Journal of the Korean Nuclear Society
Volume 27, Number 1, February 1995

{(Techincal Report)

A Software Engineering Process
for Safety-critical Software Application

Byung Heon Kang, Hang Bae Kim, Hoon Seon Chang, Jong Sun Jeon,
and Suk Joon Park
Korea Atomic Energy Research Institute
(Received April 30, 1994)

Safety-critical £2Z Eglo] A 82 93}
LT Edo] AL A

LW - L - BEM - BB - YME
YA AT
(1994. 4. 30 A4}

Abstract

Application of computer software to safety-critical systemns is on the increase. To be successful,
the software must be designed and constructed to meet the functional and performance
requirements of the system. For safety reason, the software must be demonstrated not only to meet
these requirements, but also to operate safely as a component within the system. For longer-term
cost consideration, the software must be designed and structured to ease future maintenance and
modifications. This paper presents a software engineering process for the production of safety-criti-
cal software for a nuclear power plant The presentation is expository in nature of a viable high
quality safety-critical software development. It is based on the ideas of a rational design process and
on the experience of the adaptation of such process in the production of the safety-critical software
for the Shutdown System Number Two of Wolsong 2, 3 & 4 nuclear power generation plants. This
process is significantly different from a conventional process in terms of rigorous software develop-
ment phases and software design techniques. The process covers documentation, design, verifi-
cation and testing using mathematically precise notations and highly reviewable tabular format to
specify software requirements and software design. These specifications allow rigorous, stepwise
verification of software design against software requirements, and code against software design
using static analysis. The software engineering process described in this paper applies the principle
of information-hiding decomposition in software design using a modular design technique so that
when a change is required or an error is detected, the affected scope can be readily and confidently
located. It also facilitates a sense of high degree of confidence in the ‘comrectness’ of the software
production, and provides a relatively simple and straightforward code implementation effort.

84

A Software Engineering Process for Sdfety-critical Software Application - B.H. Kang, et al

1. Introduction

Monitoring sensors and controlling actuators are
very important parts of a process control system.
When mal-functioning of the system can potentially
lead to loss of human lives or significant loss of
properties, such system is normally known as a
safety-critical system. Examples of safety-critical
systemns are nuclear reactor shutdown system, auto-
matic flight control system, air traffic control system,
railway signal system and chemical plant control sys-
temn.

In the past, process control of most safety-critical
systems was implemented by hardware. It required
significant human intervention. In recent years, the
application of computer software to automate the
process control of these systemns is on the increase.
Such computer software is known as safety-critical
software. The increased use of safety-critical software
is mainly due to the manipulative flexibility of the
software over the hardware. For example, change of
a software behaviour is relatively easily achieved
through suitable manipulation of programming logic
in the code. The software flexibility leads to the fol-
lowing advantages :

(i) A software system can be designed for ease of
change. This has a significant cost benefit in terms
of maintenance and future changes.

(ii) For identical systems, the cost of replication of a
software system is much lower than that of a
hardware system. For similar systems, program
family of the software system can be designed so
that the cost of instantiation of a family member
can still be significantly lower than that of a hard-
ware system.

(iii) Often, safety net features that are difficult or in-
feasible to be incorporated in a hardware system
can be easily implemented in a software system to
enhance the safety aspects of the system.

As safety-critical systems can affect the lives of the
general public in various ways, the operation of these

systems normally requires the approval of appropri-

85

ate governmental regulatory agencies. Depending on
the nature of each system, a set of requirements
must be met in the design and construction of the
system to demonstrate to the relevant regulatory
agency that the safety concerns of the public can be
assured before the approval is granted [1].

In a safety-critical system such as a nuclear power
generation plant, the use of safety-critical software
must therefore comply with its related requirements
to show that it operates safely as a component within
the system. When the plant is an industrial
enterprise, additional commercial requirements must
also be satisfied to ensure its competitiveness and
survival.

To meet these requirements, this paper discusses
various aspects of a software engineering process for
the design and construction of safety-critical software
based on the ideas of a rational design process [2]
and on the experience of the adaptation of such
process in the production of safety-critical software
for Shutdown System Number Two of the Wolsong
Nuclear Power Plants. The discussion is expository in
nature of a viable high quality safety-critical software
development. This process is significantly different
from a conventional process commonly used in
software industry in that : (i) rigorous software devel-
opment phases are used to achieve precise software
specification and implementation correctness, and {ii)
the principle of information-hiding decomposition is
systematically applied to software design to cater for
future software changes and maintenance.

2. Overview of Software Engineering Process

2.1. General Requirements for Safety-Critical
Software

Functional and performance requirements are the
most important in determining the role of safety-criti-
cal software to be included in a nuclear power gener-
ation plant. Therefore, the design and construction
of the software must be such that the fulfilmant of

86

these basic requirements is assured. Like any other
comparable industrial complex, plant maintenance
and modification affecting the functional and per-
formance requirements will occur during different
stages of the lifetime of the plant. Such occurrence
necessitates corresponding change in software.
Therefore for cost consideration, the software must
be also designed to ease future maintenance and
modification.

To a regulatory agency responsible for such plants,
the onus to demonstrate the safety assurance of the
software is on the organization for the plant [3]. One
central focus, among others, of the demonstration
refers to a software engineering process that is in
compliance of a high-level standard document for
safety-critical ~ software
organization. This high-level standard document

development of the

serves as a collection of mission statements for such
software construction and can be used as a basis for
assessing the adequacy of the software engineering
process so that the safety assurance of the use of the
software produced can be better judged. The success
of the assessment hinges on the accuracy, consist-
reviewability of the

documents for various phases of software develop-

ency, completeness and
ment.
2.2. Safety-Critical Software Development

Like other quality software construction, the
software engineering process described in this paper
for safety-critical software involves three main activi-
ties, namely software development, software verifi-
cation and software testing, as shown in Figure 1.
Software development consists of three phases of
transformation. The first phase is from the system
requirements description (SRD) to the software
requirements specification (SRS). The SRD is nor-
mally written in a natural language by the system
designers. In this phase, the unambiguous SRS writ-
ten in a mathematical notation can be derived after
the appropriate hardware configuration has been

J. Korean Nuclear Society, Vol. 27, No. 1, February 1995

identified for the SRD. The second phase is from the
SRS to the software design description {(SDD). In this
phase, software units can be specified using software
design techniques such as software modularization
and information-hiding to ease future maintenance
and change of requirements. The third phase is from
the SDD to coding. In this phase, each software
module specified in the SDD is implemented using a
programming language.

Software verification is a static verification to check
that the transformation between two successive phase
is correct. Finally, software testing is a dynamic verifi-
cation to check that the software is operating as
expected on a pre-defined set of input data under a
controlled environment.

This software engineering process is a forward-go-
ing process in which each higher level development
phase is complete before the next lower level devel-
opment phase in a "topdown” fashion. A develop-
ment phase is complete if the documentation for the
phase has been properly reviewed and verified. To
provide flexibility for the scheduling of workload, ju-
dicious overlapping of the activities between two suc-
cessive development phases is allowed as long as the
completion of a higher level development phase
precedes the completion of the next lower level de-
velopment phase. The overlapping should be prop-
erly conducted to minimize unnecessary iterations
among the development phases.

3. Application of a Safety-Critical Software
Engineering Process

3.1. General Documentation Requirements

Documentation is an intrinsic part of the software
development described in this paper. The design ac-
tivity in each software development is required to be
faithfully recorded in the associated documentation.
To achieve this faithful recording, the most effective
way is to ensure that the documentation is

performed as the design progresses such that the

A Software Engineering Process for Safety-critical Software Application--- B.H. Kang, et al

VERIFICATION

Legends :

Software Testing Phase

________________ SUB-SYSTEM
TESTING

RELIABILITY
TESTING

VALIDATION
TESTING

—— UNIT
TESTING

REVIEW

SDD

——— et e et e e

CODE
VERIFICATION

CODE (
REVIEW

Software Development Phase

Software Review and Verification Phase

Fig. 1. A Quality Software Engineering Process

documentation for a software development phase is
complete when the design activity for that phase is
finished. In consequence, the documentation for a
development phase is also regarded as a design me-
dium for the phase.

The success of the documentation requires several
important attributes, for example, accuracy, consist-
ency, reviewability. It
well-known fact that natural language is not the most
appropriate language for technical specification. One
of the often-quoted problems is the ambiguity in the
specification using such language. Therefore, to

completeness and is a

achieve the required accuracy in technical specifi-
cation, it is often necessary to choose an appropriate
notation systemn based on mathematics.

Software specification can be difficult to read and

understand, particularly when it contains decisions
for different actions. This can be alleviated by using
tabular formats as part of the notation used [4].

3.2. From SRD to SRS

As expounded by D.L. Parnas and his colleagues
{5, 6], system behaviour specifiers are responsible for
the specification of the system requirements. The
specification is usually a description of the observable
behaviour of the system. It should completely de-
scribe all monitored inputs, all controlled outputs and
the required input/output relationship. Such relation-
ship can be generalized by REQ(m!, ¢!}, where REQ
is the required system behaviour, m' and c' are

time-functions for monitored and controlled variables.

88

Sometimes, natural constraints are also imposed on
the required system behaviour. This is specified by a
relation NAT(m, c!). For a real-time system, the re-
lationship must also include well-defined non-func-
tional relationship to allow for concurrency and
non-determinism, for example, of the occumrence of
events. With the availability of the
requirements and the decision for the application of

system

computers for the process control of the system, the
system designers shall then be able to specify the
required hardware for the system. The specifications
for system requirements and the hardware together
provide a basis from which the SRS can be derived.

From the viewpoint of safety<ritical software devel-
opment, the derivation of a complete and precise
SRS is crucial to the success of subsequent software
design. The effort of such derivation depends on the
rigour in the system requirements and hardware
specifications : the less the rigour, the more the effort.
In current practices in industry, hardware specifi-
cation is relatively more rigorous than system
requirements specification for the following reason.
Hardware specification often makes use of math-
ematics to describe well-defined behaviour of the
hardware; mathematics has long been recognized for
its effectiveness in making precise statements and
definitions. System requirements specification is often
described using a natural language ; ambiguity and
inaccuracy in a natural language description are not
easy to detect in such informal specification. In
consequence, more reviews and discussions with the
system behaviour specifiers are required for clarifi-
cation during the derivation.

To awoid potential ambiguity and inaccuracy of an
informal system requirements specification, the SRS
should use a suitable notation based on mathemat-
ics. In safety-critical software development, each func-
tion in the SRS should be a total function. This is to
ensure that complete coverage of the input domain
for the function is performed to cater for all possible
cases. For example, if the input domain of the func-
tion x is completely covered by three non-overlap-

dJ. Korean Nuclear Society, Vol. 27, No. 1, February 1995

ping partitions Pifl), Pa(l), Ps(I) where P is a predi-
cate over the input I, the following condition table

can be used to specify x :

Pi(D Py(D) Pi(D)

X = €1 €2 €3

which is equivalent to the simple mathematical state-
ment of

x=ey, if Pi([}) =true

x=eg, if P2(l) =true

x=e, if Ps(l) =true

Event tables can also be used to describe the state

transition of a systemn state. For example, if E; and E:
are conditions for potential state transition of y, the
event table below can be used to specify y:

@E, Q@E,

y= el e

which may be informally described as :

for a given time t,

@E;=true, if E: at time t is true and

E at the time instant immediately prior to t is false
=false, otherwise

y=e, if @E at time t is true

y holds the same value since the last time *t (’t (t)
when @E =true,

if all @E’s at time t are false.

To awvoid conflicting state transition for y, @E; and
@E:2 must not be both true at any time. Reference
[5] provides formal definitions of various event
tables.

To ensure that the SRS is complete, all monitored
variables, and controlled variables, their relationship
and system safety measures in an informal system
requirements specification must be properly identified
so that the monitoring rate of each monitored vari-
able, the performance requirement of each controlled
variable, the required relationship of each controlled

A Software Engineering Process for Sdfety-critical Software Application--- B.H. Kang, et al 89

variable and its associated monitored variables, and
safety net features can be derived in the SRS.

Finally, likely changes to the system requirements
and system design must also be identified and
highlighted in the SRS {possibly through appropriate
discussions with the system behaviour specifiers and
system designers) as they provide vital information
for subsequent software design to cater for future
changes.

3.3. From SRS to SDD

The >bjective of the step from SRS to SDD is to
derive from the SRS a software design not only to
capture all the requirements in the SRS, but also to
future
modifications. The functional aspects of the software

cater for anticipated changes and
design can be described in a four-variable model
using monitored variables, input variables, output
variables, controlled variables and their relationship
[6]. Unlike the input and output boundaries of the
SRS in which the monitored variables represent the
system input boundary and the controlled variables
represent the system output boundary, the input and
output boundaries of the SDD are represented by
the computer input and output variables. The com-
puter input and output variables can be input and
output registers or some other pre-defined memory
locations for holding the input and output values to
the computer. Once the computer input and output
variables have been decided, the relation IN(m', ')
from the monitored variables to the computer input
variables and the relation QUT(c!, ¢') from the con-
trolled variables to the computer output variables
must be defined so that the software behaviour SOF
(i, o) can be derived. Note that m, i, o, c' are
time-functions. To be acceptable, SOF must satisfy

the following relation :

vmivitvolvc : IN(mii) A SOF(i%o) A OUT{o'c")

A NAT(m'c) — REQ(m'c").

There are various approaches to software design.
Perhaps, the most notable ones are functional de-
composition and information-hiding decomposition.
Functional decomposition is a well-known technique
to capture the required functional behaviour in the
resultant software, but it dose not generally appear to
be effective to render the software amenable to
changes and modifications. One plausible expla-
nation is the over-dominance of the use of control
flow paradigm in the functional decomposition. This
often results in a premature commitment to a par-
ticular scheduling strategy which can lead to en-
tanglement of normal logic for the required behav-
jour and scheduling logic for the required perform-
ance. Such entanglement could be a hindrance to
future changes and modifications.

Information-hiding decomposition is a well-estab-
lished discipline using a modular design approach
[7]. In this discipline, software module decomposition
is primarily driven by an information-hiding scheme
in such a way that not only anticipated changes in
the SRS shall be localized to meet future change and
modifications, but also the resultant software system
shall perform all the requirements in the SRS. For
example, for a simple software used for the shut-
down system of a nuclear power generation station,
the application software can be decomposed into
three modules, namely the hardware-hiding module,
the behaviour-hiding module and the software-de-
cision-hiding module. The hidden secrets of the
hardware-hiding module are the characteristics
specific to a particular hardware configuration.
Examples of these secrets are 1/O addresses and
low-level 1/O driven mechanisms. The hidden secrets
of the behaviour-hiding module are how the required
behaviour in the SRS is achieved. Examples are trip
setpoint limits and duration for time delays. Finally,
the hidden secrets of the software-decision-hiding
module are choices of algorithms. An example is the
computational method of a formula. Generally, the
hardware-hiding module is designed for the relations
IN and OUT, and the behaviour-hiding and the

90

software-decision-hiding modules are designed for
the relation SOF. As the decomposition progresses,
each module is
sub-modules in the next lower level of the module

further decomposed into

decomposition hierarchy such that each sub-module
hides some secrets of the corresponding module in
the higher level decomposition hierarchy. The de-
composition stops when sub-modules in the respect-
ive lowest level of the decomposition are deemed by
the software designers that they are cost-effective in
terms of efforts in documentation, implementation,
future changes and modifications. The sub-modules
in the lowest level of the decomposition are also
known as leaf modules, each intended to correspond
directly to a software module. The documentation of
the information-hiding decomposition is in the form
of a module guide. The module guide is an informal
description of what each module does and what
secrets it hides (without telling how the secrets are
accomplished). It provides a guided tour of the de-
composition and the intended goal of each leaf
module. For maintenance purposes, it facilitates easy
identification of the affected modules. With the mod-
ule guide, the software designers can then proceed
to the module interface and internal design of each
leaf module using the technique of data abstraction.
The purpose of module interface design of a leaf
module is to provide sufficient access programs (i.e.
operations) to the user of the module to achieve
what the module is intended to do without the user
knowing how the secrets are dealt with inside the
module. The access programs are the only means to
manipulate the external behaviour of the module.
There are various ways to specify the module
interface. The most notable ones are the algebraic
specification [8] and the trace specification [9].
Briefly speaking, the former is given by the module’s
signature (which roughly corresponds to the declar-
ation of the access programs in the module) and a
set of axioms relating the effects of access programs
for the module, and the latter is given by the declar-

ation of the access programs, the equivalence defi-

J. Korean Nuclear Society, Vol. 27, No. 1, February 1995

nition for each of a set of legal {i.e. canonical) traces
of access program calls to the module and the evalu-
ation function for each legal trace. Module interface
above
specifications is still perceived to be difficult to under-

description using either one of the
stand and to apply by the industry. For a simple
shutdown system, the external behaviour of each
module is deemed fairly simple and well-understood.
Therefore, in practice, the module specification is de-
scribed informally and with reference to the appropri-
ate SRS functions.

The purpose of the module intemal design is to
maintain the internal state of the module to be con-
sistent with the external behaviour of the module.
The module’s internal state is represented by suitable
data structures local to the module for recording the
effects of the access programs on the data structures.
The module’s internal behaviour can be specified
using program functions to define the effect of each
access program on the comresponding data structure
in a way similar to the condition table for an SRS
function. For example, the access program
“SSeqChk™ to update the intemal state of the mod-
ule “SequenceChk” (which checks the correct ex-
ecution sequence of a group of access programs of
other modules in the main line program) can be
specified formally using the program function table
below :

'SeqChk < N ‘SeqChk = N 'SeqChk > N

SeqChk’ 'SeqChk + 1 0 *SeqChk

Where : the integer variable SeqChk represents the
internal state of the module,
’SeqChk is the value before the invocation of
SSeqChk,
SeqChk’ is the value after the invocation of
the SSeqChk and
N is a positive integer constant.

Note that to ease later coding effort, it may be ad-
vantageous to ensure that the syntax for the con-
dition or expression in a table cell conforms to that

A Software Engineering Process for Sdfety-critical Software Application--- B.H. Kang, et al 91

of a pre-selected programming language.

Finally, in a carefully conducted information-hiding
decomposition and near the end of the decompo-
sition, the scheduling logic should be confined to the
schedule module. The specification for this module is
algorithmic in nature. It prescribes an execution se-
quence of the access programs that can satisfy the
monitoring rates of the monitored variables and the
performance requirements of the controlled variables
after some suitable data flow analysis of the system’s
performance requirements. This is possible because
software scheduling for a shutdown system is nor-
mally required to be deterministic for safety reason.
In consequence, future changes to performance
requirements only involve the re-arrangement of ex-
ecution sequence in this module after suitable review

of the data flow analysis.
3.4. From SDD to Code

The translation of leaf modules to software
modules can start after the design and specification
of the leaf modules have been completed. For dis-
cussion purpose, we shall refer to a leaf module in
the SDD as an SDD module and the code for an
SDD module as a software module.

The translation is performed on a module-by-mod-
ule basis and is mostly mechanical in nature. In this
phase, the input domain analysis for an access
program in the software module should no longer be
a concemn to the programmer because it has already
been performed during the previous software design
phase in specifying the program function for the ac-
cess program in the SDD module. To the program-
mer, the translation of data structures in the SDD
module is trivial because the corresponding data
structures in the software module are, at the most,
only different in syntax. The translation of the specifi-
cation of the access program in an SDD module is
also simple. When the specification is in the form of
an algorithm, the translation is either a duplicate or a

slightly more detailed code version of the algorithm

for the access program in the software module.
When the specification is in the form of a program
function table, the function
corresponds to a guarded command of the form :

program table

if guard 1 action 1
l
| guard n action n

fi.

which requires that when the command is executed,
one and only one guard i {ie. condition) has a
“true” value and the action i is performed {10]. Thus
each condition cell of a program function table
corresponds to a guard and each assignment to an
action. Guarded command can be implemented by
an IF-THEN-ELSE statement of a programming
language.

The choice of a suitable programming language
can also have a significant effect on the translation
process. For a programming language with a well-de-
fined semantics, quality compilers will conform to the
language definition in their implementation. A pro-
grammer who is knowledgeable about one compiler
can confidently apply the same knowledge in writing
correct programs for another compiler. With a
well-defined language, the chance of mis-use of a
language construct is also reduced. For safety-critical
software, the programming language should also be
strongly typed to allow systematic checking on
type-compatibility and valid range during program
compilation and program execution. This enhances
the safety aspect of the software without placing ex-
tra burden on programming effort. Even though no
programming language is entirely safe for safety-criti-
cal software application, proper subset of suitable
and well-defined part of some programming
languages can often be identified for use. Finally, to
support software design using modular approach, the
programming language should also provide facilities
for modular programming to ease programming ef-
fort.

92

3.5. Verification

In a rigorous development of safety-critical
software, verification activity is performed to ensure
that each development phase is correct relative to its
previous phase by validating the documentation be-
tween the two phases.

The top-level verification starts after the SRS has
been derived from the SRD containing the system
requirements and the system design specifications.
The verification is in the form of discussion and re-
view sessions among the SRS specifiers, the system
requirements specifiers, the system design specifiers,
and the reviewers to ensure that the intended func-
tional, performance and safety aspects of the system
requirements are correctly translated into the SRS.
Note that from time to time during the preparation
of the SRS, the SRS specifiers may seek clarification
from the system specifiers on some interpretation of
an informal description of the system.

The next level verification between the SDD and
the SRS starts after the SDD has been reviewed and
completed. The verification is to demonstrate, math-
ematically or through rigorous argument, that the be-
haviour of each control variable in the SDD is an ac-
ceptable behaviour as required by the SRS for the
controlled variable. This normally involves the identi-
fication of functions or groups of functions for the
behaviour of the controlled variable in the SDD such
that each function or group commutes with (ie. is
equivalent to) the corresponding function or group
in the SRS through suitable logical manipulation.
The verification also includes the checking of the ex-
ecution schedule in the schedule module to ensure
that the performance requirement of each controlled
variable can be met assuming that the actual time to
execute each program.loop in the schedule is within
the specified program loop time in the SDD.

After all the leaf modules in the SDD have been
translated into software modules for a programming
language, the last level verification between the SDD
and the code can take place. The wverification is

J. Korean Nuclear Society, Vol. 27, No. 1, February 1995

performed on a module-by-module basis, i.e. each
software module is compared against the leaf mod-
ule in the SDD to show that the software module is
a correct implementation of the leaf module. In gen-
eral, the comparison involves two steps. The first step
is to abstract a program function for each access
program in the software module. This step is omitted
if the access program is specified as an algorithm.
The second step is to show that the data structures
in the software module are equivalent to those in the
leaf module and that each abstracted program func-
tion of the software module is logically equivalent to
the corresponding program function of the leaf mod-
ule. When the access program of the software mod-
ule is a duplicate of the algorithm specified for the
access program of the leaf module, inspection is ad-
equate to confirm that they are the same. The verifi-
cation is relatively easy and it can further be simpli-
fied by following some coding disciplines to ease
verification effort. For example, the structure of the
decision statements in the program should follow the
structure of the condition cells in the program func-
tion table.

3.6. Testing

After completion of all software modules, various
operational aspects of the application software can
be tested to confirm the expected behaviour of the
software. The objectives of the testing activities in the
software engineering process are to expose latent
defects and to provide assurance that the software
satisfies all of the functional, performance and
safety-related requirements, as specified in the SRD,
SRS and SDD. The software verifiers are responsible
for leading and conducting testing, and for produc-
ing the required documents. Software designers who
participate in the implementation of the software
should not inwolve in the following testing activities :
preparation of test plan and analysis of test results.
Unit testing, sub-system testing, validation testing and
reliability testing should be performed for the testing

A Software Engineering Process for Safety-critical Software Appiication -+« B.H. Kang, et al 93

of a safety-critical software.

During unit testing, each module is individually
tested to verify the consistency with the SDD. All im-
portant processing paths through the module are
tested for expected results. Unit testing starts with test
plan which describes specific classes of tests and test
data. Once a test plan is prepared, test cases are
generated. Test data should be carefully designed to
exercise in-bounds and out-bounds conditions.
Expected results for all test cases must be defined in
advance based on the SDD. In many cases,
programs known as “drivers” are used to exercise
the module and record and report the results.

Sub-system testing is intended to check the inter-
action among the application software, the pre-devel-
oped software and target hardware. During the
sub-system testing, the software system is assembled
and tested in a systematic manner. Sub-system
testing is performed to test that the code meets the
SRS using
“bottom-up” techniques. The bottom-up approach

requirements specified in the
incorporates modules into a build ; tests the build
and then integrates it into the software structure. The
build normally comprises a set of modules that per-
form a major function of the software system. In-
itially, the function may be represented a stub that is
replaced when the build is integrated. To facilitate
the production of test cases for sub-system testing,
the test cases can be categorized to various groups.
In general, test cases for safety-critical software sys-
tem can be categorized into the following groups:
functional behaviour compliance, timing and per-
formance compliance, environmental interfaces map-
ping and operational constraints compliance, and fail
safe compliance.

Validation testing is to test that the code with tar-
get hardware and pre-developed software meets the
SRD. Validation testing relies on “black box” tech-
nique. Test values are supplied through the analog
and digital inputs of the computer system, and the
software is judged to have passed or failed on the
basis of the output of the computer system. The

values of the test inputs and of the expected outputs
are based on the SRD.

Reliability testing is to demonstrate using statisti-
cally valid random testing that the code with target
hardware and pre-developed software satisfies the
software reliability requirements specified in the SRD.
Like validation testing, reliability testing uses black
box technique. It means that the tests are external to
computer system. Reliability testing can be performed
using the same test rig as validation testing. However,
while validation testing typically verifies one function
by evaluating the effect of changes to one input
while other inputs are held constant, reliability testing
simulates actual conditions, in which simultaneous
changes occur on all inputs. The reliability under
such conditions can be statistically demonstrated with
some level of confidence by this testing. It is essential
that the degree of uncertainty be quantified so that it
can be shown to be consistent with the reliability
requirements of the overall system.

4. Conclusions

This paper has discussed various aspects of a
software safety-critical
software application. Such process is adapted in the
production of safety-critical software for Shutdown
Systern Number Two of the Wolsong 2, 3 & 4 nu-
clear power generation plants.

engineering process for

This process is significantly different from a con-
ventional process in terms of rigorous development
phases. In a conventional process, the SRS is usually
non-existent and the SDD is predominantly described
in a natural language or an informal pseudo-code.
Without a precise SRS, the software designers have
to rely on the informal SRD and relevant hardware
manuals to design the software. In consequence, the
software designers must accomplish two tasks: first,
they have to understand the real and exact interpret-
ation of the system requirements ; second, they have
(probably

to capture this understanding

supplemented by their informal notes) of the SRD in

94

the design of the software. Without the help of pre-
cise notations while carrying out the two tasks, ambi-
system

requirements can be a significant contributing factor

guity and mis-understanding of the

to the problems in the progress or quality of the
software design. Such problems will be inherited in
the coding phase. As often quoted, late design errors
detected in the coding phase of a software develop-
ment are often costly to correct. One of the import-
ant objectives in the process described in this paper
is to avoid such costly errors by investing more effort
in the front-end to obtain a precise SRS from which
the software designers can focus their attention to
design and to specify software modules for sub-
sequent implementation.

This process is also significantly different from a
conventional process in terms of sofiware design
techniques. In a conventional process, the decompo-
sition of software design is primarily functional de-
composition. Functional decomposition does not
cater well for future maintenance and modifications.
This may have a significant effect on the effort of fu-
ture review, verification and testing of the software
after the
modifications. In the worst case, failure to localize the
effect of software change may require that the result-
ant software must be completely reviewed again,
re-verified and re-tested. Another important objective
in the process described in this paper is to plan early
in the software design phase to isolate the effects of
expected changes in system requirements or hard-
principle of

occurrence of maintenance or

ware devices using the
information-hiding. Therefore when maintenance or
modifications are required, only the affected software
modules need to be reviewed, verified and tested.
During the course of the software development for
the Wolsong project, some system requirements and
hardware 1/O devices do change. Experience shows
that the software design using information-hiding
principle does localize the effect of these changes.
On the use of mathematical notations, experience in
the project shows that they are very valuable to facili-

dJ. Korean Nuclear Society, Vol. 27, No. 1, February 1995

tate review, verification and testing once team
members are familiar with the notation. This is due
to the fact that time wasted in resoling ambiguity
and mis-understanding of a specification is greatly
minimized.

A common concern on the use of this process in
the industry is perceived to be the significantly high
cost of specification and verification involved. This
need not be the case when the higher confidence
required of the safety-critical software and the
longer-term cost are taken into consideration.

Proper software tools to support the development
phases play an important role in the design and the
construction of safety-critical software by providing
design assistance in organizing and maintaining the
design database, editing the diagrams and the tables,
facilitating the design documentation, coding the
program and maintaining the configuration control.
The availability of these tools can greatly reduce the
software production cost. Identification of these tools
and their effects on the software development phases
shall be discussed in the near future.

Acknowledgements

The authors wish to thank all the staff of Shut-
down Systems Computer Hardware & Software
Branch of AECL (Atomic Energy of Canada Limited)
CANDU for the Wolsong 2, 3 & 4 Project. In par-
ticular, they appreciate the following individuals for
their encouragement and comments while writing
this paper: N. Ichiyen, D. Chan, C. Choo, and T. Yip.
The authors have benefited from the experience of
software engineering process in the design and con-
struction of the safety-critical software for the nuclear
power plant while they participated in the Wolsong
project.

References

1. D.L. Pamas, GJ.K Amis, and J. Madey, “Assess-
ment of Safety-critical Software”, Technical Re-
port 90-295, ISSN 08360227, TRIO, Queen’s

University, Kingston, Ontario, Canada, December
1990.

. D.L. Pamas and P.C. Clements, “A Rational De-
sign Process : How and Why to Fake It”, IEEE
Transactions on Software Engineering, Vol
SE-12, NO. 2, February 1986.

. GJK Asmis and P. Wigfull, “The Process for
Regulatory Approval of Safety-critical Software”,
COG CANDU Computer Conference, Markham,
Ontario, November 1990.

. KL. Heninger, JW. Kallander, D.L. Pamas, and
J.E. Shore, “Software Requirements for the A-7E
Aircraft”, NRL Report 3876, Naval Research
Laboratory, Washington, DC, November 1978.

. A John van Schouwen, “The A-7 Requirements
Model : Re-examination for Real-Time Systems
and an Application to Monitoring Systems”,
Queen’s University, Kingston, Ontario, Canada,
April 1990.

. D.L. Pamas and J. Madey, “Functional Docu-

mentation for Computer Systems Engineering

A Software Engineering Process for Sdfety-critical Software Application--- B.H. Kang, et al 95

(Version 2)", CRL Report No. 237,
Telecommunications Research Institute of
Ontario (TRIO), McMaster University, Hamilton,
Ontario, Canada, Sept. 1991.

. D.L. Pamas, “On the Criteria to be Used in

Decomposing Systems into Modules”,
Communications of the ACM, 15, 12, December
1972, pp. 1053—1058.

. J. Goguen, J. Thatcher, E. Wangner, “An Initial

Algebra Approach to the Specification,
Correctness and Implementation of Abstract Data
Types”, Current Trends in Programming Meth-
odology, iv, Raymond Yeh, Editor, Prentice-Hall,
1978, pp. 80—149.

. D.L. Pamas, Y. Wang, “The Trace Assertion

Method of Module Interface Specification”,
Technical Report 89-261, Queen’s University,
Kingston, Ontario, Canada, 1989.

10. EW. Dijkstra, “A Discipline of Programming”,

Prentice Hall, Englewood Cliffs, New Jersey,
1976.

