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Abstract

A system, such as a reactor point kinetics equation, can be solved with Adomian Decomposition
Method (ADM)} which uses the notion that all solutions and operators can be expressed as an infi-
nite sum of those basis states, like Adomian polynomials. In this work, ADM is applied to point re-
actor kinetics equations for step reactivity insertion, ramp input of reactivity, and nonlinear feedback
cases without linearization approximation. The results of ADM are more accurate and faster than

those of other existing methods, even though we use comparatively large time step sizes.

1. Adomian Decomposition Method

A well-known, long-standing problem in reactor kin-

etics is the stiffness arising from the order-of-magni-
tude difference between the prompt and delayed
neutron lifetimes, which results in the restriction of
very small time step increments in numerical solu-
tions to the kinetics equations. There have been a
number of methods, e.g. Stiffness Confinement Met-
hod[1] {(SCM), 6 Weighting Method[2], suggested to
avoid the difficulty, but they generally involve some
approximations or apply effectively only to certain
types of problems. But with Adomian Decomposition
Method[3,4}, we can use large time step increments
and get an accurate solution very fast.
Consider the general form

Bu(t)= h(1), 1)

where H represents a general nonlinear ordinary
differential operator involving both linear and nonlin-
ear terms, including d/dt, ult) is the solution that we
want to know, like nit) and Cft)’s, and h(t) is the
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source term.

Supposing that H may be decomposed into Ho
and H,, and introducing the separation parameter A
gives

( By+A B Yu(H= h(t), (2)

where H o, is a linear and invertible part of H , and
Hiis the remaining part of H,ie, H~Ho Denoting

ﬁ U= A( u) ’
and supposing that

AGw) = 204, (a)
u = zba"ui, (5)

gives
By S8t 2327 A = he). (6)

By arranging Eq. (6} according to the power of 4
and from Eq. (3) we get

Byuy = h(D),

Byu; =— A= — Hiu,,,

@

=12, (8)
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From Eqgs. (7) and (8) we have uo and u;. We can
evaluate A from Egs. (3) and (4),

AL dA@| _ 1 dHRu
7

il d/{j 1=0 7 d/li =0 9

A polynomials are expressed as

Ay =A (),

A, = wu(d]dug)A (1),

A, = wy(dldug)A (o) + (23 /2! X P dud ) A (),

Ay = us(ddug)A (ug) + uyu(d* | did )A (1) +
(A3 du) A ().

n—1
By letting A =1 and with |u.-1/Y_ u:| <e, the n-ter-
m partial sum

¢n: Eluir (10)

will be the approximate solution. Here, ¢ is the
small number chosen reasonably.

1.1 Example
Let us consider the following nonlinear example.

duldt= 1%, u(0) =1

The exact solution of the above equation is

__1 _
Here, we may define Ha and Hiu
ﬁgl(:%, H1u=—u2

In this case, the formulation is used for the evalu-

ation of A. We evaluate the form of A; as

2
Ag = H]Z(l A=0:'—UO,

4 - Ay dBu o]
b (//1 1=0~ du (M R=0‘_
_ du -
Zu(/{) i 1=0 2“0 uy,
Az = - u%—— 2210112'
Ay =-— Zouiui»i.
and evaluate u; from I:IouJ =—A-1as

uo=ul0), w1 =uwl0V, uz =ul0P¥, us =u(0)*f
At t=1/2 we have

uo=1, u1=0.5, uz=0.25, us=0.125
and the n-term approximation

$1=10,¢ .=15¢ 3=175,¢ 4=1875
that approaches the exact solution 2.

1.2 Calculational Procedure

The procedure to use ADM as a solution scheme
to solve some reactor kinetics problems is as follows :
(i) Reformulate the original problem if necessary.

(ii) Determine Ho and H:

(iii) Evaluate the form of Hwujt)

(iv) Evaluate uoft), with ulto), from Houo(t) =h(t)

(v) Evaluate uj(t) for j>0 from the relation
Hyufty=— Byu; (D) .

(vi) Add the generated terms to some order ut)
to some order n, an acceptable order for the
solution thought to be accurate at time
t=to+ A4 t, to get the solution ¢ »

=1
That is, ¢,.(t+ 4D = 20 ulty+ 48 .

(vii) If ¢ “(to) ¢ (to+ 4 1)<0, set to=to— A t, and
A4t=014t and repeat the processes (iv)
through (vi) twenty times (at each iteration,
substitute u(to+ 4 t) into ulto)). Then set 4
t=104 t and go to process {viii).

{viil) Substitute ufto+ 4 t) into ulto) and repeat the
processes (iv) through (vii) for the next time
step until ¢ reaches the final time #.

2. Application of ADM to the Point Kinetics
After some mathematical handling, we can apply

the ADM to the following point kinetics with six
groups of delayed neutron precursors :

% =—&7Jin+ Zla[ci, (11)
%Qti *—'%n—ﬂ,-C,-, i=1,2,--.6 . (12)

Here, n and Ci{t)'s are neutron density and prec-
ursors respectively. And generally, in Eq. (11), p is a
function of time, or of solution we want to know in
the case of feedback.
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Tests are done with the following physical parameters :

i 1 2 3 4 5 6
Bi 0.000266 | 0001491 | 0001316 | 0.002849 | 0000896 | 0.000182 $=0.007
py 0.0127 0.0317 0.115 0311 14 387 1=2x10"%(sec)

and with the following initial conditions :

n(0) =1,

cho) =B,

. =126

2.1 Step Reactivity Insertion and Ramp Input of
Reactivity

From Egs. (7), (8), (11), and (12), by substituting
pot 7 for p and denoting that

(B =8%.  ar=12.-7 (13)
Bu= (—L}_i+a+br)ﬁ+ lg‘/i,C,-
%‘12+(a+bz—z,,)cﬁ,
¢=1,2,,6 {14}
Kt =0 .?1 o Car D) (15)
u =( Ci )=(C‘e(ar+b3/2))'
1=1,2,.6 (16)
r =t—1#, (17)
B =B—o—1h , {(18)
we get
uy=u(0)=( 7(0), C,(0), ;0. TN,
{(19)
n;
Cy
_| Cail =
w=| M= (20)
CG)
(JS_;E"*'G) niqt gﬂi Cii
B;Il ﬁ,-_,+(a+bs—)\1) Cl.;’—l
Lrﬁ ﬂ;lz 7?;_1+(a+bs—/22) 62']'_1 . j21.
B G (a2 C
7 Piat(atbs—2) Co i

In Egs. (17) and (18), to is arbitrary.
The stiffness arises from the difference of the mag-
nitude difference between (rs— B)// and 4 s. So, we
can get n(t) and Ci(t)’s easily by letting
a= g2,
b=—y/21.

21)
(22)

The values of a@ and b are derivd from the idea
that the shapes of n(t) and Cit) s are similar.

If » =0 we get the solution for step reactivity inser-
tion, else if po=0 we get the solution for ramp input
of reactivity.

Three step insertions are considered in step reac-
tivity insertion : prompt subcritical case with p =0.003
prompt critical case with p =0.007, and one prompt
supercritical case with p =0.008. The values of nft)
obtained with ADM are compared to those obtained
with SCM in Table 1.

Table 1. Comparison of ADM with SCM with p=p°

p Method (sec) nlt)t T
t=1sec t=10sec t=20sec
0003 SCM 001 0706 0.165 0191
ADM 10 00 -0003 —0.004 02
ADM 20 -0.001 0.0 0.1
t=0.01sec t=05sec t=2sec
0007 SCM 001 -0193 0133 0.170 03
ADM 001 0002 00 0.005 0.0
ADM 005 00 0.005
t=001sec t =0.1sec t=1sec
0008 SCM 001 0.027 -0.106 -0.096
ADM 001 00 0.0 -0002 01
ADM 0.1 00 -0.002 00
1 Relative % Error to Exact Solution

* CPU Time on SUN4/75 SPARC station
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Next we consider a moderately fast ramp input of

reactivity. This example is a 0.1$/s ramp input to a

reactor core. The values obtained with ADM are com-

pared to those obtained with SCM in Table 2.
Finally, we consider a saw-tooth input shown in
Fig 1. In this case we must choose 4 t adaptively sin-

ce we do not know the peak value of neutron den-

Table 2. Comparison of ADM versus SCM for Moder-

7.5

6.0

n(t)

4.5 1

3

.0
0.55 0.60 0.65
Time (sec)

Fig. 3. Neutron Density from t=0.55 to t=0.65 by ADM
with various 4 t.

ately Fast Ramp
time 6 Weighting SCM ADM Table 3. Comparison of computing times for various
(sec) At=00001sec A4t=01sec At=02sec time steps
13382E00  1.3382E00
20 1.3382E00 (0.000%)*  (0.000%) Method 4 t(sec) Ters*
2.2284E0 2284F 0.05 03
4.0 2.2283E00 B4E0D 22 00
(0.005%)  (0.005%) ADM 0.005 10
0.05 11
42788E01  4.2785E01
80 42781E01 i
(0.016%)  (0.009%) +adaptive(0.005)
19593E16  1.7922E16 0.01 08
11.0 1.7919E
1 oza%)  (0017%) ADM 0.001 21
* Relative % Error to § Weighting 0.01 10
+ adaptive(0.001)
Runge-Kutta 0.001 03
0.009
* CPU Time on SUN4/75 SPARC station
0.006 -
0.003 o
* sity. The results compared with reference (fine time
0.000 step Runge-Kutta) are shown in Figs. 2 and 3. The
0.003 comparison of computing times for varieus time step-
=0 T T T
0.0 0.2 0.4 06 0.8 s is shown in Table 3.

Time (sec)

Fig. 1. Varying Input Values of p from t=0.0s to
t=0.8sec

0.0 0.2 04 06 0.8
Time (sec)

Fig. 2. Neutron Density Obtained for Input in Fig 1. by
ADM with various 4 t

2.2 Reactivity Feedback

We consider a power feedback case, i.e., p=pot7v
n. By defining E=n®, we get

o= u(0)= (n(0), C,(0), C,(0), -, (0T (23)
—{ n;
“i ( Cq.i)

::Kﬁ

E; i+ (00— B,
YL -y (‘;0 ﬂ)nl 1 + Z:l/{ici_jfl '

8
—llni“l'*'(_’il)cl.i—l

i=1, q=1,2,- 6. (24)
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according to the similar process of the previous sec-
tion.
Two cases are considered with power feedback :

one with po=0 and » =0.003, and the other with var-
jous po’s and 7o’s shown in Figures 4 and 5. The res-

ults obtained and CPU time taken with ADM and
with Runge-Kutta method[5] are presented in Tables
4 and 5. The results of the first case are in Table 4
and those of the second case obtained with ADM are
in Figure 6. Comparison of the results with ADM
and with Runge-Kutta method is shown in Table 5.

0.0120

0.0090

0.0060 -

< 0.0030 -

0.0000 -]

—-0.0030 T T T
0.0 0.2 0.4 0.6 0.8
Time (sec)

Fig. 4. Varying Input Values of po from t=0.0sec to
t=0.8sec

2.0E—005
0.0E+000
-2.0E—005
—4.0E—005
~
~6.0e—005
—8.0E-005
~1.0E-004
~1.26-004 T . .
0.0 0.2 0.4 0.6 0.8
Time (sec)
Fig. 5. Varying Input Values of y from t=0.0sec to
t=0.8sec

30.0

200 |-

n(t)

10.0

0.0 T T T
0.0 0.2 0.4 0.6 0.8
Time (sec)

Fig. 6. Neutron Density Obtained for Input in Fig 4. and
5 by ADM with 4 t=0.005sec
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Table 4. Comparison of ADM with Runge-Kutta Method

for p=7n
Method 4 tlsec) nit) Ter'"(sec)
t=0.01sec t=00117sec
ADM 10E4 49072  15948E2 01
RungeKutta 10E4 49072  14868E2 01
RungeKutta 10E-5 49072  15948E2 09

* CPU Time on SUN4/75 SPARC station

Table 5. Comparison of ADM with Runge-Kutta Method

for p=po-trn
Method 4 tisec) n(t) Teru*(sec)
t=001sec t=08sec
ADM 1.0E2 7.4852 3.7608 0.03
ADM 50E3 74852 3.7608 01
RungeKutta 5.0E-3 74854 3.7622 0.1
Runge-Kutta 50E4 74853 3.7609 12

* CPU Time on SUN4/75 SPARC station

3. Conclusions and Discussion

From Tables 1~5 we may say that ADM is more
accurate and faster than other methods at least in
the cases implemented in this work, even though it
uses comparatively large time steps. In reactivity feed-
back case, even though we did not transform the
original problem and did not use any approxima-
tions, ADM provides more accurate and quite faster
solutions than Runge-Kutta method. The step reac-
tivity insertion case and the ramp input of reactivity
case, reformulated according to the analytical sol-
ution approach, provide better results than SCM. In
all cases studied in this work, ¢ was chosen to be
107°

ADM is proven to be much better than SCM in all
cases studied in this work. It can not only use much
larger time steps due to the decomposition of the
operator and solution, but also compute rapidly for a
given time step due to its complete analytic formu-
lation. To solve the power feedback case using SCM,
we must make an approximation that within each
time step the feedback should be linearized. But
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ADM solves the problem without this approximation.
To generalize the method to space-time kinetics,
the operator H must be extended to H.+H; to in-
clude the space kinetics part. The details of the for-
mulation would depend on the additional problem of
the type used to solve the spatial diffusion equation.
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