Journal of the Korean Nuclear Society
Volume 28, Number 5, pp. 488~499, October 1996

Extension of Source Projection Analytic Nodal Sx Method
for Analysis of Hexagonal Assembly Cores

Tae Hyeong Kim and Nam Zin Cho
Korea Advanced Institute of Science and Technology
Department of Nuclear Engineering
373-1 Kusong-dong, Yusong-gu, Taejon, Korea 305-701

{Received April 4, 1996)
Abstract

We have extended the source projection analytic nodal discrete ordinates method (SPANDOM)
for more flexible applicability in analysis of hexagonal assembly cores. The method (SPANDOM-FH)
does not invoke transverse integration but instead solves the discrete ordinates equation analytically
after the source term is projected and represented in hybrid form of high-order polynomials and
exponential functions. SPANDOM-FH which treats a hexagonal node as one node is applied to two
fast reactor benchmark problems and compared with TWOHEX.

The results of comparison indicate that the present method SPANDOM-FH predicts accurately
ket and flux distributions in hexagonal assembly cores. In addition, SPANDOM-FH gives the contin-
ous two-dimensional intranodal scalar flux distributions in a hexagonal node. The reentering models
between TWOHEX and SPANDOM were also compared and it was confirmed that SPANDOM’s

model is more realistic.

Through the results of benchmark problems, we conclude that SPANDOM-FH has the sufficient
accuracy for the nuclear design of fast breeder reactor (FBR) cores with hexagonal assemblies.

1. Introduction

The transport equation used in nuclear reactor
and radiation shielding application is a linear Bol-
tzmann equation which was first formulated for the
study of the kinetic theory of gases. Several numeri-
cal schemes dewveloped in the past few decades have
been successfully implemented for the solution of the
neutron transport equation[1~3].

Nodal transport methods are computationally
more efficient than conventional finite-difference met-
hod and, in general, yield more accurate solutions.
The conventional finite-difference schemes require a
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fine spatial mesh, usually of the order of a mean free
path to yield an acceptable accuracy. Therefore, a
great deal of effort has been dewvoted to developing
and improving these nodal methods in solving the
multi-dimensional transport equation{4, 5].

The discrete ordinates (Sy) method is one of the
main means for obtaining numerical solutions to the
integro-differential form of the transport equation. It
consists of evaluating the transport equation in dis-
crete angular directions. The Sy methods have been
widely applied to Cartesian geometry but applications
to other geometries are relatively limited.

Hexagonal assemblies have been used in fast
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breeder reactors (FBRs) and high conversion light
water reactors (HCLWRs) in order to enhance the
conversion ratio by hardening the neutron spectrum
by means of the reduction of moderator to fuel vol-
ume ratio. Recently, hexagonal assemblies are also
employed for boron neutron capture therapy
(BNCT) reactor to obtain high intensity of epithermal
neutrons.

There are various Sy schemes which can treat hex-
agonal assembly as one node or by dividing a hexa-
gon into triangles. The diamond difference formula
and the finite element technique have been applied
to the discrete ordinates method for triangular ge-
ometry{2, 3]. Flat source approximation is used in
diamond difference-like schemes and weighted re-
sidual formulation is used to derive a set of equa-
tions relating the spatial fluxes in the finite element
schemes. Walters combined the linear-nodal method
with the linear-characteristic method in rectangular
geometry to solve the transport equation on an equi-
lateral triangular node[6]. Paternoster and Walters
extended the linear-characteristic-nodal scheme to a
general triangular node[7].

The use of the flat source approximation or the
low-order spatial expansion of the node interior sour-
ce and of the surface angular flux possesses some
limitations, that is, it limits the node sizes, especially,
in regions where the flux varies rapidly.

In recent years the transverse integration pro-
cedure has been used when deriving the nodal coup-
ling equations in hexagonal geometry calculation[8~
10]. This procedure integrates the multidimensional
transport equation over three transverse spatial direc-
tions to reduce it to a differential equation in each
spatial direction. Each equation is then solved and
the resulting integrals are evaluated by assuming the

spatial distribution of flux, source, and transverse leak-

age. The transverse integration used causes difficult-
jes in the treatment of the transverse leakage shape
as in the diffusion nodal methods in hexagonal ge-

ometry. For a hexagonal node, since the boundary

line on which the transverse leakage is defined con-
tains vettex points, the transverse leakage is no lon-
ger continuous at node center. To treat this disconti-
nuity Mauger[8] divided a hexagonal node into two
half-hexagons for a spatial sweep and Wagner[9]
imbedded the discontinuity into the elements of re-
sponse matrices using the block inversion technique.
Ikeda and Takeda[10] used the “divided flat ap-
proximation” considering the discontinuity at node
center. These nodal methods with transverse inte-
gration procedure give not the intranodal flux distri-
bution but the integral nodal quantities only, althoug-
h the calculational accuracy is high and the comput-
ing time is reduced.

In this paper, the new nodal Sy method called the
source projection analytic nodal discrete ordinates
method (SPANDOM){11, 12] is extended to the
“one node per hexagon” calculation for its more flex-
ible application in analysis of hexagonal assembly cor-
es. The SPANDOM method was successfully applied
to the triangular geometry and half-hexagonal ge-
ometry(12].

The features of SPANDOM are (1) it does not in-
woke transverse integration but instead directly solves
the two-dimensional Sy equation, {2) the scalar flux
and source distribution are projected and repres-
ented in high-order polynomials and/or exponential
functions, and (3) the solution of the Sy equation is
decomposed into its particular and homogeneous
parts. The particular solution is then analytically sol-
ved from the source distribution. The homogeneous
solution is expanded in terms of the analytic basis
solutions of the homogeneous transport equation
and the boundary conditions.

The paper is organized as follows. Section 2 pres-
ents a brief review on SPANDOM. In Section 3, we
provide its extension for full-hexagonal node calcu-
lation. Section 4 presents numerical results for two
fast reactor benchmark problems and a non-reenter-
ing problem. Finally, conclusions of the study shall be
given in Section 5.
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2. Overview of SPANDOM

As our starting point for the SPANDOM, we take
the following two-dimensional discrete ordinates tran-
sport equation for angular direction n and energy
group g:

ay, . ad¢,
M¢ng(x,y):#n—§x£+”n ;l'yg

+ 0 e = Selx, ), {1)

where

fn, Nn= x-, y-direction cosines of the particle direc-
tion,
0= macroscopic total cross section,
Sqlx, y) = source term which contains the scattering
and fission emission.

In the above equation, we assume that the source
term, Sy(x, y), is isotropic. In the equilateral triangular
or hexagonal geometry, we consider the angular
quadrature sets with sixfold symmetry. Hereafter the
angular direction and energy group subscripts are
omitted for simplicity.

In SPANDOM, we first express the solution of Eq.
(1), ¢lx, y), as composed of a particular and a hom-
ogeneous solution and decompose Eq. (1) into its

particular and homogeneous parts :
M@ (x,y) = S(x, ), (2)
My (x, ) =0. (3)

Now we assume in Eq. (2) that the source distri-
bution in the node is represented by a polynomial
function and/or exponential function. The particular
solution -of Eq. (1) can then be easily expressed in
the following form :

Px, y) =M 'S(x, ). 4)

On the other hand, the homogeneous solution of
Eq. (1), ¢'(x ), is obtained with the basis solutions

of the homogeneous equation, Eq. (3), and the boun-
dary conditions at the node boundary. If a finite num-

ber of meaningful boundary conditions are given
along the node boundary, the homogeneous solution
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can be expressed by a finite sum of the basis solu-
tions of Eq. (3). Thus, in a given node we choose N
discrete boundary conditions (i.e., integral values or
point values) and approximate the hornogeneous sol-
ution with a linear combination of N basis solutions
of the homogeneous equation in the following form:

(= Fe ﬁ cwfl®, B
=1 =1

where

afx, =B +)x— By, o = 70 ,

7 o 6
7= E=y—7'x (6)
L
and N=3 K. In Eq. (5), if f(¢) and § are given, the
expansion coefficients cx can be determined using N
boundary conditions. The boundary condition (B.
C.) for the homogeneous solution is expressed by

B.C. = B.C.Y— Boundary Value . (7)

3. SPANDOM for Hexagonal Geometry
Calculations

The applications of SPANDOM to triangular ge-
ometry and half-hexagonal geometry were reported
elsewhere[11, 12] and its application to full-hexag-
onal geometry is straightforward. The scalar fluxes
(vertex fluxes, surface-averaged fluxes, node-averaged
flux, etc. ) obtained by the conventional Sy quadra-
ture formula are used for the construction of the
source distribution in within-group scattering itera-
tions and fission source iterations.

Given a nodal geometry, the particular solution of
Eq. (1) can be easily obtained by Eq. (4) after the
source distribution in the node is represented by ap-
propriate shape function such as polynomial function
and/or exponential function, as we shall see later.

In the homogeneous solution expansion, the arbi-
trary function f(£) and arbitrary constant § are appro-
priately chosen for the simplicity of derivation and
boundary condition representation. The vertex angu-
lar fluxes and the surface-averaged angular fluxes are
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taken as the boundary conditions.

3.1. Triangle Approach (SPANDOM-TA) and Half
Hexagon Approach(SPANDOM-HH)

In triangle approach and half-hexagon approach, a
hexagonal node is partitioned into six equilateral tri-
angular nodes as shown in Fig. 1. In each triangular
node we project and approximate the source distri-
bution in a third-order polynomial function about the
centroid of the triangle:

Slx,y)=s;+ X+ 53V + 5, X° + 5. XY
+ 5 V4 (X -3XYH), @)

where X=x—x, Y=y—3., and (x, y) are the
coordinates of the centroid. The coefficients si, sz, **-,
s7 are expressed in terms of the three vertex sources,
three surface-averaged sources, and one node-aver-
aged source as shown in Fig. 1. The particular sol-
ution is then easily obtained using a similar third-or-
der polynomial function as in Eq. (4).

In half-hexagon approach, unlike the triangle ap-
proach which treats six triangles independently, we
consider two half-hexagons each of which consists of
three triangular subnodes and can obtain continuous
angular flux distribution in a half-hexagon, although
source distribution is defined in each subnode.

Both approaches are solved by considering two dif-

ferent neutron incoming cases. The detail description

Fig. 1. Source terms used in SPANDOM-TA and SPAN-
DOM-HH

of these approaches is given in Ref. [12].

3.2. Full-Hexagon Approach (SPANDOM-FH)

In full-hexagon approach, a hexagonal assembly is
considered as one node. From many experiences not
shown here, we note that it is necessary to reflect
more actual intra-node source distribution in order to
achieve acgeptable accuracy in one-node per hexa-
gon calculation. To do this, we consider the following
directional source “skewness” using the coordinate

system of hexagonal node in Fig. 2:

w2 V3
AS,=f dxf S(x, vydy
0 73

—X

73
[ af Sa. G
J - hf2 X
V3
V3
AS,,=ﬁwdxfi . h_S(x.y)dy
3 v3
“‘f’* %
hi2 3 v
—f dxf S(x,y)dy , (9b)
° 73
X h
313
AS,=ﬁh/2dfo S(x, y)dy

v3

hf2 '713
- J; dxfx Y S(x, y)dy . (9¢c)
V3 V3

-h2 0 h/2
Fig. 2. Coordinate system of hexagonal node
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In the hexagonal node we project and approxi-
mate the source distribution with hybrid form of thir-
d-order polynomial function and exponential func-
tion :

S(x, )= s;+ 35+ s3y+ s4x° + ssxy+ s63° +
s (=307 + sgle™—e )+

sele™—e ™ +sle?—e ) (10)

The coefficients s1, sz, -+, sw0 in Eq. (10) are expres-
sed in terms of the one node-averaged source, six
surface-averaged sources, and three directional sour-
ce skewnesses. The particular solution is then easily
obtained by Eq. (4), that is,

Px,y)=c,+ cox+ cyy+ e’ + ey +

cﬁyz + C7(x3 - 3xy2) + Cge >4

(15 T + Cp€ X + c1e T +

clze"+ Clgevxp . (11)
In the above Egs. (10) and (11), the exponent coef-
ficient k should be less than total cross section ¢ sin-
ce if k> g, one coefficient among ¢s~ ¢i13 may be in-
finite. To determine the exponent coefficient we con-

sider eigenvalues of the one-dimensional homo-

geneous transport equation,
1
w8 e+ dx =5 [ Wawd . (12)

where ¢ is the scattering ratio. The solutions of Eq.
(12) can be obtained with the eigenfunctions which
have the corresponding eigenvalues, ». The eigenval-

ues are solutions of the equation[13]

1 _cv (' _du
A=l 2 Joiv—p
=1-cv tanh “'(1)=p. (13)

There are only two zeros of A(v), and for ¢<1, Aly),
has one zero on the positive real axis between +1
and +00 and a.corresponding zero on the negative
real axis. It is easily seen that as ¢ approaches 0, the
root w of Alv) approaches unity and as ¢ approaches
1, w approaches 0. As ¢ varies between O and 1, w
varies monotonically between 1 and . Therefore,
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we take the exponent coefficient, k, as the root of

Eq. (14),
1y X X 14
tanh ~ '( 5 )= pol (14)

For the homogeneous solution expansion, four ver-
tex angular fluxes (g1, ¢, ¢s, ya) and three
surface-averaged angular fluxes (g1, Pc, ¢ &) are tak-
en as the boundary conditions as shown in Fig. 3.
The following homogeneous solution is used for cal-

culation :

$(x, )=
[ Tl + TZE+ TJEZ]e —a {(Br7" + Dx— By} (15)
. 1+V3y
for 7 x+—27?'7— h<y<y(x)
[C)+ G+ Cyt)e 7 1 Bem # Dxm Bt

for 7'x— 1_2‘/?; : h<y<yx+ l;\/g iy

[ B, + Byt + Bygtle 7\t e dw)

for —y(x)<y<px— lﬁz\/:gi h

where
h k } _ . x h
-5 <x<y . ys(x,x<0)—7§+7§.
. - X h _ E
y{x; 2>0) 73"*’73, BT“W’
3

Be=0, Bs= 15737 - (16)

x=-h/2  x=0

x=h/2

Fig. 3. Boundary conditions for homogeneous solution
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The constants B’s in Eq. (15) are chosen such that
the exponential functions in each equation vanish at
neutron incoming boundaries. The boundary condi-
tions are used to determine the coefficients T;, C,
and B fori=1, 2, 3.

4. Numerical Results

The accuracy of SPANDOM-FH has been tested
on two fast reactor benchmark problems. The first
problem is the KNK-I benchmark problem of the
NEACRP benchmark problems[14] and the second
is a modified SNR-300 benchmark problem[15]. The

numerical results are compared with those of TWOH-

EX[16] obtained using a spatial mesh of six triangles
per hexagon (it will be referred to as TWOHEX-6A),
TWOHEX uses the discrete ordinates approximation
for the angular varation of particle distribution and a
linear-characteristic-nodal scheme for spatial discret-
ization. In addition to TWOHEX-64, the results of
SPANDOM-TA are also given.

The reference solutions for all problems were
obtained with TWOHEX using a spatial mesh of 96
triangles per hexagon {TWOHEX-964). SPANDOM
and TWOHEX use the same angular quadrature sets.
The convergence criterion of 5x107° was used for

the eigenvalue calculation.
4.1. 2-D KNK-II Benchmark Problem

The KNK-II problem is a fourgroup, eight-ring
representation of a fast breeder reactor with a small
central test zone. The transport effect is accentuated
due to small size of the core and the local insertion
of control rods.

Table 1 shows the results of region-averaged
group fluxes and kes comparisons of TWOHEX-6.
and SPANDOM. SPANDOM-FH agrees with the ref-
erence, with difference being less than 0.199%Ak.
On the other hand, TWOHEX-6A underestimates
ket by 0.482%Ak in the ‘rods-in’ case. In the

‘rodsout’ case, TWOHEX-64A and SPANDOM

underestimate ks by less than 0.1%Ak relative to
the reference.

It is also seen in Table 1 that the region-averaged
flux errors of SPANDOM-TA approach are relatively
smaller than those of TWOHEX-6A and those of
SPANDOM-FH approach are comparable to the cor-
responding TWOHEX-6A results for both ‘rods-in’
and ‘rods-out’ cases.

Note that SPANDOM-TA and SPANDOM-FH
“overpredict” the region-averaged fluxes by a few per-
cent in sodium/steel zone. It is suspected that this is
caused by the difference in the reentering models in
SPANDOM and TWOHEX used in the outermost
hexagons next to the vacuum region.

4.2. Modified SNR-300 Benchmark Problem

The original SNR-300 problem is a four-group,
two-dimensional fast reactor problem as specified in
the ANL benchmark problem book, Problem Identifi-
cation No. 18-A5[15]. In this study we modified the
original SNR-300 problem by adding several radial
blankets in the outer region of the core to construct

Vacuum condition

Symmetry
condition

Inner Core Region Outer Core Region

o Follower Region ‘ Absorber Region

O Radial Blanket Region
(Dotted assemblies were added.)

Fig. 4. Modified SNR-300 benchmark problem



494 dJ. Korean Nuclear Society, Vol. 28, No. 5, October 1996

Table 1. 2-D KNK- Il Benchmark Problem: Percentage Errors of the Region-Averaged Group Fluxes

Rods-in Rods-out
Region Reference SPANDOM Reference SPANDOM
(TWOHEX:964) TWOHEX 6 TA FH (TWOHEX-96.) TWOHEX 62 TA FH
Group 1 )
Test zone 142573E+03* 048 -014 -026 1.14429E+03 011 007 005
Driver without moderator 9.63133E+02 0.09 -010 -013 8.52569E +02 -002 000 000
Driver with moderator 6.58833E +02 022 -001 -005 5.59082E + 02 -006 0.11 0.09
Control rod 855283E+02 101 -024 -055 - - - -
Control rod follower - - - - - 849511E+02 028 002 -008
Reflector without moderator  2.69848E + 02 094 -006 -031 220368E+02 037 008 -005
Reflector with moderator 2.46828E +02 091 -007 -029 204173E+02 038 007 -005
KNK-1 reflector 2.44062E +01 0.36 -021 018 199214E+01 -015 -005 039
Sodium//steel zone 833001E+00 020 1.03 115 6.79551E +00 -0.30 119 1.36
Group 2
Test zone 104619E+03 024 -006 -016 9.86685E +02 0.08 0.09 0.09
Driver without moderator 6.99064E + 02 -017 0.00 0.07 7.28325E+02 -0.20 010 015
Driver with moderator 467159E+02 025 =005 -011 4.48573E+02 010 007 -001
Control rod 626531E+02 114 -022 -052 - - - -
Control rod follower - - - - 7.85343E+02 010 014 009
Reflector without moderator  2.60761E+02 -004 016 018 2.27861E+02 -054 025 043
Reflector with moderator 2.35832E+02 0.01 014 018 2.08837E+02 -047 022 039
KNK-1 reflector 2.96901E+01 -049 -0.18 097 247506E+01 -102 =007 119
Sodium/steel zone 1.32406E +01 -041 157 207 1.10056E +01 -093 1.68 229
Group 3
Test zone 180784E+02 -0.78 -005 0.18 2.76611E+02 0.03 -010 -007
Driver without moderator 1.84818E +02 -047 -034 -037 2.68998E+02 052 -025 —046
Driver with moderator 2.44638E+02 -013 017 025 2.56081E+02 -007 012 012
Control rod 1.13881E+02 198 -111 -14 - - - -
Control rod follower - - - - 3.08168E+02 -024 000 0.05
Reflector without moderator  1.67395E + 02 0.16 031 -002 152041E+02 -048 033 024
Reflector with moderator 1.51568E +02 028 030 -001 1.39549E+02 -036 031 018
KNK-1 reflector 227145E+01 -026 -031 066 191353E+01 -083 -026 093
Sodium/steel zone 9.67958E+00 -050 132 200 8.13648E + 00 -1.06 137 227
Group 4
Test zone 5.77105E+00 -4.10 -034 622 291358E +01 -080 -067 -020
Driver without moderator 3.19834E+01 -037 ~-111 -16l 5.67729E+01 239 -153 -206
Driver with moderator 1.21433E+02 -051 034 044 1.30034E +02 -04 007 019
Control rod 689855E +00 379 ~473 -449 - - - -
Control rod follower - - - - 8.78099E+01 -268 003 090
Reflector without moderator  1.81595E +02 084 -024 -092 1.64438E +02 023 -018 -068
Reflector with moderator 1.72478E+02 098 -011 -072 157062E+02 036 -007 —055
KNK-1 reflector 5.89323E+01 3.51 063 083 504511E+01 296 072 -063
Sodium/steel zone 1.30513E+01 259 087 071 1.11379E +01 205 096 092
ket 100941 1.00454 101055 101142 1.30945 1.30833 130877 130887
&%) - -0482 0113 0199 - —009% -0052 -0.044
S4 solutions

Normalization: % Suvorg $4dV=10°
* Read as 142573 10°
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a complete hexagonal geometry as shown in Fig. 4.
Table 2 shows the percentage errors of the
region-averaged group fluxes and effective multipli-
cation factors for the ‘rods-in’ and ‘rods-out’ cases.
SPANDOM-FH accurately predicts ke with relative
differences being less than 0.02% Ak, while TWOH-

EX-6A underestimates by about 0.1%Ak in the ‘rod-

sin’ case. In the ‘rods-out’ case, SPANDOM-FH
more accurately estimates ke by less than +0.
01%2k. In Fig. 5, the percentage errors of the hex-

agonal node-averaged group fluxes, relative to the
TWOHEX96A reference solutions, are given for the
‘rods-in’. It is seen that the errors of SPANDOM-FH
are smaller than those of TWOHEX-6A in most reg-
ions except in the outer blanket assemblies that are
located near the vacuum region. This discrepancy in
the blanket region is again attributed to the differ-
ence in the reentering models. This trend is similar to
that of the 2-D KNK-II benchmark problem illustrated
in Section 4.1.

Table 2. Modified SNR-300 Benchmark Problem : Percentage Errors of the Region-Averaged Group Fluxes

Rods-in Rods-out
Region Reference SPANDOM Reference SPANDOM
(TWOHEX-964} TWOHEX 6 TA FH  (TWOHEX964) TWOHEX64 TA FH
Group 1
Inner core 1.54762E+ 02% 024 -005 -006 1.32031E+02 013 -003 001
Outer core 8.81647E+01 -040 006 006 9.13561E+01 -031 - 004 003
Radial blanket 1.34155E+01 -0.16 002 -002 1.37894E+01 -0.10 000 -003
Absorber 8.94035E+01 056 002 -017 - - - -
Follower 1.46206E +02 052 -007 -014 1.07737E+02 033 001 -007
Group 2
Inner core 781163E+02 0.19 -005 —005 7.13379E+02 0.09 -003 000
Outer core 394%41E+02 -0.18 005 005 443511E+02 -0.09 004 001
Radial blanket 1.18211E+02 -0.09 023 008 1.29585E + 02 -001 022 006
Absorber 437949E+02 042 -0.03 -016 - - - -
Follower 8.31478E+02 025 -005 -007 6.12966E + 02 0.06 000 001
Group 3
Inner core 7.05501E+01 0.14 -002 -002 6.71215E+01 0.10 -004 -001
Outer core 3.30299E + 01 -0.20 000 005 4,09106E + 01 0.10 -005 -011
Radial blanket 1.74200E+01 0.00 051 029 1.93035E +01 0.06 047 027
Absorber 2.96295E+01 091 -029 -057 - - - -
Follower 8.87135E+01 -020 019 031 647433E+01 -049 022 044
Group 4
Inner core 1.23790E+01 0.02 006 007 1.24007E+01 0.03 -001 003
Outer core 4.98320E + 00 -0.21 000 020 7.06467E+00 030 -006 =011
Radial blanket 542918E+00 0.10 077 047 6.09113E+00 0.15 071 045
Absorber 2.58977E+00 186 -08 -129 - - - -
Follower 1.82291E+01 -049 039 058 1.28602E +01 -0.89 039 076
ket 1.138%0 113784 113901 113913 123677 123616 123679 123668
&(%) - -0.093 0009 0020 - -0049 0002 -0007
Sa solutions

Normalization: ¥ f vaye $ ¢ dV=10°
g9
* Read as 154762 x 10°
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Fig. 5. Flux distributions of the medified SNR-300 benchmark problem: ‘rods-in’ case(1/12 core).
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4.3. Non-Reentering Problem Test

Hexagonal geometry with vacuum boundary con-
dition has ‘reentrant nodes’ in which the escaping
particle can reenter the adjacent node. In the outer-
most hexagon and vacuum interface region, TWOH-
EX appends imaginary triangular nodes and includes
these nodes in the problem domain but SPANDOM
models the vacuum region directly as shown in Fig.
6.

To compare the performance of TWOHEX and
SPANDOM in the problem without the reentering ef-
fect, we made up a simplified hexagonal core as
shown in Fig. 7. The regionwise material properties
are the same as those of KNK- Il problem. However,
the core dose not have hexagonal node any more,
instead the global shape of the core is hexagonal ge-
ometry and has non-reentrant external boundary.

This problem was calculated using TWOHEX with

/J\\
,J ~

Vacuum Region P - P

a) Reentering model in TWOHEX

Vacuum Region
- Q)

(N

b) Reentering model in SPANDOM

Fig. 6. Reentering models in TWOHEX and SPANDOM

triangle height h =1.625cm (for reference) and h=
6.5cm. and SPANDOM-TA was adopted for compari-
son since it can treat triangular nodes independently

and the reentering models of three SPANDOM ap-
proaches are the same. SPANDOM-TA calculation
with triangle height h =6.5cm was performed. Table
3 shows the results. We can see that SPANDOM-TA
is more accurate than TWOHEX (h =6.5cm) at core
boundary region (sodium/steel zone) next to the vac-
uum boundary with non-reenirance.

From the numerical results of the problems with
and without reentering effect we conclude that the
most discrepancies in the results between SPANDOM
and TWOHEX in the boundaries of FBR benchmark
problems are caused by the difference of the reenter-
ing models between TWOHEX and SPANDOM. Sin-
ce the reentering model in SPANDOM is physically
more realistic than that of TWOHEX, the SPANDOM
results should be more accurate.

Vacuum boundary
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Fig. 7. Simplified hexagonal core problem with non-
reentrant boundary.
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Table 3. Simplified Hexagonal Core Problem : Percent-
age Errors of the Region-Integral Group Fluxes

{1/6 Core)

Reference
) . TWOHEX  SPANDOMTA
Region (TWOHEX: . 5enl (h=65m)

h=1.625cm)

Group 1

Test zone 7119779E+03% 009 —0.02
Driver without moderator ~ 9.242257E+ 03 0.03 0.00
Driver with moderator 7.656667E+03  ~0.03 0.16

Reflector without moderator 3.601145E +03 0.28 013

Reflector with moderator ~ 9.666013E +02 026 -005

KNK-1 reflector 3473507E+02 —020 -024

Sodium/steel zone 1254093E+02 ~022 -021
Group 2

Test 2one 6.617379E+03 009 0.00

Driver without moderator  8456116E+03  ~0.08 007

Driver with moderator 6.285657E +03 0.08 007

Reflector without moderator 3.966621E-+03 041 029

Reflector with moderator ~ 1.030637E+ 03 045 002

KNK-1 reflector 4606291E+02 ~-108 —-046

Sodium/steel zone 2263123E+02 ~-074 -035
Group 3

Test 2one 1488798E+03 012 -016

Driver without moderator ~ 2.427597E +03 015 -034
Driver with moderator 3548436E+03 004 019
Reflector without moderator 2.681855E+03  ~0.53 046
Reflector with moderator ~ 9.363668E+ 02 0.64 010

KNK-1 reflector 3654280E+02 -—-122 -072

Sodium/steel zone 1.730710E+02 ~104 -062
Group 4

Test zone 5797758E+01 —122 -132

Driver without moderator ~ 3.000446E + 02 145 -210

Driver with moderator 1.752890E+03 036 036

Reflector without moderator 2.793001E+ 03 011  -007

Reflector with moderator  2.763265E+03 048 053
KNK-1 reflector 9.712740E+ 02 299 029
Sodium/steel zone 2.288254E + 02 225 —-034
ket 1.49208 149132 149132
&%) - ~005 -005

S+ solutions

Normalization: Zg:fvvc;g¢gdv=6><103

* Read as 7.119779x10°

The computational efficiency of the nodal discrete
ordinates methods depends crucially upon the ef-
ficient acceleration schemes for the within-group scat-
tering source iteration and fission source iteration. In
the present version of SPANDOM, the asymptotic

J. Korean Nuclear Society, Vol. 28, No. 5, October 1996

Table 4. Comparison of Computation Times*

KNK- I Problem | Modified SNR-300 Problem
rods4n |rods-out| rodsin |rods-out
TWOHEX-6A** 120 103 282 245
TA 56 56 202 158
FH 43 41 148 115

SPANDOM*

* All calculations are performed with Ss quadrature.
Second(on SUN 4/75).

* * Chebyshev acceleration method is used.

+ ASE acceleration method is used.

source extrapolation (ASE) method is used. The com-
puting times are compared in Table 4. The results in
Table 4 indicate that SPANDOM is faster than
TWOHEX-6A by factors of 1.1 to 2.8.

5. Conclusions

We have extended SPANDOM for its more flexible
applicability in analysis of hexagonal assembly cores.
The method SPANDOM-FH does not invoke trans-
verse integration procedure but instead solves the dis-
crete ordinates equation analytically after the source
tem is projected and represented in hybrid form of
high-order polynomials and exponential functions.
SPANDOM-FH is applied to two fast reactor bench-
mark problems and compared with TWOHEX. The
results of comparison indicate that the present met-
hod SPANDOM-FH predicts accurately not only ef-
fective multiplication factor but also flux distributions
in hexagonal geometry.

In addition, through the calculation of a simplified
non-reentering problem the reentering models be-
tween TWOHEX and SPANDOM were compared
and it was confimed that SPANDOM's model is
more realistic.

It is also worth noting that SPANDOM-FH gives
the continuous two-dimensional intranodal scalar flux
distributions in a hexagonal node but that the other
Sy methods which can treat the hexagonal nodes
give only the node-averaged quantities. From the res-
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ults of benchmark calculations, we conclude that
SPANDOMFH has the sufficient accuracy for the
nuclear design of FBR cores with hexagonal assem-

blies.
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