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Abstract

This paper presents a new dynamic HRA (Human Reliability Analysis)- method and its application
for quantifying the human error probabilities in implementing an accident management action. For
comparisons of current HRA methods with the new method, the characteristics of THERP, HCR,
and SLIM-MAUD, which are most frequently used methods in PSAs, are discussed. The action as-
sociated with the implementation of the cavity flooding during a station blackout sequence is con-
sidered for its application. This method is based on the concepts of the quantified correlation be-
tween the performance requirement and performance achievement. The MAAP 3.0B code and Lat-
in Hypercube sampling technique are used to determine the uncertainty of the performance achiev-
ement parameter. Meanwhile, the value of the performance requirement parameter is obtained
from interviews. Based on these stochastic distributions obtained, human error probabilities are cal-
culated with respect to the various means and variances of the timings. It is shown that this method
is very flexible in that it can be applied to any kind of the operator actions, including the actions as-
sociated with the implementation of accident management strategies.
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1. Introduction

In typical PSAs (probabilistic safety assessments),
the human errors are considered in the development
of fault trees as well as event trees for some special

cases. They have been identified as important contrib-

utors to plant risk in many PSAs. Nevertheless, there
is no one HRA (human reliability analysis} method
universally accepted for quantifying the human error
probability (HEP). The HRA methods are thus still
being refined and developed.

This paper presents a new dynamic method for
assessing the human error probabilities and its appli-
cation for quantifying the human error probability.
The action associated with the implementation of the
cavity flooding during a station blackout sequence is
used as an example.

This proposed method is based on the concepts of
the quantified correlation between the performance
requirement and performance achievement. The
MAAP 3. 0B code for the sensitivity and screening
analysis and Latin Hypercube sampling technique are
used to determine the uncertainty of the perform-
ance achievement parameter. The value of the per-
formance requirement parameter can be obtained
from plant simulator training records and/or inter-
views.

Most frequently used methods among about 18
published methods inwlve THERP, HCR, and
SLIM-MAUD [1-3]. These three methods are dis-
cussed for comparisons with the new dynamic HRA
method in the following Section. And the new met-
'hod is described in detail, and finally applied to the
practical problem.

2. Human Reliability Analysis Methods
2.1. THERP

THERP (Technique for Human Error Rate Predic-
tion), generally called “HRA handbook”, is the most

commonly used method in PSAs [1]. This method
treats the operator as one of the system components,
and thus human reliability is assessed in the same
manner as that of components. The concept of this
method is that the human operator’s activities are
decomposed down to the levels where basic HEP
can be found in the 27 tables of the handbook.

Operator action trees, which treat only both correct
and incorrect cases, are used to accomplish the de-
composition processes, and each branch represents
one of the binary choices. The assigning probability
to each branch is obtained from the corresponding
human error probabilities in the handbook tables and
then modified by multiplying the appropriate values
associated with performance shaping factors (PSFs)
to reflect the real situation where the human eror
occurs.

The PSFs are classified into three categories in this
method. They are: a) external PSFs which are related
to the environmental working conditions such as nois-
e/humidity and control room design, b) internal
PSFs such as skills and ability of the operators, train-
ing, and attitude, and c) physical (e.g., fatigue and
hunger) and psychological factors associated with
stress (e.g., fear and suddenness).

In this method, each operator is assumed to have
the same failure probability in executing a specified
task, and only dependencies between two consecu-
tive tasks are considered. There are five levels of dep
endencies which are ZD (zero dependency), LD (low
dependency), MD (medium dependency), HD (high
dependency), and CD (completely dependency). The
mathematical formula of each dependency level are
used to calculate the failure probability of the crew
(1l

This method has the sufficient database for mod-
eling executional errors. But it has some drawbacks
in addressing the causes and intention formation
processes of the errors, and in treating dependencies
among PSFs appropriately.
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22, HCR

The HCR (human cognitive reliability) model is an
empirical model based on data collected from sim-
ulators. It is used to quantify the non-response prob-
ability of the crew using some parameters [2]. The
non-response denotes “non-successful” in perform-
ing a specified task, where no action is taken within
the time available. Three key parameters required to
evaluate the non-response probability are determined
for the cognitive types of skill, rule, knowledge based
behavior [4], median response time of the crew, and
PSFs (eg., skill, stress level, and quality of control
room design), respectively. In order to identify the
types of cognitive behavior, an event tree, which con-
sists of asking whether it is a routine operating and
whether it is covered by any written procedure, etc. ,
is used. The median non-response time to perform
the required task is determined from simulator data,
expert judgments, and interviews. This method prov-
ides criteria for judging the levels of three PSFs and
their corresponding K coefficient, where Ki repres-
ents the level of the operator’s skill, Kz the stress lev-
el, and Ks the quality of the control room design.
Based on the median response time and coefficients
identified, the adjusted median response time is de-
termined. This time is then used to match the corre-
sponding curve which is characterized by three par-
ameter Weibull distributions.

A major assumption of this method is that cogni-
tive behavior can be exactly classified into one of
three types. Recent benchmark study shows that crew
responses do not fall exactly into any one of the
three behavior types [5]. Another assumption is that
PSFs can only affect the non-response time, i.e., they
are assumed to be independent to each other. This
may not be irue, because, under high level of stress,
an operator may forget the rules previously stored in
his mind and therefore turn from the rule-based beh-
avior into knowledge based one.
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2.3. SLIM

The SLIM (success likelihood index methodology)
is a structured, expert judgment based technique
which can be used to assess the human error proba-
bilities [3]. It takes 5 steps.

1. Selection of those tasks with the same PSFs.

2. Assignment of relative importance to each PSF.

3. Assignment of rating scale from 1 to 9 to each
PSF in every task.

4. Manipulation of the rating and relative weights to
obtain the success likelihood index (SLI} for each
task.

5. Conversion of SLI into human error probabilities.
Typical PSFs used in this method are design qual-

ity, meaningfulness of procedures, stress, time press-

ure, seriousness of consequence, task complexity,
motivation, and quality of teamwork: After a group of
tasks with the same PSFs are chosen, the experts are
asked to assign the relative importance to each PSF,
where it is later normalized. They then assign the rat-
ing scale to each PSF in every task. A scale of range
from 1 to 9 which represents the level of the PSF is
given to each task. After these are done, rescaling is
executed by measuring the difference between the
assigned rating and the ideal rating of each PSF. The

SLI for each task is just the sum of the products of

rescaled rating and the relative importance of each

PSF. HEP for each task is then calculated by the fol-

lowing formula:log (HEP)=a* SLI+b, where the

coefficients, a and b, can be obtained from the
anchor points, which are known probabilities of two
tasks. These known probabilities can be provided by
simulators or other available data sources. When the
elicitation of the expert judgment is carried out using

a computer program, it is called SLIM-MAUD (mul-

tiattribute utility decomposition).

This method also has some drawbacks. The dep-
endencies among PSFs, a sequence of tasks, and
control room operators are not treated appropriately.
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There are other issues such as variability in experts
and inappropriate treatment of time available for a
task. Another imperfection of this method is the
huge sensitivity in withdrawing or adding a task from
the selected group of tasks.

2.4. Dynamic HRA Methods

The assessment of human reliability depends on
the determination of both the required performance
distribution and the achieved performance distri-
bution. These two concepts of requirement and
achievernent are presented in Ref. [6, 7). The quantif-
ied correlation between requirement and achieve-
ment represents a comparison between two compet-
ing variables. The method for the competition of two
processes in time (growth time and suppression time
by plant personnel) has also been used in fire risk
analysis [8]. In the same manner, the success of the
operators is governed by the time available for action
(achievement) and the time required by the operator-
s to diagnose the situation and act accordingly (re-
quirement). Since both times are uncertain variables,
the human error probability, HEP, is simply the frac-
tion of times that the required time, T: {operational
time) exceeds the available time, Tz (phenomenologi-
cal time).

Then,

HEP = P(Ty>Tg) =Y, Prob[(T{>1)and
t

(T2 = 1))=Y, PITy>t)* (T2 = t)]

Io (1-F 140 7,0 dt (1)

, where Fn(t) is the cumulative distribution of the op-
erational time, Ti and fr(t) is the probability density
function (pdf) of the time, T2 (phenomenological
time).
This method takes 3 steps.
1. Assessment of a stochastic distribution for Ti.
2. Assessment of a stochastic distribution for Ta.
3. Evaluation of these distributions as shown in Eq. (1),
The following Section describes an application of

this method for quantifying the human error probabil-
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ities for an accident management action.
3. Application of the Dynamic HRA Method

The present method is applied to an operator ac-
tion of flooding the cavity in a station blackout se-
quence before the core slumps. The time to core
slumping is used because if the water reaches the ves-
sel lower head after a significant amount of debris
has relocated there, a film boiling situation will exist
and the heat transfer will not be sufficient to cool the
vessel enough to prevent melting and failure. Since
the current EOPs do not contain specific instructions
for initiating the flooding of the reactor cavity in the
station blackout sequence, it is assumed that the cur-
rent EOPs would be modified so that the procedures
necessary to allow this strateqy would be provided,
and that the actions would be initiated at the time of
core uncovery.

Based on the facts that the station would be blac-
ked out, but the core exit thermocouples that might
help in detecting core uncovery would be available,
the failure of the plant operators to correctly initiate
the strategy would be governed by two uncertain var-
iables. The diagnosis and decision time (Td) is the
time available for the operators to initiate flooding of
the reactor cavity. The auxiliary operators outside the
control room are assumed to be available to operate
the fire pump system.

It might take the operators time (T) to detect core
uncovery, to dispatch an auxiliary operator to the
emergency fire pump, and to start the fire pumps
[9]. The major uncertainty is associated with the criti-
cal time determined by the phenomena occurring
during the melt progression. Since the water must
reach the top of the vessel lower head before the
core slumps, the critical time, T, is Ta-Ta (the time
from core uncovery (Ta) to core slumping (Te)).
Another relevant parameter is the time required to
fill the reactor cavity up to the required level, Ti. This
parameter is known and is a function of the reactor
cavity volume [624 m® (164,830 gal)] of the refer-
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ence plant and the fire pump capacity (2140 gpm),
and is calculated to be 77 min [10].

Using Ta as the reference time, the human error
probability associated with the probability that t
(To+Ta+T) exceeds Tc (Ts-Ta) can be derived
from Eq. (1) as follows:

HEP = P, (t> Tgs - Tey)

o

= [ 11-Fofroa @)
0

where
fr,(t) = probability density function (pdf) of the critical
time, Ts - Ta,

Fi{t) =cumulative distribution function of the time
required by the operators to complete the strategy.

By obtaining the two distributions, Fi(t) and fr(t) in
Eq. (2), a human error probability, which denote the
likelihood of failure in performing a particular task
within the time available, can be quantified. It should
be noted that the numerous potential human per-
formance shaping factors {PSFs) are incorporated in
the distribution, Fi(t).

The processes of determining the distributions of
the uncertain variables are presented in the following
Section.

3.1. Distribution of the Time to Core Slumping

3.1.1. Variable Screening for MAAP Parameters

Sensitivity analysis investigates the effect of chan-
ges in input variables on output predictions. MAAP
sensitivity analysis has been performed by changing
model parameters associated with the event timing of

core slumping for the reference plant [10]. The core

support plate failure time in the MAAP output carres-

ponds to the core slumping time. The MAAP par-
ameters that may highly affect the time to core slum-
ping are selected according to the suggestion from
the report [11] and they are listed in Table 1. Table

1 also lists the changes in the variables and the chan-

ges in the time to core slumping determined by the
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MAAP 3.0B code [12]. For example, the variation
0-2.0) in the initial FAOUT shows by how much it
may vary due to insufficient knowledge.

In order to eliminate unimportant variables, the val
ues of the variables given in Table 1 are used as the
base values. Each variable is changed by an estim-
ated amount and the MAAP code is run to deter-
mine the change in the time to core slumping due to
the change in that variable. The change in the value
of a variable may result from plant-to-plant variations,
statistical uncertainty, or state-of-knowledge uncer-
tainty. Although the variation of each variable is not
the maximum possible variation, it is at least a large
percentage of the maximum possible variation. The
values in the last column (At) of Table 1 are used as
criteria to eliminate unimportant variables. Only 8 var:
iables caused changes that were larger than three
minutes. They are listed in Table 2.

3.1.2. Latin Hypercube Sampling

There are several methods developed for the prop
agation of uncertainty; the method employed here is
Latin Hypercube technique [13]. A sample size of
100 was used to propagate the uncertainty for the

key variables through the MAAP 3.0B code. How
each variable is sampled is determined by what kind
of uncertainty is associated with it. Deterministic var-
iables are sampled zero-one. This means that every
sample observation contains either the value of 0.0
or the discrete variables (X1, X8). For variables with
stochastic characteristics {X2-X7), the continuous dis-
tributions are sampled. The MAAP code is run for
every member of Latin Hypercube samples and res-
ults in a point value for the time to core slumping for
each member. The distribution of the time to core
slumping (fr(t) in Eq. (2)) is found through the
MAAP 30B calculation using a set of input data
produced by Latin Hypercube sampling. The cumu-
lative distribution of the time to core slumping is
shown in Figure 1.
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Table 1. Sensitivity Parameters And Their Values

Parameters Definition Typical Base Case | At
Ranges Value Time {s)
FCRBLK  Flag to select use of channel blockage model 01 0 147
TEU Eutectic melting temperature 2100-2800 2500 (K) 873
LHEU Latent heat of fusion of eutectic mixture 1.0E54.E5 25E5[J/Kgl 1432
FAOX Zircaloy oxidation area multiplier 1.0-20 1.0 952
TCLMAX  Clad rupture temperature 12002100 4502 [K] 105
VFSEP  Void fraction at which the primary system natural cir-  0.25-0.6 0.35 1268
culation stops
FFRICR  Friction factor for axial flow in core 0.05-0.2 01 124
FFRICX  Friction factor for cross flow in core 25-45 25 100
NSAMP  Coeff. to smooth numerical oscillation in core natu- 1-20 10 0
ral circulation
HTSTAG Heat transfer coefficient between NC water and SG  100-5000 850 253
tube [J/sec/M2/K]
FAOUT  Fraction of SG tube carrying ‘out’ flow 0105 05 257
FWHL  Flow coefficient for hot leg counter-current flow 0.09-0.115 0.115 12
JEVENT  Event code to clear RCP suction volume Oorl 0 3109

* The maximum difference between the result of base calculation {1033 sec) and that of the bound calculation

for the core slumping timing.

Table 2. Eight variables Selected Via Screening Analysis

Variables Base Case Value Typical Range Distribution Type
X1:FCRBLK 1 0/1 Discrete
X2.TEU 2500 2100.-2800. [K] Uniform
X3:LHEU 25E5 1.E54.E5 [J/Kg] Uniform
X4 .FAOX 10 1020 Uniform
X5: VFSEP 035 02506 Uniform
X6 :HTSTAG 850.0 100.-5000. [J/sec/m?/K] Uniform
X7 :FAOUT 05 0.1-05 Uniform
X8 :IEVENT 0 0/1 Discrete

3.2. Distribution of the Required Time by the
Operators

Given the sampled timing data for the action time,
maximum likelihood or moment estimators will result
in the values of the parameters of the distributions.
One type of distribution that has been extensively

used for the operational {action time) is the two-par-
ameter Weibull distribution. Using moment estimator-
s, the values of A and B can be obtained.

It is required to find fr,(t). Since the current EOPs
of the reference plant are not developed for initiating
the cavity flooding, the timing for historical events is
not applicable. Instead, the simulator records col-
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Fig. 1. Core Slumping Timing Produced from MAAP
3.0B Calculations with 100 LH Sample Sets of
Inputs

lected for this analysis can be used. Nevertheless, no
actual data were cumrently available for our use, so
we were forced to assume a reasonable distribution
for fr,(t). There is a reason to believe that initiation of
flooding the cavity might be delayed for several min-
utes past the time when the core uncovers. Contrib-
utors to this delay including stress, fear of adverse ef-
fects, and extreme environment might exist. After all,
the performance shaping factors (PSFs) should be
reflected to determining the distribution fr, (t).

By interviewing the operators in the reference plan-

t, it is assumed that the time required to fill the cavity
is 15+ 10 min. Then the values of the parameters of
the Weibull distribution related to the mean and the

variance can be solved numerically by one of the par-

ameter estimation methods like the moment method,
the curve fitting, the bayesian estimator, or the maxi-
mum likelihood estimator. Since all actions will have
their own curve, a distribution will be determined.

4. Results

To solve the Eq. (2), the distributions of two ran-
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dom variables, the critical time (Tc) and the action
time (T»), should be obtained. A two-parameter Weib-
ull distribution, represented as Weibull (4, B), is con-
sidered here; however, the present method will work
for other distributions as well. The density functions
associated with T and Ta will be denoted by fr(t)
and f Talt), respectively, and its functional form is as
follow:

fo) = Bty exp{-(-;—'-)B), A>0and B >0 fort>0 (3)

A A
k=AT (-1;—’3) @
248, 12 By (5)

=22 m(<_Ly.r2
02 =22 [I( 5 )-T 5
, where T, A and B are a gamma function, the scale
factor and the shape factor, respectively.

Eq. (4) and (5) are used to estimate A and B. The

mean, m, is set to be the sample mean of 964 min
and the variance, ¢? is the sample variance of 20.2
min, based on the results (Figure 1). Then, Eq. (4)
and (5) are solved numerically to find A=104.4 and
B=55. Using the distributions obtained by the ap-
proach given in the previous Section, the Eq. (2) bec
omes as follows:
Hep=| et P UE P expr P (6
, where 1’ and f’ are the scale factor and the shape
factor, respectively, associated with the time (4, ¢’)
taken by the operators in initiating water injection
into the cavity via the emergency fire system.

By the Eq. (6), the HEP is calculated to be a value
of 0.39. If the distribution of the critical time is so
close to that of the time required by the operators to
implement the cavity flooding strategy, the calculated
HEP can significantly increase. The calculation results
for various cases with different means and variances
for the required time by the operators are shown in
Table 3.a. Table 3.b shows the results for the case
that the parameter T, the time required to fill the re-
actor cavity up to the required level, is almost zero.
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Table 3. Dynamic Human Exror Rates for the Time (T?)
Required to Fill the Reactor Cavity up to the
Required Level with Respect to the Various

Mean and Variance.
a)
I 5 10 15
o
10 0312 0324 0325
15 0.396 0.3921 0.378
20 0479 0450 0424
30 0541 0517 0490
b)
a 5 10 15 20
o

15 6.13E-05 532E04' 4.15E03 1.09E-02
30 1.35E-03 2.79E03 7.33E-03 1.86E-02
60 492E02 597E02 7.79E-02 1.01E-01

! The human error rate based on the values obtained by

interviewing the operators in the reference plant.

This case may happen when the action of flooding
the cavity initiates much earlier before core uncovery.

5. Conclusions

In this paper, a new dynamic HRA method has
been presented for quantifying the human error prob-
abilities and subsequently applied to a practical prob-
lem. The present method is very flexible in that it can
be applied to any kind of the operator actions, in-
cluding the actions associated with the implemen-
tation of accident management strategies.

Though the numerical calculations given here are
only for illustrative purposes, assuming that steps to
implement accident management actions could be
taken and the hardware available, the information
gained from using the method would be beneficial.
The method may contribute to assessing the feasi-
bility of the candidate strategies in advance and then

developing accident management procedures.

The common features on all the existing HRA met-

hods, including the dynamic HRA method, are that
they only deal with the observable human errors, and
that the dependencies of performance shaping factor-
s (PSFs) are not treated appropriately. For the results
of HRA to be realistic, first, PSFs need to be con-
sidered dependent each other, while they are assum-
ed to be independent in the existing methods. Sec-
ond, the causes and intention formation processes of
the observable human errors need to be modeled
and incorporated into human error assessments.

According to such recognition, recent researches
have been focused on modeling how human inten-
tions are formed and how they are executed. These
developing cognitive models include CES (cognitive
environmental simulation) model, GEMS (generic er-
ror modeling system) model, INTEROPS (integrated
reactor operator/system) model, and COSIMO (Cog-
nitive Simulation Model) [14 —17]. To develop better
cognitive models, psychology and cognitive science
will be necessary tools in future.

References

1. SWAIN, AD. and GUTTMANN, HE., “Hand-
book of Human Reliability Analysis with Empha-
sis on Nuclear Power Plant Applications,” NUR-
EG/CR-1278, 1980.

2. HANNAMAN, AJ, et. al, “Human Cognitive
Reliability Model for PRA Analysis,” NUS-4531
(EPRI), 1984

3. EMBREY, DE. et al, “SLIMMAUD:An Ap-
proach to Assessing a computer-based Tech-
nique for Human Error Probabilities Using Struc-
tured Expert Judgment,” NUREG/CR-3518, US
NRC, Washington, DC, 1984.

4. Rasmussen, J., Information Processing and Hu-
man Machine Interaction : An Approach to Cog-
nitive Engineering, North-Holland, N.Y., 1986.

5. DINSMOTR, Stephen, Operator Time Reliability
Curves: A Simulator Data Based Model, STUD-
SVIK/NR-84/435, 1984.



300

6. APOSTOLAKIS, G., BIER, V. M, and MOSLEH,
A, A Critique of Recent Models for Human Er-
ror Rate Assessment, Joumal. Reliability Engin-
eering and System Sdfety, Vol. 22;pp.
201—-217, 1988.

7. GREEN, AE. and BOURNE, AJ., Reliability Tec-
hnology-Wiely-Interscience, London, 1972.

8. APOSTOLAKIS, G.E, KAZARIANS, M, and
BLEY, D.C., Methodology for Assessing the Risk
from cable Fires, Journal. Nuclear Sdfety, Vol. 23
;pp. 391 —407, 1982.

9. JAE, M and APOSTOLAKIS, G.E., The Use of
Influence Diagrams for Evaluating Severe Acci-
dent Management Strategies, Journal. Nuclear
Technology, Vol. 99;pp. 142—157, 1992.

10. Korea Electric Power Corporation, Final Sdfety
Analysis Report for Yonggwang Units 3&4,
1993.

11. GABOR, KENTON & ASSOCIATES, INC., Rec-
ommended Sensitivity Analysis for an IPE using
MAAP 3.0B, lllinois, USA, 1991.

12. EPRI, MAAP 3.0B Users Manual-Modular Acci-
dent Analysis Program for LWR Power Plants,
NP-7071-CCML, 1990.

dJ. Korean Nuclear Society, Vol. 27, No. 3, June 1995

13. IMAN, RL. and SHORTENCARIER, MJ, A
FORTRAN 77 Program and Users Guide for the
Generation of Latin Hypercube and Random
Samples for Use with Computer Models, SNL,
NUREG/CR-3624, USA, 1984.

14. WOODS, DD., ROTH, EM, and POPLE, H,
Modeling Human Intention Formation for Hu-
man Reliability Assessment, Journal. Reliability
Engineering and System Sdfety, Vol. 22;pp.
169—200, 1988.

15. REASON, J., Generic Error Modeling System
(GEMS): A Cognitive Framework for Locating
Common Human Ermror Forms in New Tech-
nology and Human Error, John Wiely & Sons,
Ihc., NY, 1987.

16. WOODS, D.D.,, ROTH, E, and POPLE, H., Cog-
nitive Environmental Simulation : System for Hu-
man Performance Assessment, NUREG/CR-486
2, USNRC, 1987.

17. BERSINI, U., CACCIABUU, P.C., and MANCIN-
I, G, A Model of Operator Behavior for
Man-Machine System Simulation, Journal. Aut-
omatica, Vol. 26 (6) ; pp. 1025—1034, 1990.



