dJournal of the Korean Nuclear Society
Yofume 28, Number 6, pp. 594~601, December 1996

& Technical Note>»

Verification of Safety Critical Software

Ki Chang Son, Chong Son Chun, Byeong Joo Lee, Soon Sung Lee,
and Byung Chai Lee
Korea Atomic Energy Research Institute
150 Dukjin-dong, Yusung-gu, Taejon 305-353, Korea

{Received December 18, 1995)

Abstract

To assure quality of safety ctitical software, software should be developed in accordance with sof-

tware development procedures and rigorous software verification and validation should be perfor-

med. Software verification is the formal act of reviewing, testing or checking, and documenting whet-

her software components comply with the specified requirements for a particular stage of the devel-

opment phase[1]. New software verification methodology wes developed and was applied to the
Shutdown System No. 1 and 2(SDS1, 2) for Wolsong 2, 3 and 4 nuclear power plants by Korea
Atomic Energy Research Institute(KAERI) and Atomic Energy of Canada Limited(AECL) in order
to satisfy new regulation requirements of Atomic Energy Control Board(AECB). Software verifi-
cation methodology applied to SDS1 for Wolsong 2, 3 and 4 project will be described in this pap-

er. Some errors were found by this methodology during the software development for SDS1 and
were corrected by software designer. Outputs from Wolsong 2, 3 and 4 project have demonstrated
that the use of this methodology results in a high quality, cost-effective product.

1. Introduction

The hardware platform for SDS1 for Wolsong 2, 3
and 4 was replaced with ABB{Asea Brown Boveri)
Procontrol-PS system due to hardware obsolescence
of SDS1 for Wolsong 1. The regulation requirements
were changed compared with those of the shutdown
system of Wolsong 1. The changed regulation requir-
ements consist of diversity design for shutdown sys-
tem and the use of high level language for math-
ematical specifications, designs and verifications
among the design phases.

For these reasons, new software development met-
hodology was developed by KAERI and AECL. The

594

main items are as follows ; _
© The use of P10 Function Block Diagram(FBD) lan-
guage to develop application software for SDS1
¢ Automatic generation of execution code from
Graphical Design Definition
 Simplification of software verification process
Software verification process is closely integrated
with software development process. Therefore, first of
all this paper introduces software development pro-
cnss applied to this software verification process brief-
y(See Figure 1).
In the first stage, the software designer creates Sof-
tware Requirements Specification(SRS) based on
preliminary Hardware Design Manual(HDM) and De-

Verification of Sdfety Critical Software - K.C. Son, et al

sign Input Document(DID). Functional requirements,
computer input/output information, input/output
transformation and performance requirements are
described in the SRS[9].

In the next stage, the software designer creates Scf-
tware Design Description(SDD) from SRS and
self-checks identified in the HDM. The functional reg
uirements in the SRS are duplicated in the SDD and
performance, reliébility, and accuracy targets are rep-
laced in the SDD by measures to achieve these req-
uirements|8&].

In the final stage, software designer translates the
graphical diagrams in the SDD into the high-level in
struction set of the platform. Since the graphical no-
tation is formal it is not necessary to go through an
additional coding step. The notation is translatable
directly to executable code. A data-flow editor and
translator named FUP which accompanies the Proc
ontrol-PS system is used to perform this translation.

The formal notation of the SRS combined with
the systematic design process(including verification}
ensures that a highly reliable system will be prod-
uced. The streamlining of process where require-
ments, once specified formally, are never re-specified
in another notation significantly simplifies the verifi-
cation process.

Software verification is performed according to the
four verification phases: Requirements Review, De-
sign Verification, Code Verification, and Testing.

These verification phases will be presented in the
next section and software verificaion methodology
applied to SDS1 for Wolsong 2,3 and 4 was devel-
oped according to “Standard for Software Engineer
ing of Safety Critical Software"[2] which is prepared
based on “IEC 8807[3] and “CAN/CSA-Q39%6. 1.
1.89"(1].

2. Requirements Review{4]
The objective of requirements review is to identify

any ambiguity and incompleteness in the require-

ments specified in the Design Input Document(DID)

595

LID } >
1 DIU Review
< >

I

i 5KS ‘
' Sof tware Requirements Review
¢ .

|

— >

(
1 SbD J Software Design Review
W - Software Design Verification
—

—>
|
X

. B
1

| Code Generation| Systematic Code Verification
t A B Software Hazards Analysis

[mmme
. _

’7Umt and Sub- J>

i Systen Testing
Validation Test

A >0 DoM<
Z O > D >

Fig. 1. Software Verification and Validation Activities
Applied to SDS1 Software Development Process

[5], to verify that the Software Requirements Specifi-
cation(SRS) meets the requirements of the DID that
pertain to the application software, to verify the justi-
fication for including any requirements and design
constraints in the SRS which were not derived from
the DID.

Prior to conducting the actual review of the SRS,
each reviewer should understand the DID in suf-
ficient detail to be able to describe the required beh-
avior of the software. By having a thorough under-
standing of the DID prior to reviewing the SRS, a re-
viewer will be less likely to be biased by the interpret-
ation presented in the SRS.

In addition, the reviewers must also be familiar
with the notation of the SRS and methods of analys-
ing the SRS.

In the actual review process, the lead reviewer per-
forms a comprehensive review of all topics while the
reviewers from the functional design team and hard-
ware design team review topics applicable to their
areas of expertise. These sets of topics are assigned
in SRS review procedure as shown on Figure 2.

The lead reviewer shall collate the findings from

each reviewer and then pass these findings onto the

596 J. Korean Nuclear Society, Vol. 28, No. 6, December 1996

S .Lead Reviewer
.birecting the process
Training other reviewer on SRS analysis

Schedul ing and directing review meeting

Review SRS for conformance with DID

- LAl Reviewers
Review DD for conformance with Requirement {System lLesigner,
Verifier, Hardware

Designer)
S e s ey .Verification Team
Collate comments and append designer’s
opinion

.All Reviewer and

MAIN REVIEW MEETING Software Designer

.Software Designer

.Revise SRS against result of meeting

.All Reviewer and
.Hold meeting for SRS revision Software Designer
_Ensure that all issues are addressed

in SRS

.Software
.Prepare Software Review Report{SRR}
. Issue SRR

Verification Team

Fig. 2. SRS Review Procedure

lead software designer. The designer shall prepare a
response for each issue identified. A copy of these
responses shall be attended to by all reviewers. Each
issue presented during the individual reviews shall be
addressed in the review meeting. All issues and their
resolution shall be documented in the Software Re-
view Report(SRR)[6].

Once the SRS has been revised to incorporate
each issue, the lead reviewer shall review the revised
SRS to ensure that each issue has been adequately
resolved.

The entire review procedure shall be followed for
initial issues and major revisions. Minor revisions may
be reviewed solely by the lead reviewer provided that
the extent of the review is identified in the SRR.

The SRS review process is divided into the follow-
ing tasks :

—diagram review,

—input/output interface review,

—requirements mapping,

—timing requirements review,

—design constraints and other requirements, and
—SRS format and index review.

3. Design Verification{7]

Design Verification consists of Software Design Re-
view and the Systematic Design Verification.

3.1. Software Design Review

The Software Design Review ensures that in cre-
ating the Software Design Description(SDD) from the
SRS, the SRS requirements other than the functional
requirements have been implemented appropriately.
Also, any self-checks added will be reviewed against
the preliminary Hardware Design Manual(HDM) to
ensure that they have been implemented properly.
Also, the justification for the addition of any func-
tionality not in the SRS or the HDM wiill be checked.

3.2. Systematic Design Verification

The Systematic Design Verification wverifies, using
mathematical verification techniques and rigorous jus-
tifications, that the functional requirements of the
SRS have been transferred correctly to the SDD wit-
hout the introduction of any errors during the im-
plementation of the other SRS requirements or
self-checks. The estimated computational emor for
each output variable is one of the principal check
items in the systematic design verification stage.

3.2.1. Systematic Design Verification Process

The systematic design verification process is as fol-

lows ;
A Map the pages of SDD logic to the correspond-
ing SRS logic based on signal names which are

Verification of Safety Critical Software --- K.C. Son, et al

common. Identify any missing or additional log-
ic.

B. Apply the required arithmetic conversions to
constants specified in the SRS and compare
with the values in the SDD.

C. Verify by inspection, or if necessary by algebraic
transformations and/or truth tables that the
SDD logic for each output on a page, together
with the defined [/O transformations, is math-
ematically equivalent to the corresponding SRS
logic.

D. For each output variable review the analysis of
computational accuracy presented in the SDD
and compare with the required accuracy stated
in the SRS.

E. Compare the accuracy of all timing functions in
the SDD logic with the functional timing requir-
ements stated in the SRS.

F. Review the analysis of performance times pres-
ented in the SDD, and compare with the requir
ed performance times stated in the SRS.

G. Review the analysis of initialization behaviour
presented in the SDD.

H. Review the analysis of potential race conditions
presented in the SDD.

4. Code Verification[10]

Code Verification consists of Systernatic Code Ver
ification and Software Hazards Analysis.

4.1. Systematic Code Verification
The Systematic Code Verification verifies, usiny

mathematical verification techniques and rigorous jus

tifications, that the executable code is comrectly ger

erated from the SDD. To perform it, an assembly

code listing generated from the executable code by «
disassembler is manually compared against the SDLZ.
Figure 3 shows the overview of code verification.

A disassembler is prepared and tested according to

Maintenance and Diagnostic
System(MAD) Comd

597

SbD Verify [Di bled Di bler Codes
Diagram |< > Code < Program <-—{70PRO3 (MAIN)
Text 1001. DIS 1001. CoD
1002.DIS e 1002. COD

] 7

ADDRSPEC

.~ _SDB /

Fig. 3. Overview of Code Verification

| Voltage
Supply

Waveform Generator
/Voltage Source

‘!7 for pin connections
PRO34 BKO3

BKO3 |
o1 AL | B/R2 | aE af
L ! , L]

Test Memory | SPO2b
- --~-1 Pocket Terminal
!j SK05a-

Fig. 4. Hardware Configuration for Unit and Subsystem

i — B 1

i i 1
Storage m Plotters
q Scope Printer |

see module descriptions

Com2

Testing

Reference 15 to prevent a fault of code verification
from a fault of a disassembler.

For safety critical applications with the Procontrol-
PS system of ABB, the need to make arguments for
the quality of the FUP translator of Procontrol-PS is
obviated by verifying the object code against the SDD
directly.

This is an one to one mapping between the primi-
tive blocks in the graphical language and executable
instructions generated.

For each primitive block with n inputs and m out-
puts there is exactly one instruction, n input addres-
ses, and m output addresses generated. With the aid
of a disassembler and a map file mapping physical
addresses onto logical variable names, the disassem-
bled code is visually compared with the data-flow
diagrams. A check-list is given to the verifier with

items to check on each drawing.

598

J. Korean Nuclear Society, Vol. 28, No. 6, December 1996

Log Power

(2232233333224

* $Header$

EXXXTXXTTLELR

1 * Log Power Cases
DEFINE TOLERANCE_X = 0.06 %

DEFINE HLim

81.76 %

DEFINE LLim = 4,0 x
DEFINE LCalibLim = 10.0 x
DEFINE Hys = 1.0 x
DEFINE M = 0.07 %
sEsEEsEEERRRE

TEST_TABLE

rxtessrrsETEN

* Conditions tested:

£

* Note:

O 0 3 OO0 0 W N e

N O R b e e P e
= O OV B 1O WU W= O

rational (and greater than LCalibLim)
irrational high

rational and <= LCalibLim
irrational and <= LCalibLim
irrational low

HCalib limit corresponds to irrational HLim, however the LCalib limit does not

correspond to the irrational LLim
<<LogPower>> = (50/71.76) (<LogPower> - 10.0) x

EXEXETERTLRXE

SET

END_TABLE

<LogPower> TEST <<KLoglrr.I>> <<ValidityErr_I>»> <<{LogPower>>
50x 1B 1B 27.871 %
HLim - M 1B 1B 49,951 x
HLim + M 0B 0B 50 x
100 x 0B 0B 50 x

199 x 0B 0B 50 x
HLim 0B 0B 50 x
HLim -~ Hys + M 0B 0B 49.352 x
HLim - Hys - M 1B 1B 49.254 x
LCalibLim + 1 x 1B 1B 0.697 x
LCalibLim - 1 % 1B 1B 0x
LLim + M 1B 1B 0x
LLim - M 0B 0B 0 x

0x 0B 0B 0x
-0.006 % 0B 0B 0 x

-50 x 0B 0B 0x
-199 % 0B OB 0%
LLim 0B 0B 0x
LLim + Hys - M 0B 0B 0x
LLim + Hys + M 1B 1B 0x
LCalibLim - 1 x 1B 1B 0 x
LCaliblLim + 1 x 1B 1B 0.697 x

Fig. 5. The Example of Test Case for Unit and Subsystem Testing

Verification of Safety Critical Software --- K.C. Son, et al

4.2. Software Hazards Analysis[11]

The Software Hazards Analysis determines failure
modes and sequences of inputs that can lead to ar

unsafe state in the computer system. Based on this

analysis, changes or additional self-checks may be rec-

ommended.

Preliminary Hazards Analysis(PHA} is the first step
described in the procedure and provides the analyst
and the reviewer with the rationale for the identi#
cation of the software related hazards. A functional
Failure Mode and Effects Analysis(FMEA) has been
utilized for the PHA to identify the consequences cf
failure for each shutdown system function. Following
the completion of the PHA the System Fault Tree
was created to identify hardware, software and hu
man failure modes in the integrated system. The
interface between the system and the software is de
fined in this fault tree. The detailed Software Fauit
Trees were created using the high level source code
as described in the SDD.

The Software Fault Trees are qualitative, and e
probability of any of the identified failure modes are
not quantified. During the process of constructing

and analyzing the software fault trees, possibie

improvements to the structure of the code were iden-

tified. Recommendations were made to improve the
fault tolerance of the software. These suggestions
were discussed with the designers and review team,
and where benefit was identified the changes were
implemented. The Fault Tree Analysis(FTA) tech
nique enforces rigor and structure to the software
analysis, and provides reviewable documentation

which details the analysis procedure.
5. Testing

Three phases of testing shall be required for ihe
application software: Unit and Subsystern Testing,
Validation Testing, and Reliability Testing. The Vali-
dation Testing and Reliability Testing are performed
at the Validation stage for SDS1 application software.

599

Prepare Test (ases

Prepare Test Programs
i
\
Generate Test Executablest(1CL £ile)
Getr MTDATA OSL. MIDATA BK3 !

Make Directory for Testing cp2tophdtasust\tr000
(XXXX TST. MTDATA BK3 MTDATA OSL. MACRO TCD)

i
Burn EPROM for MTDATA BK3 Using SK06

EPROMER ON -> Set EPROMER MODE B(2732A) -> Put
EPROM in EPROMER -> Go To SKO6. PROGRAMMING /
DATA TRANSFER / HARD DISK / READ FILE{MTDATA BK3)
PROGRAMMING / DATA TRANSFER / EPROMER / 2732A /
WRITE / FOLDED -> VERIFY EPROM -> Install EPROM
to 70BKC3a-E

T
{

B — s g
Load TCD File to Test Memory Using SKO6

{ PROGRAMMING -> DATA TRANSFER -)> HARD DISK ->
READ FILE -> DATA TRANSFER -> TEST MEMORY ->
WRITE -> NORMAL -> DATA TRANSFER -> TEST MEMORY
-> VERIFY -> NORMAL

[

Run MI{Monitor Test) Tool

MAIN MENU

1.CREATE DISPLAY
Define ID Name -> Select D /0. A 1/0 -
Accept Screen

2.SAVE DISPLAY: Save ID Name

3. SHOW DISPLAY
Select ID Name -> Select TEST -> Select Test
Cases{XXXX.TST) -> START TEST

uws DISPLAY: Analyze Test Results

Fig. 6. Test Procedures for Unit and Subsystem Testing

5.1. Unit and Subsystem Tests

The Unit and Subsystem Tests will test the code again-
st the graphical data-flow notation of the SRS. Tests will
be performed against macros, drawings, and combina-
tions of drawings in the SRS. Features that will be tested
include testing each instruction, testing each data-flow
path, and testing on and around each boundary. Any
self-checks identified in the SRS and preliminary Hard-
ware Design Manual(HDM) will also be tested where
possible[13]. Unit and Subsystem Tests will be conduc-
ted on the PDC hardware using input signals simulated
on the local bus by the Monitor/Test software running
on the development computer. Figure 4 shows the har-

dware configuration for unit and subsystem testing.

600

The bus coupler modules (BK03a-E) are added to
the Maintenance and Diagnostic System(MAD) to fa-
cilitate reading from bus, internal and parameter ad-
dresses and writing to bus addresses.

To perform timing tests, a 48 VDC voltage source
will be connected to the appropriate digital input
module to simulate a binary input, and a waveform
generator{capable of providing waveforms and man-
ually selected voltages from 0 to 5 VDC) will be con-
nected to the appropriate analog input{Al) module.
The digital storage scope will be used to measure
time differences between input and output signals.
The appropriate connection points can be found in
the module descriptions.

The digital storage scope shall meet the following
minimum specifications :
¢ 2 channels
e 10° samples/second
* wltage resolution 5 mV/div
o time base range 10 ms/div to 1 s/div

Figure 5 shows the example of Test Case for Unit
and Subsystem Testing. Test cases shall be identified
based on each path from a set of monitored vari-
ables to a controlled variable in the SRS, each design
feature in the SDD which is not fully specified in the
SRS. For each input variable which represents an
analog input, the boundaries between different input
domains shall be identified. The set of test cases shall
include cases in which these variables are set to val-
ues at the boundaries of each domain[14].

Each test executable is created on the PC and
then transferred to the test memory(SPO2b) which is
attached to the processor(PR03d-ES/R2). The detail-
ed procedures for loading an executable are de-
scribed in Figure 6.

6. Conclusions

Software verification methodology applied to
SDS1 for Wolsong 2,3 and 4 was described in this

paper.

J. Korean Nuclear Society, Vol. 28, No. 6, December 1996

The review of the SRS was highly successful. Sof-
tware verifiers, system designers, safety analysts, hard-
ware designers and software designers all participated
in the review. The SRS requirements correctly and
unambiguously described all the requirements of the
DID which pertain to the application software.

The software design was prepared by the software
designer and then reviewed by a team of software
verifiers and hardware designers. A few changes to
the software design were made at this stage. After
the corrections were made, the design verification
stage detected no error.

The executable code verification was performed on
the whole application and no errors were found ex-
cept for a minor discrepancy in the self-check code.
A few changes to the executable code were made by
software designer. The verification was later repeated
and no errors were found. For future applications,
consideration should therefore be given to eliminate .
the systematic check of every line of code for code
verification.

Unit and subsystem testing were executed in ac-
cordance with the relevant test procedures. No errors
were found in the code files, so no testing iterations
were required. The system was finally submitted to
the validation team for black box system testing.

Outputs from Wolsong 23 and 4 project have
demonstrated that the use of this methodology res-
ults in a high quality, cost-effective product.

References

1. CAN/CSA-Q396. 1. 189, “Quality Assurance
Program for the Development of Software Used
in Critical Application”

2. AECL/Ontario Hydro, “Standard for Software
Engineering of Safety Critical Software”, Dec.
{1990)

3.IEC 880, “Software for Computers in Safety
Systems of Nuclear Power Station”, (1986)

4. “Procedure for the Specification of Software Req-

Verification of Sdfety Critical Software --- K.C. Son, et al

uirements Using the Integrated Approach”,
00-68000-SWP-012, Rev. 01, Jul. (1993)

“SDS1 PDC Functional Specification”, &6-
68200-PFS-000, Rev. 02, Apr. (1994)

. “Requirements Review SDS1 Programmable Dig-
ital Comparators”, 86-68250-SRR-001, Rev. 01,
Sep. (1994)

. “Procedure for Software Design Using the Integ-
rated Approach”, 00-68000-SWP-013, Rev. 00,
Aug. (1993)

. “Software Design Description for SDS1 PDC",
86-68250-SDD-001, Rev. 01, Jun. (1994)

. “Software Requirements Specification for SDS1
PDC", 86-68250-SRS-001, Rev. 01, May (1994)

10. “Procedure for Systematic Code Verification Us-

11.

12.

13.

14.

15.

601

ing the Integrated Approach”, 00-68000-SWP-
016, Rev. 00, Jan. (1993)

“Procedure for Software Hazards Analysis of Saf-
ety Critical Software”, 00-68000-SWP-006, Rev.
00, Oct. (1993)

“Method for Unit and Subsystem Testing Using
the Integrated Approach”, 00-68000-SWP-017,
Rev. 00, Nov. (1994)

“SDS1 Part7-PDC Hardware”, 86-68200-DM-
007, Rev. 00, Nov. (1994)

Glenford J. Myers, “The Art of Software
Testing”, John Wiley & Sons, (1979)

“P10 DISASSEMBLER software user’s and de-
sign manual”, 00-68000-MAN-007, Rev. 0, Feb.
(1994)

