuzzy outcome of S,

: supremum

: triangular fuzzy number

: potential probability for fuzzy outcomes

:left and right extreme values of «—level set in a fuzzy set, respectively

: potential probability for fuzzy variables
: probability for branch point j and for level i
:mode of the triangular membership function

: maximum value of the triangular membership function

: minimum value of the triangular membership function

: weighting factor for level i for LLH issue data
: @ —]evel of membership function
: membership function of fuzzy probability P,

: membership function of fuzzy outcome S,
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