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Abstract

A numerical method has been developed for studying the dynamics of a flexible cylinder in a co-
axial cylindrical duct, immersed in inviscid flow. The unsteady inviscid fluid-dynamic force acting on
the oscillating cylinder has been estimated more rigorously by means of a spectral collocation
method without simplification of governing equations. This numerical approach is applicable to the
system having wider annular gap and/or shorter length of cylinder as compared to existing potential
theory. The governing equation of the unsteady flow was obtained from Laplace equation. The
equation of cylinder motion coupled with the fluid motion was discretized by Galerkin’s method,
from which the dynamic behaviour of the system has been evaluated. The effect of the length of
the cylinder and the annular gap on the critical flow velocity, where the system loses stability by
buckling, was investigated. To validate the numerical method, the potential flow theory developed
by Hobson based on thin film approximation has been improved. Typical results of the present nu-
merical theory on the dynamics and stability of the system are compared with those of available
existing theory and the present approximate results. Good agreement was found between the
results. It was also found that a nondimensional critical flow velocity becomes larger as increasing
the annular gap and decreasing the length of cylinder.

e o

QY= wFAFE A $ FAIQ FA4 ALY RS B4 Asho] SR Ay
ol Aslodct, AEshe ARtiol 483k w4 - vIAA AU E 2 Ea AP A
ol AL BEBATIA FeezA o FUSH dSstsich £ 4AN Gl B 71T A
apol 23k ol vl W Bl At G AU ALl HET 4 Yk wIHIFT Aviy
AL hEehantgAle 2 ue Tach FAFEH ALY ATl AL A7) del
deted BAswAA oz FASH o2y AY $EEAE AEshch A BTN 2lhed 2

212



Dynamic Stability of a Flexible Cylinder Subjected to Inviscid Flow in a---W.G. Sim and Y.Y. Bae 213

QA 4ol Ha ge} bR} Adrie) Aole] ddpol AES AT 4PN & AF3t

o8 =
7] Sstod g ut TAlo| Boll 2AF T T Zto| At kol 28 A bk Ao YA
TAEAE AN YRl st AR s 7|29 o] B & Aol At SApeE 73 A
o} vlmsled A AXFHE Wlch FAUSE AFEL Bel A o] WE4E Ak Aol7t 7

5 SIS 2o

1. Introduction

In recent vears, the dynamics of cylindrical beam
in axial annular flow has been studied theoretially
and experimentally, to evaluate the coupling effects
of flow on critical flow velocity! = where the system
loses stability. The flow-induced vibration problem
has been arisen in nuclear and other industrial plants
where damages due to wear, fatigue and fracture of
components have been occurred. The natures of the
added mass, fluid damping and fluidelastic forces
generated by oscillatory motion in annulus are of
particular interest to the field of heat exchanger and
nuclear reactor components design. An excellent re-
view on flow-induced vibration in nuclear reactor
and heat exchanges is given by Paidoussis®.

During refuelling of PWR type of nuclear reactor
shown in Figure 1(a), several holes (wear pen-
etrations) at the guide tube were discovered. The
wear occurs at the top of the guide tubes adjacent to
the tips of the control rod in their fully withdrawn
position, where they normally remain most of time.
Similarly, flow in the annular diffusing section
provides the main source of deirimental excitation
during on-load refuelling of the AGR type of nuclear
reactor shown in Figure 1(b).

It may be an essential requirement to understand
the mechanism of self-excited vibration, in order to
develop analytical methods and give guidelines for
designing heat exchangers and nuclear reactor
components. As the first step toward satisfying this
requirement, the potential flow theory is developed
in the present analysis. When the cylinder oscillates
with very high frequency and/or in relatively low vis-
cous fluid, the ratio of penetration depth to annular
gap is very small. In this case, the fluid-dynamic

forces can be estimated by potential flow theory. In
the present analysis, the critical flow velocity is
estimated by potential theory based on spectral
collocation method®. In general, the critical flow vel-
ocity calculated by potential flow theory is
overestimated. In other words, viscous effects stabilize
the system, becoming more important as the annulus
becomes narrower, which is reasonable on physical
grounds. It was also found that, for wide annulus, the
viscous effect on the fluid-dynamic forces can be
negligible. In contrast to previous works, the present
model is applicable to relatively wide annulus and to
cylinders of small length-to-radius ratio, which is one
of the main contributions of this paper.

The first analytical study for the coaxial cylindrical
bodies was undertaken by Hobson®. For simplicity,
the model was formulated by considering a rigid cyl-
indrical body, hinged at one point. Based on thin
film approximation to annulus, radial velocity and
radial variation of velocity were neglected and radial
variation in pressure was ignored. The approximate
model was capable of dealing with situations of sud-
den contraction or enlargement in the flow passage
in some degree of empiricism. A more rigorous, purely
analytical study but for very narrow annular flow was
accomplished for a rigid body hinged at one point by
Mateescu and Paidoussis” ®. The latter model was
subsequently extended to take into account stability
of flexible cylinder coaxially mounted in a flow-
carrying conduit®. These analytical models are
mainly based on restrictive assumption and simplified
flow model. However, despite the success of these
simplified solutions, it is obviously necessary to de-
velop more accurate formulation. In this respect, the
present analysis based on spectral method was devel-
oped by authors (Mateescu, Paidoussis and Sim) to
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Fig. 1. Annular-flow-induced Vibration (a) between Con-
trol Rods and Guide Tube of PWR Nuclear Reac-
tor and (b) between Fuel Assembly and channel
of AGR Nuclear Reactor.
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estimate hydrodynamic forces acting on a flexible cyl-
inder for concentric configurations®.

The principal objective of the present work is to
develop new and/or improved method to avoid det-
rimental flow-induced vibration. To achieve this ob-
jective, a numerical approach with spectral method,
which is an extension of an earlier theorny™®, is
adapted to study dynamic stability of a flexible cylin-
der subjected to inviscid annular flow. Based on thin
film approximation the potential flow theory devel-
oped by Hobson is further refined. By both method,
the effect of length of cylinder on the dynamics and
stability of system has been evaluated through a five-
mode Galerkin’s discretization of system. For vali-
dation of the spectral method, the numerical solution
is compared with previous results and the present
approximate solution.

2. Problem Formulation
2.1. General Consideration

The system considered in the present analysis
consists of a flexible cylindrical centre-body coaxially
mounted in a flow-canying conduit. The flexible part
of the centre-body has length L and both ends of a
flexible part of the centre-body are supposed to be
clamped, as shown in Figure 2. The flexible centre-
body with radius a is free to oscillate in flexure. This
system is coupled, by the fluid-dynamic force, due to
the inviscid annular flow.

Far upstream, the annular flow is assumed to be
steady and is characterized by mean flow velocity U,
the static pressure P~ and the density p, which is
considered constant. The time dependent lateral dis-
placement ed(x, t) of the centre-body axis is assumed
to be small with respect to its radius, which permits
to use linear theory for the flexural oscillation of the
centre-body; hence, i) no separation occurs in the
annular flow, and i) the fluid-dynamic forces acting
on each element of the flexible centre-body may be
determined using a convenient linearization of the
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aerodynamic boundary conditions on the oscillating
centre-body. This also means that the assumption of
small amplitude oscillation can be utilized in the
inviscid analysis of the unsteady fluid-dynamic prob-
lem.

To calculate the fluid-dynamic forces acting on a
cvlinder surrounded by an inviscid flow, the spectral
collocation method was applied to system. Detail of
this analysis, which remains the same as shown in
the previous study"'?, are omitted here.

2.2. The Equation of Cylinder Motion

The oscillating flexible centre-body is considered
as Fuler-Bernoulli beam characterized by flexural
rigidity El, cross-sectional area A, length L and den-
sity .. The cylinder under consideration has radius a
and the annular gap is H, hence the radius of the
conduit is a;=a+H. The circular frequency of the
flexible cylinder is denoted by Q.

The derivation of the equation of small lateral
motions is obtained by considering the equilibrium of
forces acting on a differential segment of the flexible
centre-body based on Hamilton’s principle. There-
fore, the equation of motion of the flexible centre-
body is expressed, as follows:

Fig. 2. Geometry of the Flexible Centre-body Oscillating
in a Duct with Annular Flow.
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EI = F,, (1)

where Filx, t) is the unsteady potential fluid force
acting on oscillating cylinder per unit length. The first
and the second term of the left-hand side of the
above equation may be interpreted physically as the
flexible restoring force and the beam inertia force, re-
spectively. The task ahead in the following section is
to derive the inviscid force, Fp. The radial displace-
ment at azimuthal direction § may be written as

e (x0,t) = eo(xt) cos8 = E(x)cost e'® 2)

In the present analysis, E(x) could be clearly
expressed in terms of eiQenfunctions, Edx), of a
beam with the same boundary conditions as the cyl-
inder clamped at both ends. For future purpose, it is
more convenient to separate these eigenfunctions
into two components, one trigonometric, Ex{x), and
the other hyperbolic, Eadx) ; thus,

EW= 3B =T aEul 3)
where
Eun(x) = - cos(Bex/L) + oxsin(Bxx/L)

[}

Ex(x) = cosh(B¢x/L) - orsinh(rx/L) (4)

and o= [cosh(p) —cos(B)]/[sinh{B) —sin(i)], the

B being the corresponding eigenvalues.
In order to generalize the equation of the motion
of the system, it is convenient to define the following

dimensionless parameters :

A o
u= ll‘/:' lb='llUL, p= pU:z'
U= g Un= (Iff?)w,
Un= oo Um= (2™ (5)
ge U, o 0L _ _pal®
L Urer’ psAg

2.3. Determination of the Inviscid Forces

In the present analysis, the flow is presumed to be
irrotational and incompressible in addition to being
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inviscid, so that Laplace equation derived from the
confinuity equation and momentum equation is
reduced to Bemoulli-Lagrange equation. The
equation of the unsteady potential flow will be briefly
discussed here, and then adapted to the problem at

hand, namely to the case of a flexible cylindrical
centre-body. A quite different analytical approach to
the numerical one has been developed by an adap-
tation of thin film approximation. To derive the
governing equation, momentum fluxes on a small el-
ement of annulus are considered.

The inviscid fluid-dynamic forces acting on the
centre-body per unit length are determined by
integrating the unsteady pressure:

P
Fo(xt) = - fo a(p-Pa) | yq cos8 df, (6)

where p(x, 8, t)=Px+p*(x) cos § ™ as defined in
equation (22). As a result, the fluid-dynamic forces
may be written as

Fp--prate™ ; ax (-®Px+. QP + Pw), (7)

where each of the Pi associated with the jth time
derivative will be determined later. Physically, Pa is
the component associated with inertial effects, P
with damping effects and Po with stiffness effects.

2.3.1. Numerical Solution Based on Spectral
Method

Under considerations, the inviscid forces are de-
rived by potential flow theory. The velocity potential,
®(x r, 6, t), must satisfy the Laplace equation

vh- 2% . 2%, 1 2, L.3% ., (@

ax r

subjected to the boundary conditions, which imply
that the normal velocities of the body are equal to
those of the fluid at the boundary surface between
the fluid and the body, as follows:

3fs
at

where V denotes the welocity vector of flow at a

+ V.V = 0, (9)

point of the free surface and fs is the equation of the
solid -fluid surface written as
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I for oscillating body,
2 for fixed body.  (10)

The velocity potential may be written as
#(xr,6,t) = o:(x) + ¢(x1,86,¢) (11)
the sum of steady and unsteady components.

r-a- e(x9t)
r-a-H

Following the cited reference''”, the velocity poten-
tial may be written in the form

¢ = ;ag $x(x,r) cosBe™ (12)

where, by separation of variables, the reduced
A

potentials, gi(x, r), may be expressed in terms of the
new coordinate, Z, obtained by coordinate transform-
ation, Z=1—2(r—a)/H, in the form
s=flfsk(x)Fs.k(Z) (13)
dul(xZ) + ¢alx2).

G-m(X,Z) =

In the above equation, the reduced potentials can be
and hyperbolic
components (related to the eigenfunctions of the

separated into trigonometric
oscillating beam with fixed ends-see equations (3)
—(4), as follows:

tulx2) = lA.coss.x+A,sma.xJ>l:¢wT,~(Z),

$a(x2) lB.cosna.x+B.simu.xJg«»mr,-(Z). (14)
spectral approach, Chebyshev
polynomials are used for Ti(Z) and the a priori un-
known coefficients, ®u, will be determined by
collocation method.

f

In the present

Taking into account the coordinate transformation,
the governing equation (8) may be expressed in
terms of reduced potential as

2 24 2. e
% aaxo’k * aazo"’k -/D aa? D=0, (15)

where D =[H/{2+(1—2Z) H}]? with boundary con-
dition (10), to be writteen as

—57 lz=1 =0,
2% = -HlwBn UE(), 16)

where the prime denotes differentiation with respect
to x Since #(x, 1, 4, t) satisfies Laplace equation, the
following equations define the trigonometric (s=1)
and hyperbolic (s=2) components of the reduced
potentials
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l'% [ ¢skiTi“(Z) - md’wTj‘(Z)
- () o Ti20=0,  (17)
subject to boundary conditions
S L5 o T/ (D) =0
i ifdz(x) [ Ti‘(l) =
J=0s=1
L HeEa0 +UBMD,  (18)

through which the constants, A., As B. and B, are
determined, by separating the boundary conditions in
to the trigonometric and hyperbolic components, as

Aa = -—L-10+ Uiy,
s = -Eroo,-Usg
Ba = -—H-[0- U,
By = -—(- 100+ UBA. (19)

The a priori unknown coefficients ®s are deter-
mined from the system of equations obtained by im-
posing equation (17) on (m-1) collocation points
equally distributed in the radial direction and the
boundary conditions (18) and the solution of the
reduced potential can be completely determined
from algebraic equation obtained. Thus the reduced
potential can .be evaluated on the surface of the
moving cylinder:

butxl) = - i\c;“[ QE4(x) + UEa(0]  (20)

where

i=0

b (21)

=0
The perturbation pressure in the unsteady poten-

tial flow can be determined from the Bernoulli-

Lagrange equation after suitable linearization,

P-Pa= 40U~ L olv(a+0)2-p 32 (22)
Hence, the force on the cylinder may be obiained by
equation (6) through which the components (Pa
associated with inertial effects, P with damping ef-

fects and Po with stifness effects) are given by

Px= gngEgg(x), Pu;=2Us£l Ga Ea(x),
Poc= U2 3(-1)° G Ea(®). (23)

By inspection of the abowe equation, it is obvious
that P and P are related to Coriolis and centrifu-
gal forces, respectively.

2.3.2. Analytical Solution Based on Thin Film Ap-
proximation

The unsteady equation is derived by assuming a
thin film approximation in annulus, from which radial
velocity and radial variations of velocities and press-
ure might be ignored. Based on small amplitude of
oscillating motion, the governing equation can be
linearized. Solution of the equation will be facilitated
by assuming a sine/cosine varation of variable in-
cluding annular width, in circumferential direction.
Thus the variables may vary as

h(x8t) = H + E(x) cos8 e'%

u(x8f) = U+ u*(x) cosd e,

w(x8,t) = w'(x) sing e'%,

p(x8t) = Pa+ p*(x) cosd ¢ (24)

The equations of continuity and momentum for a
incompressible flow may be derived by considering
mass and momentum fluxes entering and leaving a
small element of the annulus. Neglecting the friction
forces on the wall, the governing equation may be
written in linear form as

3h 3 (hu) 1 _s(w) _
at * ax 28 =0 (25)
3 (phu) 3 1 _3(phuw)
50t Tax (Rpred)l e o = (26)
ah _
_ I - 0,

(o) , 1 _2 3 (phuaw)
3¢ " 7 Tas (Rprew) ax

1L _3h
-P—5¢ =0 (27)

Substitution of equation (24) into the above
equations and elimination of the steady flow
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equation, H(0U/dx) =0, gives a set of linear first or-
der differential equations;

4 g e
aw' _ _1 p° _ g_w

- U r g (29)
G - et - o UG (30)

Considering the nommal mode analysis, the sol-
ution may be expressed in terms of the eigenfunction
of the beam in general. Taking into account the
boundary condition shown in equation (16), the
nondimensional unsteady velocities and pressure can
be separated into trigonometric {(s=1) and hyper-
bolic {s =2} components as follows:

i= 2 5 (AuBaX + BaBalX),
w = &5 (CQEQ;(X) + ngEg(X) ),
p= (FaEa(X) + 1GaEx(X)), (31)

k

"
-
@

[}
ot

where the prime denotes differentiation with respect
to X Clearly two set of solution arising for trigono-
metric and hyperbolic components can be associated
with Eu and Ez defined in equation (3).

Substituting equation (31) into the governing
equations and separating the equations into real and
imaginary parts lead to

1 v 1 00 0 As
0 CDpdk 0 10 0 Ba
0 0 (-1)"'p% /U, 1 0 Ca
0 0 o/U, 1 0 -1 Dy
1 "Q/Ur 0 0 1 0 Fl‘k
~o/U, (-1)°"1 6% 0 0 0 (-1)*'ptl'Ga
a/H
wayUH
= 0 where (= L (32)
0 ’ a+HR
0
)

By solving the abowe equation, the coefficients are
determined as follows;
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= B G

*T g+ (-2 HY

Ba= -1 e | Gk

* T PEepee U H

_ s+1 N = -
Ca- —hr— Axl Da = ~Bu 1,
Fgu = Bm‘%r - Agg
{- )sﬂ
Ggg = Ax L 9 = Bg¢ (33)

B2 Ur

It ought to be noted that the restriction of the
analysis to namow annuli results in a closed-form
solution. Having determined coefficients, the
velocities and pressure may be calculated. Proceed-
ing similarly shown in the previous section, the

components of fluid forces may be found such that

Pa= £0uBa0 Pu- 2U £ QuEL®
Pu = - UPB2 g(—n“‘od*u)
where
_ 1
Qu= [T D" G/ DIH - (34)

Inspecting the above equation, it is clearly shown that
the coefficient Q« depends only on geometry of sys-
tem and that, as compared to equation (23), the co-
efficient is equivalent to G« shown in the numerical
method.

3. Method of Stability Analysis

The differential equation of motion of the flexible
centre-body together with the boundary condition at
both end for a clamped-clamped beam constitutes a
boundary value problem. Moreover the boundary
conditions are utilized to derive a typical eigenvalue
problem. The transition between the boundary value
problem and the eigenvalue problem is effected by
means of the separation of variables method. The
expansion theorem plays a major role in the field of
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vibrations and will be used here also to obtain a sol-
ution of the system by normal mode analysis.

The solution of the eigenvalue problem is not
straightforward as for discrete systems. By using
Galerkin’s method, however, the system is discretized,
leading eventually to the determination of the mass,
damping and stiffness matrics of the system. The
discretized problem is then easy to solve.

Substituting the nondimensional parameters in
equation (5) into the equation (1) of cylinder motion
leads to

4
o . 4 - Lo, (35)

in nondimensional form. According to Galerkin’s
method, it is required that the weighted error
integrated over domain be zero. The weighted func-
tion are ~the comparison functions Ex defined in
equation (3), such that

I; [%& 0> E(X)+o p(X)] E/{X)dX =0,

where
P(X) = 25 (-0% Pa(X) + 10 Pu(X) + Po(X)]
in which
Pald) = £GuBalX), Pu(X) =20, 5 GuEaX),
Po(X) = U282 51" Gu Ea(X) (37)

and j is a dummy index Of course, for the approxi-
mate method, Qu is used instead of G« in the above
equation. Accordingly, it is possible to express the
equation in the form

-0?[M] (A)e™ +ialCl (A)e™ + [K]} {A)e™ =0, (38)
where the elements of [M], [C] and [K] are given by

me = [LLED + o Pal®) ) B (X X

[} o Putx) B (00 ax (39)

Cx

1
kn = [ [BLELD + 0 Pal) ] E;(X) dX

and {A} is the vector of the ax of equation (3). Once
equation (38) has been obtained - by Galerkin's
method, all matrix techniques of a discrete system
become available to the solution of the continuous
system. In the present analysis, the asymmetry in the
matrices [C] and [K] is entirely due to the presence
of inviscid fluid-dynamic forces. To allow the deter-
mination of the response within the desired accuracy,
the present analysis is achieved with five mode ap-

proximation (n =5).
4. Dynamics and Stability

To illustrate the general dynamical behaviour of
the system under consideration, typical results are
presented. As compared to the basic beam in vac-
uum, the dynamical behaviour is modified by the
fluid-dynamic force, which is a function of the flow
welocity. For convenience, the results will be
presented in terms of the nondimensional flow vel-
ocity, Un, rather than U. It is of interest to estimate
the critical flow velocity in the practical engineering
application for design consideration. The dynamical
behaviour of the system at higher velocity than this
critical threshold is more of an academic interest.

At zero flow velocity, the natural frequencies are
obviously dependent on the added mass; fluid-dy-
namic stiffness and damping coefficients are, of
course, to be null. With increasing flow velocity, the
frequency of most modes are diminished. For con-
system  with ends, the
eigenfrequencies remain real with increasing Ux, up
to the point of loss of the stability, where the cen-

servative clamped

trifugal force overcomes the flexural restoring force.
Here, it is recalled that the system loses stability if
Im(w,) (0, by divergency when Re{w.)=0 and by
flutter when Re{w.) #0.

In general, the lowest critical flow velocity
indicating the onset of buckling is approximated by
Euler’s method of equilibrium!"’. At the buckling on-
set, the time derivatives in the equation of motion of

the centre-body could be eliminated: i. e., the deter-
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minant of the stiffness might be zero. As is evident
from the (23) and (34), the
nondimensional critical flow velocity at divergence in-
stability does not depend on the properties but only
on the geometry of the system (gap ratio and length
ratio). It was noted that the nondimensional critical
flow welocity for clamped-clamped beam was
estimated easily as the following simple form '

Url=%. x=

based on the slender-body formulation.

The dynamic behaviours of the system obtained by
both methods are illustrated in Figure 3, where
L/a=20, H/a=0.1, a=323.74 and Uen =1.332m/s.
It is noted that the eigenfrequencies obtained by two
methods are similar;the approximate results are
sligthly smaller, which reflects the overestimation of
fluid effect by the thin film approximation. According
to the numerical result based on spectral method, by
first mode buckling, the system loses stability at
Ua=2.04 (point A in the diagram) where changes
from purely real to purely imaginary and one branch
of the bifurcated locus on the Im{wn)-axis is nega-
five, But the system regains stability in its first mode
at Ua =3.08 (point B). At slightly higher flow velocity,
the loci of the first and second modes coalesce on

equations

2y

_(+ H)P+1
(1 By “o)

the Re{w,)-axis and becomes complex, indicating
the onset of the coupled-mode flutter at Un=3.37
(point C). Interestingly, this behaviour was suggested
o be related to the well-known gwroscopic forces;
e. g., in connection with the whirling of shaft”®. These
symmetric coupled-modes, with respect to Relw)-
axis, bifurcated on the Relw,)-axis at D where the
system regains stability. The regions associated with
higher flow velocity are quite complex.

The influence of the number of the collocation
point, m, on the accuracy of the present spectral
method is shown in Table 1. With increasing the
number, it is found that the numerical results are ex-
ponentially converged. In order to obtain the same
accuracy for larger H/a, a smalll increase in the

(a) 50 : .
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Re(wn)

25

(b) 12

0.0 2.5 5.0
Un

Fig. 3. The Nondimensional Eigenfrequencies of the
Lowest Three Modes as Function of the
Nondimensional Fluid Velocity, Un, Calculated
by Numerical Method (--- -} and by Analytical
Method ( ):(a) the Real Components (b)
Imaginary Components (L/a=20, H/a=0.1,
6=323.74 and Uren=1.332m/s)

number is to be needed.

The effect of varying the relative gap H/a on the
dynamical behaviour of rubber-air system is shown in
Figure 4 for L/a=20, ¢=0425 and Uw1=36.77
m/s. The results are obtained by numerical method:
CFD solution. Here; the first and second modes ap-
pear to buckle at A and B. As contrast to the results
shown in Figure 3, the frequency of the second



Dynamic Stability of a Flexible Cylinder Subjected to Inviscid Flow in a---W.G. Sim and Y.Y. Bae 221

40 T

20

Im(wps)

—20 +

—40

0.0 25 5.0
Url

Fig. 4. The effect of Varying Annular Gap, H/a, on the
Imaginary Components of the Nondimensional
Eigenfrequenies of the Lowest Two modes as
Function of the Nondimensional Fluid Velocity,
Un (L/a=20, ¢=0.425 and Urn=36.77 m/s)
—— Hya=0.1, -——- H/a=0.2

Table 1. The Variation of the nondimensional critical
flow velocity, Un, with the collocation points,
m.

m=3 m=4 m=5 m=7 m=10

L/a=22, 1500 1446 1447 1447 1447
H/a=005 (3.67) (007}

L/a=22, 3270 2769 2799 2.79% 2796
H/a=020 (1695) {(0.97) (0.11)

(PD*%) L/a=22, 5339 3619 379 3769 3.768

H/a=040 (4169) (395) (0.72) (0.03)

L/a=38, 5201 3502 3672 3.646 3646
H/a=040 (42.65) (395) (0.71)

* Note:Percent discrepancy based on the last column
{m=10),

mode vanish at B, indicating the onset of buckling in
its mode and then the loci of the first and second
modes coalesce on the Im(w.)-axis and leave the
axis at symmetric points C indicating the onset of
coupled-flutter. To show the effect of the length-to-

40 +

—40 1 1 i —-10

0.0 1.0 2.0 3.0

Uy

Fig. 5. The effect of Varying Length-to-radius Ratio,
L/a, on the Imaginary Components of the
Nondimensional Eigenfrequenies of the Lowest
Two modes as Function of the Nondimensional
Fluid Velocity, Url (H/a=0.1):Left Label for
L/a=20, Right Label for L/a=10.

----L/a=10 ¢=0.106 and Ure1=73.54 m/s

L/a=20 6=0.425 and Urn=36.77 m/s

radius ratio on the dynamical behaviour of system,
the imaginary component of the eigenfrequency ver-
sus nondimensional flow velocity, given by the ap-
proximate analytical method, is presented in Figure 5
for L/a=10, H/a=0.1, 6 =0.106 & U.: =73.54m/s
and for L/a=20, H/a=0.1, ¢ =0.425 & U=n =36.77
m/s. It is clearly shown that the nondimensional criti-
cal flow velocity becomes higher with decreasing the
length-to-radius ratio. In Figure 6, the critical flow
velocities caused by buckling in the first mode versus
annular gap are illustrated for rubber-air and rubber-
water systems with two different length-to-radius
(L/a=30&38). It was found that the
nondimensional critical flow velocity obtained by po-

ratios

tential theory does not depend on fluid properties
but only on the geometry of systern as discussed be-
has been known that
hydrodynamic or ‘virtual’ mass becomes large with

fore. In general, it

decreasing the annular gap for confined flow.
It is also of interest to compare these critical
velocities estimated by the present theory with those
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Fig. 6. The Nondimensional Critical Flow Velocity ver-
sus Annular Gap Hya, by Buckling in the first
Mode for Robber-air System( ) and Rubber
-water Systern{ £, O) with two Different Length-
to-radius Ratios(L/a=30& 38).

Table 2. Comparison of the nondimensional critical fiow
velocity, Un, obtained with present and earlier

theories.

Previous Theory  Present Theory

L/a H/a
{1) 2) Appr.  CFD
0.05 1.39 149 144 146
20 0.10 194 213 199 2,04
0.15 234 264 239 247
001 0627 0631 0627 0628
100 005 1387 1425 1374 1391

Note: (1) Slender Body Theory!
(2) Narrow Annular Flow Theory

obtained by previous methods(slender body theory"
and Narrow annular flow theory®™);this comparison
is shown in Table 2. Satisfaction, in quantitative
agreement of critical flow velocity, is found. It is seen
that the best agreement is for a very slender body
{L/a=100), where slender-body theory applies best,
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Fig. 7. The Contour Map Showing the Variation of the
Nodimensional Critical Flow Velocity, Ur, in the
First Mode Buckling with Respect to Length-to-
radius Ratio and Annular Gap-to-radius Ratio
for Rubber-air System.

and for a very narrow annulus (H/a=0.01), where
the narrow-annulus simplication also applies best.

A contour map is illustrated in Figure 7 for rubber-
air system o the
nondimensional critical flow velocity, Un, versus length

show the vanration of

-to-radius ratio and annular gap-to-radius ratio:e. g,
the system loses stability by buckling in its first mode
at 288 of the nondimensional flow welocity for
L/a=18 and H/a=02. As discussed before, the
nondimensional critical flow velocity becomes high
with increasing the annular gap and decreasing the
length -to -radius ratio. This map might be very useful
in the practical engineering application for design
consideration.

Finally, from the above results, it is noted that the
system with the lowest density fluid and/or the
shortest length of cylinder requires a much higher
dimensional flow velocity to cause instability-which is
considered reasonable ; however, the nondimensional
critical flow velocity is kept the same.
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5. Conclusions and Discussion

A new numerical model based on spectral method
has been developed for studying the dynamics and
stability of flexible cylinder in a duct with inviscid an-
nular flow. The method was used to estimate the
critical flow velocity, where system loses stability,
more rigorously. One of the main contributions of
the present work is to develop a numerical mothod
which is applicable to the system having relatively
wide annular gap and/or short length of cylinder, as
compared to existing theory. The developed method
was validated by comparing its results with those of
the present analytical method based on thin film ap-
proximation, especially for short length of cylinder;in
this case, an available model does not exist. Recent
analytical studies on the flow-induced vibration prob-
lem shows that the viscous effect on the fluid-dy-
namic force can be negligible for relatively high oscil-
latory Reynold number or/and wide annular gap.
Thus, the viscous effect has been excluded in the
present work. _

The results of spectral collocation method shows
that the prediction of inviscid hydrodynamic force is
quite different and superior to that of previous the-
ory. In the present numerical theory, instead of
obtaining the unsteady force by an adaptation of
formualtions applicable to slender body and/or nar-
row annular flow, they are derived numerically by
means of full Laplace equation without simplification.

Based on the inviscid theory, it is noted that the
dynamical behaviour of the system is similar to that
of system with unconfined flow or with internal flow.
Some general but important conclusions, for inviscid
flow, are presented here, as follows:

{a) the flexitle centre-body with fixed both ends
becomes unstable by first-mode buckling.

{b) the nondimensional critical flow velocity depends
only on the geometry of system,

(c) the dimensional critical flow wvelocity becomes
smaller as the annular gap becomes narrower
and as the fluid has larger density.

(d) the characteristic of the system after the onset of
buckling in its first mode depends on the Coriolis
force.

In the present analysis, both ends of the flexible
centre-body are supposed to be clamped. Thus it is
needed to investgate the dynamics and stability of
other systems having different boundary conditions;
e. g, clamped-free or pinned-pinned beams. Also to
examine the present results, it is obviously necessary
to carry out experimental test. Since the viscous ef-
fect on the dynamical behaviour of system becomes
no more negligible specially for narrow annular con-
figuration, it is required to modify the present spec-
tral theory. An attempt should be made to extend
the present numerical method for studying the vis-
cous effects on the dynamical behaviour of system,
which we are pursuing as the next investigation.
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