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Abstract

An accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchan
nels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study,
the low-Reynolds number k-¢ turbulence model has been adopted in two adjacent subchannels with
cross-flow. The secondary flow is accurately estimated by the anisotropic algebraic Reynolds stress
model. This model was numerically calculated by the finite element method and has been verified
successfully through comparison with existing experimental data. Finally, with the numerical analysis
of the velocity field in such subchannel domain, an analytical correlation of the lateral loss coef-
ficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is
expressed as a function of the ratio of the lateral flow velocity to the donor subchannel axial vel-
ocity, recipient channel Reynolds number and pitch to-diameter.
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1. Introduction

In the design and safety analysis of nuclear reactor-
s, it is very important to verify that DNBR does not
exceed the safety limit. For this purpose, accurate
subchannel analysis for nuclear fuel rod bundles is
required. However, the thermal-hydraulic phenomena
in such geometries as rod bundles are complex due
to geometrical complexity and high turbulence. Also,
between subchannels in the rod bundle, there exist
the interchanges of physical quantities such as mass,
momentum and energy. Especially, the cross-flow can
induce fuel rod vibrations through vortex shedding or
turbulent mechanisms. Therefore, to accurately pre-
dict the nuclear fuel performance, the knowledge on
such interchanges including the turbulent effects is
essential, '

Coolant mixing between subchannels in rod bun-
dles is classified into four mechanisms as follows[1] :
(1) turbulent interchange, (2) diversion cross-flow, (3)
flow scattering, and (4) flow sweeping. The first two
mechanisms are natural mixing effects which always
occur in rod bundles and the last two are forced mix-
ing effects due to mechanical means. Turbulent inter-
change is natural eddy diffusion between subchannel-
s which can be characterized by eddy diffusivities. Di-
version cross-flow is a directed flow between subchan-
nels caused by radial pressure gradients between ad-
jacent subchannels. Flow scattering and sweeping are
non-directional mixing associated with the presence
of grid spacers and directed cross-flow due to mixing
vanes on grid spacers, respectively.

One of the important intersubchannel interaction
is the mass transfer by diversion cross-flow, which is
due to the lateral pressure difference. The diversion
cross-flow carries the momentum and energy and
thus affects the velocity and temperature profiles in
the rod bundle. This quantity is calculated in com-
mercial computer codes with the lateral pressure loss
coefficient, which correlates the cross-flow rate with
the lateral pressure difference.

In COBRAI code, the lateral pressure loss coef-
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ficient was evaluated on the basis of frictional resist-
ance which would be observed for given lateral flow
velocities in the absence of an axial flow component.
This approach does not agree with the data for lat-
eral flow through orifices in the presence of substan-
tial axial flows. Hence, Weisman([2] pointed out that
the analysis of the lateral flow between two rod bun-
dles should recognize the strong inertial effect of
axial flow on the lateral flow. Thus, using the sub-
channel approach, he derived the expression for the
lateral pressure loss coefficient between assemblies
and established a correlation using experimental
data. His correlation indicates that the inertial effect
is the main parameter in describing lateral pressure
losses and the frictional losses are negligible.

Tapucu’s experiment[3], on the diversion cross-
flow between two parallel channels communicating
by a lateral slot, has shown that the lateral pressure
loss coefficient is mainly a function of the ratio of the
lateral flow velocity to the donor channel axial vel-
ocity, the recipient channel axial velocity, and the gap
clearance and thickness of the slot. On the basis of
Tapucu’s experiments, Tapucu-Merilo[4] derived the
axial pressure variations in terms of two new paramet-
ers for donor and recipient channels. These paramet-
ers include the combined effect of fluid transferred
and drag force brought by the connection gap, and
are functions of the velocities and the geometrical
parameters of the slot.

Baytas[5] determined that the axial velocity in the
gap region influences the cross-flow, by comparing
the numerical predictions with Tapucu’s experimental
data. He expressed the axial velocity in the gap re-
gion in terms of the axial velocity of the adjacent
channels and a new parameter, which was found by
numerical optimization.

Brown et. al. (6] found that, with a constant width
control volume of gap region in the subchannel ap-
proach, the results for blockage conditions could not
be satisfactory. They suggested that a variable width
control wolume should be used to analyze the
cross-flow behind the blockage.
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Gencay et. al. [7] conducted the experiments for
the hydraulic behavior of two laterally interconnected
channels with blockages in one of them. They obser-
ved that in the upstream region of the blockage the
diversion cross-flow takes place over a relatively short
distance and in the downstream of the blockage the
recovery of the diverted flow by the blocked channel
is a slow process and the rate of this recovery dec-
reases with increasing blockage severity. By compar-
ing with experimental data, Tapucu et al [8] con-
cluded that COBRA-IIIC may not be adequate to de-
scribe the hydrodynamic behavior of two-interconnec-
ted channels with plate type blockages much higher
than 30% severity in one of them.

Gencay-Tapucu[9] defined new momentum pa-
rameters for the axial momentum equation to investi-
gate the hydrodynamic behavior of two interconnec-
ted parallel channels when one of them has a high
blockage fraction, and studied the lateral resistance

between two channels by taking into account the con-

vective contribution of transverse momentum due to
axial and transverse velocities. These parameters are
expressed as a function of the square of the ratio of
cross-flow velocity to the donor channel velocity.

As mentioned above, many works have been per-
formed to analyze the cross-flow mixing phenomena
and develop a suitable correlation for the loss coef-
ficient, experimentally or numerically. However, most
experiments were conducted on two parallel flow
channels coupled by small holes or slots, or on blow-
ing and sucking manifolds. These seem to be quite
irrelevant to nuclear fuel bundles. Also, numerical
predictions are normally based on the subchannel
approaches which are derived by the lumped pa-
rameter concept in the subchannel of nuclear fuel
assemblies. Hence, it is required to analyze the
cross-flow phenomena in more realistic situations.

In this study, a turbulent flow field analysis code in
subchannels is developed, accounting for the second-
ary flow caused by the anisotropic feature of Reyn-
olds stress. The numerical scheme adopted in this
code is the Galerkin weighted finite element method.
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The code has been verified by comparing with avail-
able experimental data. Finally, using the same code,
a correlation for the lateral loss coefficient between
subchannels is numerically obtained in terms of the
ratio of the lateral flow velocity to the donor subchan-
nel axial velocity, recipient channel Reynolds number,
and pitch-to-diameter.

2. Turbulence Model
2.1. Secondary Flow and Anisotropic Model

Turbulent flow in non-circular ducts is character-
ized by secondary motions in a plane perpendicular
to the streamwise direction. In general, the secondary
motion is caused by two different mechanisms. The
pressure-induced secondary motion (of Prandtl’s first
kind) exists in curved ducts and its magnitude can be
quite large, say of the order of 20-30% of the stream-
wise mean velocity. On the contrary, the secondary
motion encountered in straight non-circular ducts is
caused by the turbulence and thus this secondary
flow can be present even under fully-developed con-
ditions. Although the magnitude of turbulence-driven
secondary motion (of Prandtl’s second kind) is smal-
ler than the root-mean-square value of turbulent in-
tensity, this motion distorts the streamwise mean vel-
ocity and temperature contours towards the corners.
experimental investigations, Brun-
drett-Baines[10] have shown that the turbulence-driv-

en secondary flows in non-circular ducts result from

From the

the anisotropy of Reynolds stress in the cross-sec-
tional plane. Thus, the anisotropic Reynolds stress
model should be adopted for more accurate descrip-
tion of the secondary flow.

The importance of anisotropic effect on the flow
field in rod bundles has been confimned by several
investigations. There may be two possible ways to in-
clude the anisotropic effect in turbulence models.
One is the anisotropic eddy viscosity model which
accounts for the anisotropic eddy diffusion, and the
other is the anisotropic algebraic Reynolds stress
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model which accounts for the secondary flow.

Trupp-Aly{11] analyzed the anisotropic effect in a
triangular-arrayed rod bundle by introducing a con-
stant anisotropic factor as the ratio of eddy viscos-
ities.

Slagter[12] developed a new form of the
one-equation turbulence model allowing for the ef-
fect of anisotropic eddy wviscosities. Slagter’s aniso-
tropic model is based on anisotropic length scale
expressions of Carajilescov-Todreas and on Wol-
fshtein’s length scale model which includes the dam-
ping effects near the wall and, thus, is applicable up
to the wall.

Launder-Ying[13] derived the relations between

the Reynolds stresses under some reasonable approx-

imations. Using the results of order of magnitude
analysis, Baker[14] established the leading terms of
the Reynolds stresses which are essentially equivalent
to those of the Launder-Ying model.

Myong-Kasagi[15] added some complex correction
terms of second order to the isotropic Reynolds
stress to describe the anisotropy and its behavior at
low Reynolds number near the wall.

2.2. Low-Reynolds Number Model

Most of the turbulence models are devised for
high Reynolds number and fully turbulent flows far
from the wall. Thus the success of the prediction of
wall-bounded shear flows depends, to a large extent,
on the use of the appropriate wall functions that re-
late surface boundary conditions to points in the
fluid away from the boundaries and thereby awoid
the problem of modeling the direct influence of vis-
cosity. However, in some cases such as subchannel
analysis where the ultimate purpose is to find the rod
surface temperature and informations on the flow
field in the immediate vicinity of the wall is essential,
the low-Reynolds number model is required.

Many low-Reynolds number models combined with
model were proposed[16];

widely used k-
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Lam-Bremhorst and Launder-Sharma were the most
successful in using this approach. Especially, the
Lam-Bremhorst model has the advantage in that it
does not require additional terms to the standard k-¢

model.
3. Mathematical Model

In this study, a two-dimensional turbulent model
including the secondary flow calculation has been es-
tablished to obtain an analytical correlation of the lat-
eral pressure loss coefficient between subchannels
based on detailed knowledge of the wvelocity field in
such domain. In the analysis, instead of the lumped
parameter concept, the field equations are solved di-
rectly. In order to obtain the amount of cross-flow
between square-arrayed subchannels, mass and mo-
mentuni conservation equations were written under
the steady state and fully-developed conditions.

The low-Reynolds number k-¢ model suggested by
Lam-Bremhorst[17] is used to describe the complex
turbulent phenomena near the wall. Thus, instead of
the wall function, the no-slip wall boundary condition
is used. This means that with this approach the vel-
ocity and the temperature profiles, even in the vicin-
ity of the wall, can be calculated. The anisotropic Reyn-
olds stress model of Launder-Ying is adopted for
more accurate description on the secondary flow.
Although the Launder-Ying model was developed for
the fully turbulent region and the constants were
adjusted to the square duct geometry, Lee et. al.
[18] applied this model up to the wall successfully
for the closely-packed rod array (P/D =1.123). How-
ever, it was found that the larger pitch-to-diameter,
the more discrepancy between the predicted values
and the experimental data resulted. So, in this study,
the model constant was modified to take into con-
sideration the aspect ratio (pitch-to-diameter) through
a numerical optimization.

The continuity equation and transverse direction
momentum equations are transformed into vorticity
and stream functions to construct the convenient and
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efficient numerical scheme. The Galerkin weighted
residual finite element method is used to solve the
governing equations effectively.

3.1. Governing Equations

The governing equations for the analysis of the
flow field in subchannels are established as follows
and, for simplicity, the Cartesian tensor notations are
used ; the subscripts i and j denote lateral coordin-
ates 1 and 2, respectively.

e Stream function

_ 0¥ = _9oF
Uu = 3%y U, %1 (1)
o Axial vorticity
_ 8y, ey,
Q= d%x, 9%, 2)

¢ Stream function equation

3y

= - 3)
axjax; 2 (

¢ Axial momentum equation

al; 0 alhy _ _ 18P
Uj 6x,- B 8x,-(<u+y7) 8x,-) - o 0x3
(4)
e Axial vorticity equation
] — . 02 _
%(QU;+ wu; Vaxj)— 0 )

o Turbulent kinetic energy equation (k equation)

_ak _ _0_ ok\ _ _
o~ g (tvrlan g = P e
(6)
— U aU:
Pk = - Il]?(;;—asz - Ilzllga_x;' »
kz
UT = Cyf;‘—z.— ’
£, = (1 - exp(=B, R (1 + 2%
w €xp “ R,
k]/le . kz
R=—=— R=7%g
where
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ox=10, B,=0.0165, C,=0.09, D,=20.5
o Turbulent kinetic energy dissipation rate equation
(¢ equation)

de _ _d de.
Urgey ~ a0+ vrlod 3
2
Celfel%Pk - Csta'Z'&}T ’ (7)
A
fa= 1+ (5, fo = 1- exp(—R)
H

where
6.=13, A1=005,C,=144, C,=192
e Pressure equation

& T + £s.) =
Fes | Ul + Twag + 5 8 ) =0 ()
¢ Anisotropic algebraic Reynolds stresses
aU.
— uuy = vr—ax? )
¢

[ 3
~um; = Ck8; — C k—z—‘m 3% 10

gt ox; ax;
where
C=—-0.00237(P/D—1)+0.000871, C3=0562

As mentioned above, the model constant C was
adjusted satisfy both equilateral triangular and square-
arrayed rod bundle geometries.

3.2. Boundary Conditions

The boundaries of the subject domain consist of
rod surface, symmetry boundary, and inflow and out-
flow boundaries, which permit flow-in and flow-out
causing the cross-flow between adjacent two subchan-
nels. Thus, three types of boundary conditions are
needed ; no-slip condition on the rod surface, sym-
metry condition on the symmetry boundary, and inlet
and outlet conditions on the inflow and outflow
boundaries.

On the rod surface, all components of the velocit-
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ies and turbulent kinetic energy are zero from the
no-slip condition and the stream functions can also
be set to zero. However, for the axial vorticity and dis-
sipation rate of turbulent kinetic energy, the bound-
ary conditions are neither exact nor simple. Further-
more, some of them, even used commonly, are likely
to cause the divergence of solutions especially at
high Reynolds number{19]. Thus, in this study, new
types of wall conditions of third order are derived,
with the Taylor expansion and the near wall behavior
of turbulence and under the assumption that the
length of the first and the second grid are equal, as
follows ;

¢w+l

Qe = VBT, Ty e D)

3 kw+1

Favi Fany 12

£y =

On the symmetry boundaries, the normal gradients
of axial velocity, turbulent kinetic energy and its dissi-
pation rate and vorticity are set to zero. On the other
hand, the stream function is equal to zero on the.
stream line containing the rod surface and on the
symmetry line it can be calculated from the inlet and
outlet flowrates.

If it is assumed that the normal fluxes of all physi-
cal quantities of the inflow and outflow are zero, the
nomnal gradients of these quantities are zerc along
the inlet and outlet boundaries. And, the stream fun-
ction and axial vorticity can be calculated from the

velocity distribution along these boundaries.
3.3. Numerical Scheme

The governing equations were formulated numeri-
cally by the Galerkin weighted residual finite element
method using bilinear cardinal bases satisfying the C°
continuity{14]. The two dimensional calculation do-
main was discretized into square finite elements.

In general, numerical analyses on turbulent flows
suffer from severe non-linearity and numerical insta-
bility. Thus, the initial guesses of dependent variables,
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mesh spacing and iteration scheme must be deter-
mined carefully. Initial profiles of the axial velocity,
turbulent kinetic energy and its dissipation rate were
obtained by universal profiles. The universal velocity
profile was also used to determine the mesh spacing.
To filter the oscillatory behavior of numerical solu-
tions, the guessed values for the next iteration were
obtained by using the geometric mean of the value
of the previous iteration step and the calculated val-
ue with an under-relaxation factor.

The convergence criteria used was that the maxi-
mum individual relative error should be below 1073
except for the stream function and axial vorticity for
which the criteria recommended by Gosman et. al.
[20] was applied.

All of the governing equations were not solved sim-
ultaneously, but segregatedly. The equations were div-
ided into two groups, the first consisted of the axial
momentum, turbulent kinetic energy and its dissi-
pation rate equation and the second included the
axial vorticity and stream function equations. Each
group formed an independent iteration set, in which
each equation was solved by an inner iteration pro-
cedure. The pressure distribution was found after the
solutions of the five dependent variables met the con
vergence criteria.

4. Results and Discussion

The calculations of the flow field in domains such
as shown in Figs.'1 and 2 hawe been implemented
using the turbulent model described above. In order
to validate this model, the predicted distributions of
axial velocities and stream functions under various
geometrical and hydraulical conditions were compar-
ed with well-known experimental data.

Figs. 3 and 5 show the comparison of the comput-
ed axial velocity contours with experimental results
on a trangular amay{21] of P/D=1.123 and
Re=27,000 and on a square arraf{22] of P/D=1.
25 and Re=100,000, respectively. The first result
shows a good agreement but the second deviates
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Fig. 1. Unit Subchannel of Square rod Bundle Array
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Fig. 3. Axial Velocity Contour With Secondary Flow in a
Triangular Subchanne! (P/D=1.123)

from the experimental data slightly. However, the dif-
ference is within 5% on the basis of maximum vel-
ocity. Predictions without secondary flow are shown
in Fig. 4. It shows that the secondary flow makes
uniform flow field with convective transport from the
core to the gap region. Fig. 6 shows that the wall
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Fig. 2. Unit Subchannel of Triangluar rod Bundle Array
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Fig. 4. Axial Velocity Contour Without Secondary Flow
in a Triangular Subchannel (P/D=1.123)

shear stress distribution in triangular array.
Carajilescov-Todreas[21] failed to measure the sec-
ondary flow velocities in the equilateral triangular ar-
rays but predicted the result of the existence of two
swirls in a unit cell. They insisted that the weaker
swirl be almost vanished for P/D =1.217. However,
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Fig. 7. Streamline in a Triangular Subchannel

(P/D=1.30)
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Fig. 6. Wall Shear Distribution in a Triangular Subchan-
nel (P/D=1.20)

Fig. 8. Calculation Domain for Cross-low in Square

Rod Bundle Array
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Trupp-Aly{11] found a single swirl of secondary flow
from the numerical analysis. Vonka[23] measured
the secondary flow velocities successfully and obser-
ved only a single swirl. In this analysis, a single swirl

499

was obtained not only for the equilateral triangular
array but also for the square array. Fig. 7 shows the
predicted and experimentally measured stream lines
under the condition of P/D =1.30 and Re =100,000

(8 U, =0

(b) Uin= 0.0005 U3.ave

(e} Uin= 0.01 U:mve

3,ave

() U,=0.02U,

Fig. 9. Cross-flow Strean:line Variations (P/D=1.30, Re=100,000)



500

for the equilateral triangular array.

For the analysis of the cross-flow, the next step is
to calculate the flow field composed of 4 unit cells
such as Fig. 8 with the werified model. The upper
and lower boundaries are assumed to be symmetri-
cal. The left and right are flow-inlet and outlet, re-
spectively ; equal amounts of mass flow in and out
cause the cross-flow, without violation of the fully-de-
veloped condition.

Predictions of the streamlines under the various
inlet flowrate conditions are shown in Fig. 9. This fig-
ure shows that the swirl of the secondary flow almost
vanishes when the ratio of the inlet flow velocity to
the axial velocity is greater than 1%.

To construct the correlation, many calculations
were performed, vanying P/D=1.15—1.30, Re=
50,000 —100,000 and the ratio of cross-flow velocity
to axial velocity up to 5.4%. Once the distributions of
flow variables such as velocity and pressure in the
flow field are determined through the numerical anal-
ysis, the lateral loss coefficient K can be obtained,

_ 4P
K=T ., (13)
9 PUcros
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Fig. 10. Distribution of the Calculated Lateral Loss Co-
efficient
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where the difference between channel-averaged pres-
sures can be calculated from the pressure distribution
in each channel. Fig. 10 shows the distribution of lat-
eral loss coefficients, which are decreasing exponen-
tially as the ratio of the cross-flow velocity to the axial
velocity of donor subchannel, Ucoss/Udn, increases. It
also implies that the ratio of Uwws/Uden is a cruicial
parameter on the lateral loss coefficient. On the
other hand, for P/D smaller than about 1.23, K dec-
reases with P/D. However, for larger P/D, K increas-
es. '

A comrelation for K was constructed in terms of
Ucross/Uaon, Reynolds number based on the axial vel-
ocity of recipient subchannel, Rex, and P/D accord-
ing to the proposition of Tapucu[3] ;

K = 32.8 KP/DKrec exp(—156 cl]]cms) (14)
' don
where
KP/D -

32.4(P/D — 1)~ 15.1(P/D— 1) + 2.68 ,

1.79 — l.OSRTT)?i .

Fig. 11 shows the correlation diagram.
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Fig. 11. Correlation Diagram of Lateral Loss Coefficient
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5. Conclusions

The nuclear subchannel analysis codes such as
COBRA and TORC for reactor design and safety
analysis use the lateral pressure loss coefficient to
predict the cross-flow between subchannels. In this
study, a computer code for two-dimensional fully-de-
veloped turbulent flow fields was developed to pre-
dict the analytical lateral loss coefficient correlation.
The model in the code includes the secondary flow,
anisotropic algebraic Reynolds stress of Lander-Ying
and low-Reynolds number k-¢ model. Launder-Ying’s
model constant was also modified through the nu-
merical optimization to be suitable to the rod bundle
geometry.

For the code verification, the numerical results for
a unit cell were compared with experimental data
and the predictions were shown to be in satisfactory
agreements. A large number of calculations were per-
formed under the various geometrical and hydraul-
ical conditions to find the lateral loss coefficients; a
numerical correlation was also determined. This cor-
relation is on the form of a function of the ratio of
the lateral flow velocity to the donor subchannel axial
velocity, recipient channel Reynolds number, and pit-
ch-to-diameter. In addition, it is expected that the
mode! developed in this study, which can predict an
accurate velocity field in subchannels, may be applied
in the future to calculate the temperature distribution
and other subchannel parameters analytically.

Table of Nomenclature

kB turblent kinetic energy{ =uwuy/2)
K lateral pressure loss coefficient
P pressure

P/D pitch-to-diameter

Re Reynolds number

U mean velocity of i direction

w  velocity fluctuation of i direction
uw;  Reynolds stress

x  coordinate of i direction

normal distance from the wall

Kronecker delta

dissipation rate of turbulent kinetic energy
molecular kinematic viscosity

eddy viscosity

density

stream function

mean axial vorticity

axial vorticity fluctuation

i correlation between axial vorticity fluctuation

and velocity fluctuation

|Sb-€'°fr<"”9n3

g
c

Subscript

ave average value

i,j Cartesian index (3 for axial direction)
cross cross-flow

don donor channel

rec recipient channel

w  wall
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