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Abstract

A stochastic approach using continuous time Markov process is presented to model the one-
dimensional nuclide transport in fractured rock media as a further extension for previous works
[1-3]. Nuclide transport of decay chain of arbitrary length in the single planar fractured rock
media in the vicinity of the radioactive waste repository is modeled using a continuous time
Markov process. While most of analytical solutions for nuclide transport of decay chain deal
with the limited length of decay chain, do not consider the case of having rock matrix diffu-
sion, and have very complicated solution form, the present model offers rather a simplified
solution in the form of expectance and its variance resulted from a stochastic modeling. As
another deterministic way, even numerical models of decay chain fransport, in most cases,
show very complicated procedure to get the solution and large discrepancy for the exact solu-
tion as opposed to the stochastic model developed in this study. To demonstrate the use of
the present mode! and to verify the model by comparing with the deterministic model, a speci-
fic illustration was made for the transport of a chain of three member in single fractured rock
medium with constant groundwater flow rate in the fracture, which ignores the rock matrix
diffusion and shows good capability to model the fractured media around the repository.
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1. Introduction

In case of simulating nuclide transport through
the geologic media around the repository in which
radioactive wastes are disposed of, there have
been various approaches either in deterministic
way or in stochastic way.

Radionuclide transport in natural geologic
media under variable field conditions has been
found to be poorly described by the conventional
deterministic advection-dispersion equations.
Furthermore, even the information for the spatial
variability of such system is comparatively well
prepared, in most cases, there are many difficul-
ties in formulating the deterministic models. To
overcome these difficulties in modeling, stochastic
approach has been used increasingly in the last
few years. In a stochastic approach, parameters
involved in the transport in geologic system are
regarded as random variables characterized by
probability distributions rather than by well-
defined deterministic values.

A stochastic approach by which the concentra-
tion distribution as a result of nuclide transport of
decay chain of arbitrary length in heterogeneous
media such as fractured rock media could be
modeled is proposed using a continuous time
Markov process. In three previous papers, Lee et
al. [1-3] have already successfully used a con-
tinuous time Markov process to model the nuclide
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distributions in geological systems. The first paper
dealt with one dimensional nuclide transport in
homogeneous porous media whereas the rest two
papers discussed nuclide transport in fractured
rock media where a special process of diffusive
loss into the rock matrix from the fracture is consi-
dered. In the fractured rock medium groundwater
flow occurs mainly within the planar fracture be-
cause of the low permeability usually associated
with the rock matrix. Thus the fracture offers main
pathway for nuclide transport rather than the rock
matrix. Because the process related to the diffu-
sion into the rock matrix from the fracture varies
with time, the application of continuous time Mar-
kov process model for the fractured rock medium
is no more time-homogeneous unlike the former
case.

In using a continuous time Markov process, the
media can be considered as a series of discretized
compartments and the nuclide concentration in
each compartment can be considered as a time-
dependent random variable.

A nuclide in a given time interval could make a
transit to any compartment by groundwater flow,
could form as decay products from its parent nuc-
lide or could also disappear from any present
compartment due to radioactive decay or diffusive
loss. All these processes are obviously conditional
only on the present location of the nuclide regard-
less of its previous history utilizing the Markov



Continuous Time Markouv Process Model for Nuclide Decay Chain Transport:--Y.M. Lee, et al 541

conceptualization of the geologic system.

As mentioned eatlier, in general, nuclide trans-
port will be dominated along the fracture.
Although this is true, the rock matrix adjacent to
the fracture plays an important role in overall nuc-
lide transport. A convenient way to study such
transport is to consider the rock matrix has a sing-
le planar fracture as discussed by many authors.
[4,5] However, many of these models are not
only on the deterministic base but limited to single
nuclide transport.

There are many works related to the chain nuc-
lide transport in both forms of analytical and
numerical models. [6,7] As for the analytical
models, however, these studies almost consider
only homogeneous porous media. Among numer-
ical models for the fractured rock media, even
large part of these mode! still have the same situa-
tion, several models for the fractured rock media
considering the rock matrix system are available.
le.g. 8]

Even though an analytical solution of two decay
chain transport has been developed by Sudicky et
al. [9] for the fractured rock media, this is limited
by the length of decay chain and has a very
complicated solution form.

This paper, as another extended approach of
previous works, deals with a stochastic model for
the nuclide transport of decay chain of arbitrary
length in the fractured rock media in the vicinity
of the radioactive waste repository and also offers
the mean values and variance of the state vari-
ables, as the primary desired quantities from a
stochastic model here the nuclide concentration in

the fractured rock media, as a function of time.
2. Nuclide Distributions in the Fracture

A continuous-time Markov process {X(t), t=0}
is a stochastic process having the property that the
conditional distribution of the future state j at time
t+s, given the present state i at time s and all past

states, depends only on the present state { and is
independent of the past.

Utilizing this Markov conceptualization, in matrix
notation, the relation between the rate of change
of the transition probability and the intensity of
transition is represented as [1]

g;P (O=P () A0 1)

which is called Kolmogorov forward differential
equations and

P(0)=I(the identity matrix) (2)
where
P(t)=transition probability matrix, Py(1).

A serial compartment i of rock matrix system in
groundwater-saturated porous rock of porosity ¢,
(i=1, 2, ---, N) containing a single planar fracture
of half width b’ is considered. The fracture can be
considered as a finite number of N compartments
within which complete mixing of nuclides with
groundwater takes place instantly. As considered
by Tang et al. [5], the permeability of the porous
matrix is very low and then transport is dominated
in the fracture. In the rock matrix nuclide will be
transported by molecular diffusion in the direction
perpendicular to the direction of the axis of the
fracture. A decaying nuclide source locates at the
inlet of the fracture.

The following processes are to be considered
probabilistically to obtain the nuclide distribution
in the fracture : (1) transition by the groundwater
flow, (2) molecular diffusion from the fracture into
the rock matrix, (3) adsorption onto wall of the
fracture and within the rock matrix, and (4)
radioactive decay chain transport through the frac-
tured rock media is preassumed. Longitudinal dis-
persion in the fracture, however, is assumed to be
negligible in this study.

Once such a geologic system is assumed to
have Markov property, since the Markov process
requires that only the present value of the time
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dependent random variable (i. e., time-dependent
number of nuclides or concentration in certain
compartment) be known to determine the future
value of the random variable, the nuclide trans-
port in geologic media, which is divided by finite
number of geologic compartments N, can be
modeled as a time continuous Markov process,
which is continuous in time with respect to the
individual transport processes but discrete in
medium.

At any time 7 & [0, #), when nuclide component
{I=1, 2, --*) adds to the first compartment at the
rate of &(7), that is equal to the volumetric flow
rate of nuclides into the first compartment and
may be represented as

C(1)=0nCYr) v, 1=1,2,.-. 3)

where
Q;,=volumetric flow rate of feeding groundwa-
ter into the first compartment (L® T°})
V=volume of the first compartment (L3).
Cl{r)=source concentration of the /th member
at ime 7 (L™3), which is given by the solution of
Bateman’s differential equations as, with / ranging
from 1 to m
Clr=E¢ et 1“5(;" i —I—QL
m=l-1 1—[ (lk-l")
k

={-1
k=m

! -
4o AP Q2218 Y —l—e'/“—,
m=1 H (l‘-l")
k=1

kzm

1=12, --- (4

where

afsource concentration of the ith member at
time 0 (L79).

A'=decay constant of the /th member (T%).

Similarly, by analogy, at any time 7 € [0, 1), the
change rate of nuclides into daughter component
from its parent nuclide, £ {r) is represented by
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Em=alchy vii=1,2,-- N, 1=1,2,... (5)
where

Cl(t)=concentration of /th member at time 7
(L)

As soon as a nuclide which fed freshly by sup-
plying at the inlet of the system (Equation (3)) or
by forming due to the radioactive decay of its
precursor enters the system (Equation (5)), it may
begin to transfer to one of the other compart-
ments at once or may disappear. Here we can
assume that all nuclides in the system behave
stochastically and independently one another.

The number of new nuclides that enter the first
compartment from source nuclides during time in-
terval d7 is £Y(7) dr. If we consider the number
of nuclides that have successfully entered the first
compartment, then it has a respective probability
of Py;(t—7) that nuclides exist in j at time ¢, i.e.,
transit from the first compartment to compartment
j during the time interval (t—7). Therefore a bino-
mial distribution can be formed for these new
nuclides.

Also for large value of () dt, the binomial
distribution is approximated to Poisson distribu-
tion.

In similar way the probability that &r) dr,
which is the number of new nuclides that form in
the ith compartment from the precursor nuclides
in time interval d7 will exist in j at time ¢ during
the time interval {t—7) can be expressed as P(t—t
). The probability distribution may also be consi-
dered as Poisson distribution.

Then we can get X/(1), E[X!(t)] and its
variance Var [X}(1)] at time ¢ as defined in pre-
vious paper [1-3] :

N
E[x/0] =Y m©@P; () +

i=)
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{C(T)P;j r- r)+2 5,(1)P,, (- 1)}d1,
2,

j=1,2,...N,1=1,2, 6)

N
=Y ml(0)Py({1-P;()}+

i=1

arx} (1)

i=1

N
() Pyj(e- 1)+ >, ENT)Py1- 1)} dr,

1,2, 00=1,2, - 7)
The first term of R. H. S. of the Equation (6)

represents the number of nuclides in the ith com-
partment initially at time zero which have been
survived and entered jth compartment to time ¢
Two terms of integrand represent the number of
nuclides survived during the time interval [0, 1)
and originally due to feed of new nuclides and
decay of parent nuclides, respectively.
Therefore, the expected value and variance of
C,’-(t), concentration of nuclides in j at time ¢ can

be expressed, respectively, as

E[ct()] = E—[X(/(')].jzl 2

: N, I=1,2,... (8)
J

ar[c! ()] = &"‘/"_"ﬂ,j=1,2,...,1v,1=1,2,-.. 9)
J
where
V;=pore water volume of compartment j of the
fracture (L3).

The transition probability from a compartment /
to another compartment j is affected by the in-
tensity of transition. This intensity of transition is
related to the process involved. The diffusive
transport of nuclide which is assumed to be neg-
ligible compared to advective transport for the
media having large Peclet number and another
diffusive loss term into the rock matrix are also

excluded in this case.

For simplicity and also reasonably, the ground-
water flow and nuclide transport are assumed to
be made only between adjacent compartments.

The intensity of transition h,-,-(T_l) for the
groundwater flow through some pore volume in
porous medium can be written as

=22 (10)
where

Q,;=volumetric flow rate from compartment  to
compartment j LT

V,=volume of compartment i (L3).

Assuming that flow is well mixed instantly with
regard to groundwater and nuclides, the transition
probability due to advection can be written as [e.
g. 10]

hyAtr+o( Ar)=Pr fa nuclide in i at time ¢ will be
in j at time(t+ Al (11)

Similarly nuclide may decay out from compart-
ment i at a rate represented by decay constant A’
(T™Y). Therefore,

A At+o(Ar)=Prla nuclide in i at time ¢ will
be decayed out at time(t+ A1) (12}

Under the assumption of linear isotherm sorp-
tion of nuclides in the compartment i, h; can be
replaced by h;/ R! where R/ is retardation coeffi-
cient in the ith compartment of the fracture.
Then

A{,=Zh",i_1 2, N, 1=1,2,-. (13)
e H

With these the probability that the nuclide will
remain at time f+ At in i without making any
transition or disappearance is {1—(Z;=; A jar+ A!
Af)+o())l, from which, if this probability is de-
noted by {1+ AlAt+0o(ANl in case of no diffu-
sive loss into the rock matrix,
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A=- Eh—"';n.' L i=1,2,--,N,1=1,2,---  (14)
jei Ri

where A is interpreted as the negative sum of all
probabilities of exit from compartment i.

When the diffusive loss into the rock matrix in
the direction perpendicular to the fracture from
the fracture is considered, the corresponding in-
tensity of transition for diffusive loss A,’,,fﬁ(t) (Th
into rock matrix can be expressed as

Ppi Dpi
A (=7 {/\/ —=
b‘ ﬂR;iI

b2R};
-__E‘_)},i=1,2,...‘1v,1=1, 2,.--(15)

exp
4D}t

Equations (13), (14) and (15) can be integrated,
under the assumption that the transport is consi-
dered to be made only between adjacent com-
partments, into the transition coefficient matrix as
follows :

hij 1 i L
- —I+A+Ad,ﬁ;(t),/—z
R
fi

| hij .

(A5 @)= o7 j=i+l

I}
0, otherwise

i=1,2,---,N,I1=1,2,... (16)

Meanwhile, in order to evaluate Equations (1)
and (6) having inhomogeneous intensity of transi-
tion, brief algorithm for the discrete time approx-
imation scheme represented in previous papers
[2,3] can be discribed as follows.

Rewiring the Equation (6) compactly as, abbre-

viating the superscripts,

N
E{X{) =Y, mi(0) Py ()
i=]

t

w;(T)P;(t-1) dr,j=1,2,..,,N (17)

1
—_

+
Mz
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where

i=1

(= [C{D)+ Ed),
(0;(1')‘ é}z)f {7) i=2,3,...N

(18)

If A ,-‘)(t) and w|(t) is piecewise constant (i. e., —!,-

()= A4(T) and @(7)=w;(T)) during short time
interval [0, T<t), then the solution of the Equa-
tion (17) may be written as
T

eAT dt Q(T)

E[X(T)] =ATE[X(0)] + f (19)

0

where X and W are matrix forms of X; and
respectively and e”7, the solution of the Equation
(1) is given, subject to the initial condition P(0)=1,
where 1 is the identity matrix, as

P(T) = eAT P(0) = eAT (20)

Similarly, during time interval [7, 27<#) Equa-
tion (19) becomes under the assumption of con-
stant A5(2T) and «{2T)

T

E[X(27)] = eATE[X(T)] + f eM27-7 g Q (21} (21)

T
Now, in general, after (N—1)th step, for the time
interval of [nT, (n+1)T ),

PN + 1)T] =eATP(NT)=elN+10T (22)

and accordingly

E[X(N +1)T] =eAN + )TE[X(N T)]

(N+1)T
+f AN+ 1)T-d grQ(NT)
NT

T

=eAN + I)TE[X(NT)]+I eAT dTQ(NT) (22)

0

Therefore, we need only evaluate the matrix
exponential of the transition probability and its
integration as seen in the R. H. S. of the above

equation.
3. Numerical INlustration

To demonstrate the use of the present model
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and to verify the model by comparing with the
deterministic model, a specific illustration was
made for the transport of a chain of three mem-
bers in single-fractured rock medium with constant
groundwater flow rate in the fracture.

For simplicity in comparison with available
analytical solution, we introduce a computational
result only for the case of no diffusion into the
rock matrix, which yields one dimensional model
for porous medium. The effects of the diffusive
loss into the rock matrix can be incorporated by a
straightforward extension of the present illustration
; however, in order to carry out direct comparison
with the analytical solution for the equivalent sys-
tem it hase been ommitted. And such assumption
does not affect on the verification of the whole
model.

We further assumed the retardation coefficients
of the Ith member in the whole medium are
equal, i. e, RI=R' for all I.

The properties of three members and medium
are given in Table 1. For the purpose of compari-
son, some of these data were chosen arbitrarily or
to correspond to the data used by Huyakorn et al.
(8]

Initial concentration values of the second and

Table 1. Input Parameters

Chain / (1)—=2)—(3)
ci 1.0

ci 0.0

) 0.0

R'(" 9532.0(100.0)
R'® 9532.0(100.0)
R 9532.0(100.0)
L(m)(along the fracture) 100

A1 /yn) 0.0016
A2(1/yr) 0.04620
A9(1/yr) 0.000106
q/ ¢ (m/yr) 10.0
D(m?/yr){for UCB-NE-40) 25.0°

N(for Markov model) 20

third member equal to 0.0 implies that all of the
source concentration originally prepared in the in-
let of the fracture is in the form of the first mem-
ber of the chain. The parent member has a initial
concentration of unity.

A result by our Markov model was compared
against those obtained by Lung[7] through his
code UCB-NE-40, designed for general solution
for a chain of arbitrary length through the semi-
infinite homogeneous medium.

In Figure 1, the concentration profiles of the
first, second, and third member, normalized to
initial concentration of the first member at time 0
as a function of distance at times equal to 100 and
1000 years, respectively, by the present model for
two different cases are plotted showing good com-
parison of corresponding analytical solution : one
is for the retardation of 9532 at the time of 1000
years and the other for the retardation of 100 at
the time of 100 years. These retardations and time
values are arbitrarily chosen. It is easily seen that
in both cases with and without retardation and
radioactive decay, there exists excellent agreement
between the results using the present model and
the analytical solutions. Even though the retarda-
tion coefficients are the same for all members the
profiles at different times indicate that the third
member of the deacy chain can travel further
along the fracture than the first and second since
the half-life of the third member is approximately
15 and 436 times longer than those of the first
and second, respectively. Then it is to be ex-
pected that the profiles of C*!! and (*? at each
time will tend to lag behind those of C*.

Breakthrough curves of the three members are
also plotted showing comparison of corresponding
analytical solution in Figure 2 as a function of time
at distances of 20 and 50 m, respectively. Para-
meter values are the same to those used for Fi-

gure 1.
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4. Conclusion

Through this study a stochastic modeling using

a continuous time Markov process has been made

as a further extended approach of two previous
works. It deals with the nuclide transport of decay
chain of arbitrary length in the fractured rock
media in the vicinity of the radioactive waste re-
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pository.

Since this model is discrete in medium space,
physical and geochemical parameters including
groundwater velocity, dispersion coefficient, re-
tardation coefficients, and losses due to radioac-
tive decay or diffusion out of the system, which
affect nuclide transport, can be easily incorporated
for such heterogeneous media as fractured rock
medium having spatially varied parameters.

The Markov process model developed in this
study, with small compensating of dispersion
coefficient by the same way to that represented in
the previous paper [1-3], which are known to be
sensitive to the number of discretized compart-
ment showing numerical dispersion as the number
of compartments is increased, the model agrees
well to analytical solution.

It was illustrated that a simplified example com-
pared to an analytical solution, which ignores the
tock matrix diffusion shows good capability to
model the fractured media around the repository.
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