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Abstract

In this paper, a new three-dimensional nodal diffusion code which is based on the AFEN meth-
odology is described and tested. The method expands the homogeneous flux within a node in ter-
ms of eighteen analytic basis functions satisfying the diffusion equation at any point of the node.
And the nodal coupling equations are derived such that nodal balance, current continuity and leak-
age balance within an infinitesimally small box around the edge are satisfied. To verify its accuracy,
the code was applied to the well-known static LMW benchmark problem and a small core bench-
mark problem that has the same material properties as the three-dimensional IAEA benchmark
problem, and compared with two other codes (QUANDRY, VENTURE). The results show that the
code provides good accuracy both in the power distribution and in the effective multiplication fac-
tor.
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1. Introduction are usually used due to their higher accuracy and
much shorter computing time. In this paper, a new
In analyzing a nuclear reactor, the nodal methods three-dimensional nodal code[1] based on the AFEN
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method is described and tested. In most modern no-
dal methods, the multidimensional diffusion equation
is decoupled into several one-dimensional equations
by the transverse integration procedure and the re-
sultant transverse leakage terms are approximated by
a parabolic fit. Therefore, these methods have some
limitations. But the AFEN method expands the sol-
ution in terms of analytic basis functions satisfying
the diffusion equation in a node and directly solves
the resultant nodal coupling equations without the
fransverse integration procedure. Therefore, the
AFEN method gives very accurate solutions even
near the nodal interface of strong material disconti-
nuity. The two-dimensional results of the method
have been reported in several papers[2-5].

The methodology of this three-dimensional AFEN
code parallels the two-dimensional case. The nodal
unknowns are one node average flux, six interface
fluxes and twelve edge fluxes per node per group.
To represent these nodal unknowns, the homo-
geneous flux is expanded in terms of eighteen ana-
Iytic basis functions satisfying the diffusion equation
and one additional constant. The expansion coeffic-
jents are then represented by the nodal unknowns.
Therefore, nineteen equations per node per group

are required. The equation for the node average flux-

es is the nodal balance equation and the equation
for the interface fluxes is the current continuity equa-
tion. The equation for the edge fluxes is obtained by
equating the sum of the net leakages within an infin-
itesimally small box around the edge to zero. This
means that the neutron balance is equal to the leak-
age balance if this box is infinitesimally small. Since
only four nodes around the edge are coupled by the
edge balance equation, the nodal formulation is sim-
plified while the directional symmetry of the formu-
lation is preserved.

2. Theory and Methodology

The starting equation is the three-dimensional stat-
ic diffusion equation for homogenized cubic node n :

—Dv? F (23,243 3 (x,9.2)

_ 1 n 3"
= % DX 3 (x,y, 2). (1)

If A; are defined as the eigenvalues of the matrix
(D")'I[Z"——é— vY7] and matrix R" as the 2 X2 mat-
7

rix with cdrresponding eigenvectors, and if a new un-
known ¢ is defined by the relation

F(xy.2=( R F (232, @)
Eq.(1) is decoupled into “mode-group” partial differ-
ential equations as follows :

vi2Nx,y,2)—Al8Nx,v,2=0, g=1, 2. (3)

Here, g is the “mode-group” index. Then, the sol-
ution of Eq.(3) is expanded in terms of eighteen
analytic basis functions and an additional term as fol-
lows :

8z, 9,2) = Ci+ ZA{A RSN u+ Ay CSryu)
+ vzw’{A ""’nSNg Jf;uSN-‘lz—z xv
+A SISN% x:ucsg xgv

(4)
+A :OCS% J\::uSNizZ xqv
+A R CS% x}uCSlg—Z xv}
where
xs =(A3D2
w _ | sinhxzu, Ap>0
SNxgu _{ sinxju, Az<0
« | coshxzu, Ap>0
CSxpu _{ cosxju, A0 (5)
u =xYy,2.

The above nineteen coefficients can be easily
expressed in terms of nineteen nodal unknowns and

used in later formulation. For example,
BT+ 88— 0R 0~ o
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where

S2rP=2rP+ Er—(ErT+ EED)
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The nodal coupling equations are then derived.
The first nodal coupling equation imposed on the
nodal unknowns is the nodal balance equation that
is derived by integrating Eq.(1) over the node :

{ng, CT+a" WA =7 —a“(A%— 7>+ 5} * Gy=

{Euh—‘i A T+a Y AE =)
—a" (A= 1)YM F e+ B )
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% { p'§0'1$7u)+ﬂ(u)+ak—2( & Koy +1x+ S Km0}

7)

where the matrices «, 8, 7, A are all diagonal matric-
es and the symbol < > on a matrix denotes simi-
larity transformation by R. In Eq.7), Ifu) denotes
mesh index of u-direction and J, K denote mesh in-
dices of the other directions. Second, the equation
for the surface flux is derived by imposing continuity
on the interface currents at node interfaces. The
equation for the x-direction interface flux is given as

follows :

(£ L= I+a)D N T

+ (R CU+aIAD @D
+H UMD~ @D N*] T
+Hip (@D~ U+ D W F =Pl

(8)

S
where Pj contains the node average flux terms, the

y-direction interface flux terms, the 2-direction interfac-

e flux terms, and the edge flux terms of the two nod-
es.

Finally, the edge balance equation for the edge av-
erage flux is derived by considering the neutron leak-
age balance within an infinitesimally small box in two
directions {e.g.,, x, y) with height h, around the edge
that is shared by four adjacent nodes. This formu-
lation leads to the five block matrix equation for the
edge awerage fluxes. The resulting equation is not
presented here to save space.

The complete nodal coupling equations for all no-
dal unknowns are now established. These nodal
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coupling equations are solved by the conventional
source iteration method that consists of two levels of
iterative schemes (i.e., inner iteration and outer iter-
ation), similarly as in the two-dimensional case.

3. Application and Results

For verification of our three-dimensional nodal dif-
fusion code AFEN, the code was firstly applied to the
well-known LMW benchmark problem[6] (static ver-
sion) and the results are compared with those of
other two codes QUANDRY!7] and VENTURE[S].
The configuration of the benchmark problem is show-
n in Fig. 1 and the cross sections in Table 1. This
benchmark problem is a simplified LWR. The reactor
has a two-zone core containing 77 fuel assemblies
with width of 20cm. The core is reflected both radial-
ly and axially by 20cm of water and the active core
height is 160cm. Five control rods are parked in the
upper axial reflector, and four control rods are inser-
ted from the upper reflector to the axial midplane of
the core.

The results show that the AFEN code improves
accuracy both in the power distribution and in the
core criticality. Fig. 2 shows the power distribution in

y(em)}
1
90
4
Flux =0
0010 30 50 70 9 110 em

Net current=0

Fig. 1a. Quadrant of Reactor Horizontal Cross Section
of the LMW Benchmark Problem
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a node in the upper axial reflector and is less than
1.13%. The maximum error in assembly power density

occurs in the outermost assemblies and is less than
0.1%. The computing times in AFEN code and VEN-
TURE code are given in Table 2.

Secondly, the code was applied to a small core

Rod group 2

problem that has the same material properties as the
IAEA:3D benchmark problem. The benchmark prob-
lem was selected to provide a severe test for the cap-

Flux =0

abilities of the code against the reliable reference sol-
100 ution (fine mesh VENTURE calculation). In this ben-

chmark problem, the reactor consists of a two-zone

Net current=0

core containing 45 fuel assemblies with width of

Rod group 1

0.3835 | 0.1925
ke 028 |o11

20 VENTURE 0.99960
4 AFEN error 0.004 0.5661 | 0.4399 | 0.2772
QUANDRY error 0.014 0.32 0.33 0.16

0.0 - x(cm)
Flux=0

0.7136 | 0.6258 | 0.4803 | 0.3110
Fig. 1b. Vertical Cross Section 0.20 0.28

0.7886 | 0.7461 | 0.6397
the 9th plane where the maximum error occurs in 022 |oz 0.17

the active core region. Fig. 3 shows the assembly

. . i . x.xxxx VENTURE power
power density distribution. In this calculation, a uni- xxx  AFEN error(%)
form 20cm mesh in both radial and axial directions AFEN power-VENTURE power
Error= x 100 (%)
was used in AFEN and QUANDRY. The result of the VENTURE power
. . . Shaded node : rodded assembly
VENTURE fine mesh calculation with a lcm radial
mesh and a Zcm axial mesh is used as reference sol- Fig. 2. Nodal Power Distribution at 9th Plane for the
ution. The maximum error in nodal power occurs at LMW Benchmark Problem

Table 1. Macroscopic Cross Sections (cm ') for the LMW Benchmark Problem

Composition Group, g D, S e vy Yo

1 1423913 001040206  0.006477691
1 0.0175555
2 0.356306 008766217 0112732800
1 1423913 001095206  0.006477690
2 0.0175555
2 0.356306 009146217  0.112732800
1 1425611 001099263  0.007503284
3 00171776
2 0.350574 009925634  0.137800400
1 1.634227 0.002660573  0.000000000
a4 0.0275969
2 0.264002 0049363510  0.000000000
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x.xxxx VENTURE power density
x.xx  AFEN error(%) 0.8583 | 04329
xxx QUANDRY error(%) 004 |-0.10

044 | 021

1.1231 | 0.9802 | 0.6260
0.04 0.06 0.00
-0.04 0.15 0.56

1.5911 | 1.3970 | 1.0837 | 0.7072
-0.06 | -0.03 0.01 0.08
025 |-019 |-003 0.16

1.5559 | 1.6563 0.9804 | 0.7257
-0.05 -0.07 -0.05 0.04 0.10
027 |-028 0.4 -0.04 0.13

Fig. 3. Assembly Power Density Distribution

Table 2. Comparison of Computing Times (SUN SPAR-
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numerical results show that AFEN estimates accu-
rately the power distribution and the core criticality.
Figs. 5, 6 and 7 show nodal power distributions at
the 2nd, 3rd and 4th planes, respectively. And Fig. 8
shows the assembly power density distribution. For
this benchmark problem, the maximum error in the
nodal power is 0.58% and the maximum error in the
assembly power density is 0.45%. In this calculation,
a uniform 20cm mesh in both radial and axial direc-
tions was used in AFEN. The result of the VENTURE
fine mesh calculation with a 2/3cm radial mesh and
a 2/3cm axial mesh is used as the reference solution.
The computing times for this benchmark problem are

given in Table 4.
C-10)
Codes AFEN* VENTURE
Number of nodes 350 121000 y(cm) ’
Computing time (min) 6.58 797.50 90
* No acceleration schemes used. Flux =0
?-'- 70
g contrql r 3
20cm. The severity of this benchmark problem is due .:l; 50
to the nine control rods that are fully parked into the < 30
core. In this benchmark problem, the gradient of ther- 3
mal flux is very steep near control rod assemblies. 10
This fact is attributed to small core size and control -
) 00 10 30 50 70 90 X(em)
rod assemblies. The configuration of the benchmark Net current=0
problem is given in Fig. 4 and the cross sections in Fig. 4a. Quadrant of Reactor Horizontal Cross Section
Table 3. As in the previous benchmark problem, the of the LMW Benchmark Problem
Table 3. Macroscopic Cross Sections (cm ™) for the Small Core Problem
Composition Group, g D, pr VY s hBEY
) 1 15 0.010 0.000
2 04 0.080 0.135
1 15 0.010 0.000
2 0.02
2 04 0.130 0.135
1 20 0.000 0.000
3 0.04
2 03 0.010 0.000
1 20 0.000 0.000
4 0.04
2 03 0.055 0.000
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Zcm) Flux=0

100

80
)i
s 3
E
3 Flux=0
°
z

20

3
Flux =0 x(cm)
Fig. 4b. Vertical Cross Section
ket
VENTURE 0.955247

AFEN error 0.0187

17043 | 1.1740 | 0.5807
0.48 0.18 -0.08

1.3663
-0.16

x.xxxx VENTURE power
x.xx AFEN error(%)

AFEN power-VENTURE power
VENTURE power
Shaded node : rodded assembly

Error= x 100 (%)

Fig. 4. Nodal Power Distribution at 2nd Plane for the
Small Core Benchmark Problem

Fig. 6. Nodal Power Distribution at 3rd Plane

Fig. 7. Nodal Power Distribution at 4th Plane

0.2847 | 0.2698
0.36 0.29

1.1273 | 0.7801 | 0.3889
0.28 -0.04 -0.29

0.6504 | 1.1470 | 0.9014 | 0.2449
0.45 0.04 -0.42 -0.07

x.xxxx VENTURE power density
x.xx  AFEN error(%)

Fig. 8. Assembly Power Density Distribution

Table 4. Comparison of Computing Times

(SUN SPARC2)
Codes AFEN* VENTURE
Number of nodes 120 2733750
Computing time {min) 1.25 5406.50

* No acceleration schemes used.

4. Conclusions

In this paper, a new three-dimensional nodal dif-
fusion code that is based on the AFEN methodology
was described and tested. The AFEN code was de-
veloped to accurately analyze the three-dimensional
reactor core. To test its accuracy and applicability to
practical problems, the code was applied to the
well- known LMW benchmark problem that models
an LWR. The numerical results show that the code
provides very accurate solutions in the nodal power
distribution and in the core effective multiplication
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factor in comparison with the VENTURE fine mesh
calculation, while the QUANDRY code provides less
accurate solution than AFEN over the whole region.
In addition to the LMW benchmark problem, the
code was applied to a small core problem that has
the same material properties as the IAEA-3D bench-

mark problem for a severe test. In spite of the severit-

y of the benchmark problem, the results indicate that
AFEN provides very accurate solution. In virtue of
the good accuracy, it is expected that the new code

can be effectively used to analyze realistic reactor cor-

es.
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