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Abstract

Numerical predictions including secondary flows have been performed for fully developed turbu-
lent single-phase rod bundle flows. The k—¢ turbulence model(two equation model) for the iso-
tropic eddy viscosity, together with an algebraic stress model for generating secondary velocities,
enabled the prediction of mean axial velocities, secondary velocities, and turbulent kinetic energy
and turbulent stresses.

Comparisons with experiment have shown that the influence of secondary motion on mean flow
and turbulence is clearly evident. The convective transport effects of secondary flow on the velocity
field have been identified.
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1. Introduction axially. The prediction of fuel rod clad temperature is

important to the safe and economic operation of nu-

Most nuclear reactor cores contain a large number clear reactor core. The themnal-hydraulic perform-
of fuel rods arranged in either square or equilateral ance of rod bundle is related to the turbulent flow

triangular pitched arrays over which the coolant flows structure through the process of crossflow mixing,
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since this mixing provides a mechanism to equalize
coolant temperature. Thus, the structure of axially
developed turbulent flow through large regularly
spaced rod arrays is of considerable importance to
the design and analysis of the themal-hydraulics of
nuclear power reactor core. Accurate calculation of
temperature fields requires detailed knowledge of the
velocity fields in subchannels, which is difficult due to
the complexity of the turbulence phenomena.

The main source of information on turbulent flow
structure is experiment where, in some cases,
detailed measurements of turbulence have been
made. Experimental investigations all vieldled mean
flow and turbulence distributions with distortions.
These characteristics are much influenced by the tur-
bulence-driven secondary flows that occur in the
cross-plane of all non-circular passages. These flows
cause the main flow to spiral through the passage
and, although they are relatively weak compared with
the main flow, they have a significant influence on
the local mean flow distributions of interest, chiefly
the axial velocity, wall shear stress and turbulent kin-
etic energy.

Most attempts to measure turbulence-driven sec-
ondary flows in rod bundles were not successful
either due to geometrical tolerances of the test
sections which caused crossflow or due to exper-
imental accuracy. Although Trupp and Azad™ could
infer the direction and approximate magnitude of
secondary flows from momentum and energy
balances, they were unable to measure the tiny sec-
ondary velocities via hot wire. Similarly, Carajilescov
and Todreas® and Rowe® lacked sufficient resol-
ution to extract secondary velocities from
measurements with their laser doppler systems.
Kjellstrom™! obtained some hot wire data for the per-
ipheral components of secondary velocitiy. Whereas
the results strongly indicated the existence of second-
ary motion, the large scatter did not permit definite
conclusion to be drawn even with the data uniformly
shifted to remove a possible systematic error. Sec-
ondary flows have been shown to exist in non-circu-

lar channels by Launder and Ying® for a square
duct and by Aly et al'¥. for a tiangular duct. The
unique feature of all ducts for which experimental
data have been obtained is that these ducts have
corners in their shape. Vonka!”! reported experimen-
tal data on secondary flows for a triangular array. He
found that the magnitude of the secondary flow vel-
ocity is less than 0.1% of the axial velocity. In reality,
he measured crossflow velocities of the order of 1%
of the axial velocity which were caused by crossflow
from the inner subchannels into the outer ones due
to not fully developed flow and also due to the
blockage of the outer subchannels by the spacers.
This blockage causes a crossflow into the inner
subchannels at the spacer level which downstream of
the spacer redistributes.

Detailed velocity and temperature distributions
within rod bundles have recently been predicted by
solving the basic differential equations of turbulent
flow and energy. Considerable difficulties were
encountered with convergence of the solutions due
mainly to the coupling and non-linearity of the
equations, a feature that was most prominent in the
cross-plane Reynolds stress. The most widely used
procedure has been based on the k—¢ turbulence
model for the effective viscosity, together with a
model for the cross plane Reynolds stress that allows
the small but significant secondary velocities to be
generated. However, the results of these applications
have often proved inadequate and contradictory, and
the lacks of high-quality experimental measurements
of the turbulence structure in rod bundles have
inhibited the development of the turbulence models.
Therefore in most cases, secondary flow was
neglected and anisotropic eddy viscosities were
introduced to improve the circumferential coupling
of the velocity. Thus, eary attempts to solve these
equations for rod bundle flows inwolved many
simplications including ignoring cross-plane flows or
allowing indirectly in some way for their effects, the
latter being typically the use of anisotropic turbulent
viscosities or prescribed wall shear stress distribution.
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Two approaches for including anisotropic nature
are suggested in the literature!®*

1) comrelate the anisotropic factor with other turbu-
lent quantities

2) correlate the anisotropic factor with locations of
interest

The second approach is usually employed because
of its simplicity. The bases of adjusting the function
for the anisotropy factor are the distributions of axial
velocity and wall shear stress. The anisotropic charac-
ter of turbulent flow adapted to the k—¢ equation
model of turbulence improves the prediction of flow
and heat transfer characteristics inside the
subchannels of an infinite rod array.

The anisotropy factor for turbulent flow in rod
bundles is suggested by numerous investigators. Thus
there are many functions of anisotropy factor
reported’”. Some calculation method'” based on
this anisotropy factor has been successfully devel-
oped for the prediction of mean flow characteristics.
But, the predictions of turbulent flow obtained by
Bartzis and Todreas!"!, Seale!®! were found to be un-
acceptable and eventually in both cases secondary
flows were omitted and a one dimensional velocity
field was calculated using prescribed anisotropic tur-
bulent viscosities-presumably-to compensate for the
lack of secondary motions. Bartzs and Todreas also
tried to unsuccessfully to obtain acceptable secondary
velocity fields with the empirical stress descriptions. It
appears that the calculation methods using aniso-
tropic eddy viscosities and neglecting secondary flow
may be mainly compensating for the neglect of con-
vection transport rather than allowing for any ani-
sotropy in diffusion transport. So far, it is evident that
the various levels of success obtained in the previous
predictions indicates that a procedure based on the
Launder and Ying's"® algebraic stress model for the
cross plane stresses coupled with the k —¢ turbulence
model is likely to provide a useful approach. Trupp
and ‘Aly® obtained a reasonable secondary flow field
in a triangular subchannel using a Launder and

Ying’s model. But they were apparently unable to
obtain satisfactory convergence of solution without
an immutable sign restriction on the vorticity source
term. Therefore, the direction of the secondary flow
circulation was prescribed in order to obtain reason-
able convergence of the solution.

From the above summary, it will be apparent that
the situation for calculating fully developed three
dimensional turbulent velocity fields in rod bundles is
confused with, as vet, no convincing general predic-
tion method available. The generality of each
method reported so far has been compromised to a
greater or lesser extent by the simplification to or re-
striction of the governing equations solved and/or by
significant input of special empirical data such as tur-
bulent length scale. To predict the turbulent and sec-
ondary flow exactly, simplified algebraic versions of
the Reynolds stress transport equations must be used
in the calculation of the full three dimensional vel-
ocity field without any special adjustments for each
geometry.

The objectives of this study are to develop the tur-
bulent model without any special adjustments for
each geometry and reveal the significant role of the
cross plane turbulence-driven secondary flow.

2. Mathematical and Physical Model
2.1. Governing Equations

Consider an infinite equilateral triangular array of
rods with the primary flow parallel to the rods. A pri-
mary flow cell for such an array is shown in Fig. 1
together with the cylindrical polar coordinates system
(r, 8, z)} used in the study.

To predict the flow characteristics, the fundamental
physical laws of continuity and momentum conser-
vation are employed with transport equations of tur-
bulent kinetic energy k and turbulent dissipation rate
e. The mathematical
equations of an incompressible, constant fluid prop-

representation of these

erty, steady state, fully developed flow can be written
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—Launder and Ying's model
vi= Cik (7)
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where

Ji and £ are turbulence model functions for wall
effect.

The turbulent components of the stresses in the
above equations were calculated with the algebraic
stress model of Launder and Ying™ to vield explicit
relations for all components of the turbulent stress
tensor. The simplification of the Reynolds stress
transport equations removed the partial differential
stress terms and enabled Launder and Ying to derive
algebraic relations for the cross plane stresses. This
algebraic stress transport model was first derived for
square duct calculations and further analyzed to vield
a set of algebraic equations for the complete
Reynolds stress tensor in terms of axial velocity
gradients, turbulence kinetic energy k and its dissi-
pation rate ¢ The empirical constants in the stress
model were adjusted to match the predicted mean
flow distribution with experiment, which were mainly
within the error band of their measurements, showed
distortions in axial velocity and wall shear stress dis-
tribution that attributed to secondary flow.
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Fig. 1. Subchannel of Triangular Array and Notation of
Coordinates

The turbulent eddy viscosity is related to the local
values of the turbulent kinetic energy and turbulent
dissipation rate by the Prandtl-Kolmogorov formula,

K2
Ve = fe Cu N {13)

where C. is 0.085 and f. is turbulence model func-
fion.

2.2. Numerical Scheme

The governing equations were solved by finite dif-
ference method on a mesh of orthogonally

intersecting grid lines. The well-known EL—2D com-
puter program, used as the framework for present
calculations, employs the SIMPLER solution algor-
ithm of Patankar.

A staggered mesh was employed with cross-plane
velocities located at main control volume face
intersections with the main grid lines and the conti-
nuity equation was manipulated into an equation for
“SIMPLER™ method
could be used for solution of cross-plane momentum

pressure correction so that

and continuity.

The number of grid points for each subchannel
depends on the pitch-to-diameter ratio and the ar-
rangement of rod arrays. If equal radial mesh
increments were used, the very high velocity
gradients in the laminar sublayer adjacent to the rod
surface would require a fine mesh spacing in this re-
gion. This mesh, however, cannot be extended over
the whole calculation area owing to the large number
of velocity points created. Thus, a logarithmic radial
mesh spacing was used. The spacing of this mesh
was determined by the wall friction velocity and rod
gap distance. The matching of the cylindrical ge-
ometry radial mesh to the subchannel center straight
line boundary was achieved by creating an additional
radial mesh circle for the intersection of each of the
angular mesh lines outside the rod-gap line. The
computations for seweral grid systems were
performed to compare the prediction results and
computation time. Finally the 33 X17 grid system
was selected in the present computation and shown
in Fig. 2.

The convergence criteria used was the ratio of the
updated values calculated for each variable to the
previous values to below 1072

2.3. Boundary Conditions

The boundaries of the solution domain consist of
three straight lines of geometry symmetry and a sec-
tor of circular curve. The boundary nodes next to the
surfaces at #=0° and §=30" are easy to handle be-
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Fig. 2. Main Grid System:P/D=1,123

cause of the symmetric nature of the geometry. The
presence of the wall ensures that over a finite region
of the flow, however thin, the turbulence Reynolds
number is low enough for molecular viscosity to in-
fluence directly the process of production, dissipation
and transport of turbulence.
interactions render the problem of creating a general

These viscous

mathematical model of the turbulence at least an or-
der of magnitude more difficult than for high
Reynolds number flows. Wall functions, based on the
noton of one dimensional local equilibrium

conditions, were conventionally used to bridge be-
tween the interior soluton and the boundary
surfaces. But, in this study, the turbulence kinetic en-
ergy and its dissipation is very sensitive to the node
distance next to the well. Therefore, the low
Reynolds number model developed by Lam et al'¢
for wall flows is employed. This model does not re-
quire the use of wall function formulas and does not
require the introduction of additional terms into the
transport equations.

In governing equations, fi, /2 and f. have been
proposed to account for wall effect as follows;

_ Acl 3
A= 1+ (<)
£=1- e R
e (1 - e+ %) (14)
t

Ay = 00165, A, = 205 Aa = 005

Ro- K R K

The three boundaries of the calculation mesh not
adjacent to a rod wall from reflection boundaries to
the velocity solution, with a zero welocity gradient
across them, and the velocity of the fluid at the rod
surface is zero.

At the symmetry boundaries, the normal gradients
of k and ¢ will be zero and at the wall, the normal
gradient of ¢ and turbulent kinetic energy are zero.

3. Results and Discussion

For laminar flow conditions, the momentum
equation can be solved analytically for the flow
through the fuel bundle array®. The finite difference
equation approximation to the momentum equation,
and the associated numerical mesh, were used to
solve the laminar flow. This was carried out as a
means of testing the stability, the adequacy of
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boundary condition and accuracy of the numerical
mesh, since the logarithmically spaced radial mesh
coupled with the matching of the cells to the
subchannel center line creates very substantial
changes in the radial mesh spacing.

The predicted mean axial velocity profiles plotted
in Fig. 3 are in fair good agreement with the analyti-
cal solution. Also shown in Fig. 4 is the wall shear
stress profile, which is of the same shape to the ana-
Iytical solution.

The detailed results of prediction using the iso-
tropic turbulent modelling with secondary flow are
compared and discussed against the experimental
data of Carajilescov and Todreas? with P/D ratio of
1.123 and Re=2.7 X 10*%

The comparison of the mean axial velocity
contours between expérimental and computational
results are shown in Fig. 5. The comparison shows
excellent agreement in the major part of the
Predictions with secondary flow
suppressed are also given where their effects were

subchannel.

strong. The contours show the characteristic
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Fig. 3. Predicted and Exact Axial Velocity Contours for
Laminar Flow:P/D=1.1, Re=80
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Fig. 5. Axial Velocity Contours (Re=27,000 P/D=1.123)

influences of the secondary flow with significant bulg-
ing into the gap region, due to the convective trans-
port of core fluid in that direction.

Fig 6 represents wall shear stress profiles.
Comparing, predictions with and without secondary
flow modeling, the wall shear stress is seen to be
increased near the gap region and decreased near
the subchannel center by secondary flow. This is
interpreted as the convective effects of fluid which
will increase axial welocity gradients in the near wall
wall region at lower 6 and decrease them at higher 6.
This tendency illustrates the remarkable effect of sec-
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ondary flow in homogenizing the wall shear stress.
The influence of secondary flow on the wall shear
stress is more markedly than that on the mean axial
velocity.
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Fig. 6. Distribution of the Wall Shear Stress of Triangu-
lar Subchannel
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Fig. 7. Predicted Secondary Velocity Profiles of Triangu-
lar Subchannel: P/D=1.123, Re=27,000

A single swirl of secondary flow was predicted for
this case as seen in Fig. 7. It seems that the flow
consists of single cell of circulation in which high mo-
mentum fluid from the subchannel center to the gap
region with return flow along the wall surface. This
pattern is similar to the measurements of Trupp et
al® for equilateral triangular duct. The maximum sec-

ondary velocities were about 1% of the mean axial
velocity.

The predicted contours of turbulent kinetic energy
is shown in Fig. 8. The distortions due to secondary
flow is markedly. The agreement with the experimen-
tal data is reasonable.

All components of the normal Reynolds stresses
are shown in Fig. 9. They were normalized by the
mean axial velocity. Predicted Reynolds stress profiles
compared with experiment are generally the same
shape and trends.

4. Conclusion

Fully developed turbulent flow through equilateral
triangular array fuel bundles has been investigated

Experiment
Corajlescov & Todreas

Predicted

= — = Predicted, no
secondary flow

435335

Fig. 8. Turbulent Kinetic Energy Contours
(Re=27,000, P/D=1.123)
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Fig. 9. Turbulent Normal Stress Distribution of Triang-
ular Subchannel : P/D=1.123, Re=27,000

numerically. The flow is much influenced by the tur-
bulence-driven secondary flows that occur in the
cross plane of all non-circular passages.

The k— ¢ turbulence model employing the iso-
tropic eddy viscosity, together with an algebraic stress
model has been used. The present method has
retained the generality without any compromise by
prescribing the direction of secondary flow or
restricting the govermning equations solved. The ex-
perimental and predicted characteristics of the flow
are shown to be in good agreement.

The effect of secondary flow is evident on the
mean axial velocity, turbulent kinetic energy and wall
shear stress distributions. It acts to homogenize the
wall shear stress along the rod surface by increasing
the velocity gradients near the gap.

Previous calculation methods using anisotropic
eddy viscosity and neglecting secondary flow were
successful in predicting the mean flow characteristics.
But, this is mainly compensating for the neglect of
convection transport rather than allowing for any ani-
sotropy in diffusion transport. The secondary flow
and anisotropy phenomena are physically different,
but they are not completely independent. Secondary

flows arise mainly due to anisotropy in the Reynolds
stresses, but they, in turn, influence the the distri-
bution of shear stress in ‘the fluid. Therefore, it seems
that turbulent diffusion and secondary flow convec-
tion are of importance in momentum transport.

To comprehend the true role and importance of
the secondary flow, more experimental study on ani-
sotropy factor and secondary flow distribution should
be performed.

Nomenclature
A, Aa constants in the turbulence model
functions

C1, Cz, C3, C4 constants in the turbulent stress model

Ca, Ca constants. in the turbulence model

Cu constant in the turbulent viscosity

D rod diameter

fi, f2, f, turbulence model functions for wall
effect

k turbulence kinefic energy

P rod pitch

r,0z cylindrical corodinates

R Reynolds number

Vi mean velocity component in the di-
rection i

w fluctuating component of velocity in
the direction i

y distance from rod to point of interest
in the radial direction

y distance from wall to maximum vel-
ocity line

€ dissipation rate of turbulence kinetic
energy

o, O¢ turbulent Prandtl number

u laminar viscosity

I turbulent viscosity

Vi kinematic turbulent viscosity
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