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Abstract

Relative power density distributions of the Kori Unit 1 pressurized water reuiv: we cunwaeu vy
Monte Carlo modeling with the MCNP code. The Kori Unit 1 core is modeled on a three-
dimensional representation of the one-eighth of the reactor in-vessel component with reflective
boundaries at 0 and 45 degrees. The axial core model is based on half core symmetry and is div-
ided into four axial segments. Fission reaction density in each rod is calculated by following 100

cycles with 5,000 test neutrons in each cycle after starting with a localized neutron source and ten

noncontributing settle cycles. Relative assembly power distributions are calculated from fission reac-

tion densities of rods in assembly. After 100 cycle calculations, the system converges to a k value of
1.00039 >0.00084. Relative assembly power distribution is nearly the same with that of the Kori
Unit 1 FSAR. Applicability of the full-scope Monte Carlo simulation in the power distribution calcu-
lation is examined by the relative root mean square error of 2.159%.

1. Introduction

An accurate estimate of the neutron fluence at the
reactor pressure vessel is necessary to ensure the
integrity over the designed lifetime and to support
analyses for a potential plant-life extension. The pres-

sure vessel fluence calculation needs a detail and car-

eful modeling because of the uncertainties from
geometry, source terms, cross sections, analysis met-
hods, and so on. Conventional calculation method is
mainly the use of two-dimensional deterministic cod-
es such as discrete ordinates transport code, e.g.,
DORT.[1] In order to reduce the uncertainties assoc-
iated with geometric modeling, some Monte Carlo

models have been attempted to determine the neu-
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tron fluence at the pressure vessel by previous wor-
kers.[2,3]

In earlier study, it showed that the constant power
distribution in the outer assemblies causes an error of
15 to 25% in the pressure vessel fluence calculation.
[4] The pin-by-pin source terms, however, were not
considered in the previous Monte Carlo calculations
using MCNP code.[2,3,5] The homogenized assemb-
ly models with volume averaged cross section and
approximated source terms at the outer assemblies
were used for the calculations. The major advantages
of the Monte Carlo method were not applied in their
MCNP models because the pin-by-pin source terms
were not calculated by using the MCNP code.

In the conventional computations[4,6] including
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the previous works,[2,3] the source terms in the reac-
tor vessel fluence calculations have been obtained
from the experimental data or calculated by coupling
of the fuel assembly and core burn-up calculation
codes which are usually provided by vendors. In the
conventional source term calculations, the boundary
condition at the reflective regions having outer assem-
blies, baffles, and coolant are very important because
it may affect the power distributions in the outer as-
semblies. However, it is not easy to know the bound-
ary conditions because current and cross section of
the reflective regions should be separately evaluated
by another transport code. The Monte Carlo method,
however, does not need any conditions because all
particles are directly simulated over the boundaries.

In order to calculate the pin-by-pin fission source
using the Monte Carlo method, all reactor compone-
nts including fuel rods should be modeled on a
full-scope three-dimensional reactor model. The mod-
eling is not simple because of its vast size and com-
plication.

In this work, the criticality and fission reaction den-
sity are determined by Monte Carlo calculations. The
pin-by-pin power distributions are calculated from the

fission reaction density in each rod during the critical-

ity calculation. The relative assembly power distribu-
tions are obtained from the pin-by-pin power distrib-
utions of the full-scope explicit three-dimensional
MCNP modeling. The pin-by-pin power distributions
can be used in the neutron fluence calculations of
the pressure vessel in future works without any as-
sumptions, such as homogenized assemblies, uniform

source distributions, and energy group cross sections.
2. The Kori Unit 1 Reactor Core

The Kori Unit 1 is the first commercial nuclear
power plant in Korea since 1978. The design specific-
ations of the Kori Unit 1 core are listed in Table 1.
[7] The reactor core consists of 121 fuel assemblies
as shown in Figure 1. Each fuel assembly contains a
14%14 rod array composed of 179 fuel rods, 16

Table 1. Specifications of the Kori Unit 1 Reactor Core

Core
Core Average Active Fuel Height, cm 365.76
Average Temperature, °F 5730
Fuel Assembly
Number of Fuel Assemblies 121
Region 1 41
Region 2 and 3 40
Rod Array 14x14
Rods per Assembly 179
Rod Pitch, cm 1.141224
Fuel Rod
Number 21,659
Qutside Diameter, cm 1.07188
Diameter Gap, cm 0.01905
Clad Thickness, cm 0.061722
Clad Material Zircaloy-4
Average Clad Temperature, °F 634.7
Fuel pellets
Material UQ: Sintered
Density(Percent of Theoretical) 95
Fuel Enrichment, wt. %
Region 1 210
Region 2 283
Region 3 3.30
Diameter, cm 0929386
Length, cm 1524
Average Temperature, °F 1399.3
Rod Cluster Control Assemblies
Neutron Absorber AgIn-Cd
Composition 80% 15% 5%
Diameter, cm 099187
Density, g/cm’ 10.15463698
Clad Material Stainless Steel 304
Clad Thickness, cm 0.047752
Burmnable Poison Rods
Number 624
Material Borosilicate Glass
Outside Diameter, cm 1.09474
Inner Tube, OD., cm 0.60071

Clad Material Stainless Steel 304
Inner Tube Meterial Stainless steel 304
Boron Loading(wt. % B20s in Glass Rod) 125

Baffle
Thickness, cm 28575
Material Stainless Steel
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Fig. 1. Cross Sectional View of Kori Unit 1 Reactor

rod cluster control (RCC) guide thimbles, and an
incore instrumentation thimble. The fuel rods are
constructed by Zircaloy4 cylindrical tubes containing
slightly enriched UQ: fuel pellets. All material com-
positions of the Kori Unit 1 structure are summarized
in Table 2.

3. MCNP Model Development

The Kori Unit 1 core geometry model is a
three-dimensional representation of the one-eighth of
the reactor in-vessel component with reflective angu-
Jar boundaries at 0 and 45 degrees. The computa-
tional models constructed for the Kori Unit 1 are
shown in Figures 2 and 3. The axial model shown in
Figure 3 is based on half core symmetry. The half
core is divided into four axial segments for detailed

axial power distribution calculations. Vacuum bound-

ary condition is prescribed on the outside of the reac-

tor vessel. Top reflector is assumed by three layers of
baffle, coolant, and barrel as like the side reflector
region.

The fuel loading pattern for cycle 1 is modeled as
follows. It is assumed that there is no fission products

Table 2. Material Compositions of the Kori Unit 1

Structure
Structure Composition Number Density{#/cm-barn)
U= 484371 x10°¢
U0»(2.10w/0) U= 222957 x107?
0 455524%1072
U= 6.52748x107*
UO2(2.83w/0) U= 221294 x10°?
0 455524% 10
U= 7.38089x107¢
UCn(3.20w/0) |0 T 220452x107?
0 455524x10 72
C 3971x10°*
Cu 1.727x10°4
Si 6.284%107
Stainless Steel Mo 2.387x10°*
Type 304 Ni 4956x10 ¢
Mn 1.320x10°°
Cr 7.339%107°°
Fe 8.244x10°2
C 8736x10°*
Cu 5254x10
Si 4415%10°
Steel Mo 2834%x10°*
{Pressure Vessel) Ni 5930%x107¢
Mn 5469x107
Cr 2935%x10°*
Fe 8296x 1072
C 401610 °
0 2379x107*
Al 1.135%10°®
Zrcaloy4 Cr 9.690x10°?
Fe 1.619x10°*
Zr 4.310x10°2
BY 95436x107*
B! 3.8656x1073
Al 47678107
Pyrex Na 22885%107
0 43561 X 1072
Si 1.7891x1072
H 48483102
Moderator (,)0 2424210 ,2
B 12222x10°®
B! 4.1406X 1072
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Fig. 2. The Cross Sectional View of Kori Unit 1 MCNP
Model
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Model

from the core depletion because of fresh fuel. The
fuel loading pattern used in this work is shown in

12
16 12 0
3 FENN 12 -
AN N
Core
Certer
Region 1 : 2.10 wt. % R'\a §§
Region 2 : 2.83 wt. % E}
Region 3 : 320 wt. % @ 35533{5

*Number Indicates Number of Burnable Posison Rods

Fig. 4. Fuel Loading Arrangement of the Kori Unit 1 for
Cwcle 1

Figure 4. This loading pattern consists of three reg-
jons with different “°U enrichments. The enrichments
for cycle 1 are 2.10, 2.83, and 3.20 weight percent
in regions 1, 2, and 3, respectively. The fuel loading
pattern is modeled with all rods out (ARO), no
xenon, and 1278 ppm of boron concentration near
the beginning of life (BOL).

The fuel element is explicitly modeled, ie., fuel,
gap, clad, and coolant, to eliminate any homogeniza-
tion effects. A cross sectional drawing of a rod is
shown in Figure 5A. Borosilicate in the form of Pyrex
glass containing 12.5% B:Os is used as a bumable
poison. A cross sectional drawing of a burnable pois-
on rod inside a Zircaloy guide thimble is shown in
Figure 5B. Burnable poison is also modeled
explicitly.

Eight pattemns of the fuel assembly (Figure 4) are
modeled by means of the number of burnable pois-
ons and the different enrichments. Four different
models of the fuel assembly pattemns with 0, 8, 12,
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and 16 bumable poisons are shown in Figure 6.

The in-core instrumentation consists of 39 fuel as-
sembly outlet thermo-couples and 36 movable neu-
tron detectors. The in-core instrumentation systems
are not equipped in this modeling for simplicity and
are filled with water instead. The cross sectional draw-
ing of the in-core instrumentation tube model is
shown in Figure 5C. All RCC guide thimbles are fil-
led with water because the modeling is a case of all
rods out. The cross sectional drawing of a RCC guid-
e thimble model is shown in Figure 5D. The fuel
rods are supported at intervals along their length by
Inconel-718 grid assemblies which maintain the lat-
eral spacing between the rods. These grids are not
considered for simplicity.

20000000000000Q
0002000000000 0

0000000000000 0
N3 BP Rod

c® 0o
1

Fig. 6. Burnable Poison Rods, Rod Cluster Control
Guide Thimbles, and Instrumentation Thimble
within An Assembly

4. Cross Section Data

In addition to geometry and material composition,
preparations of cross section data are also important
for the Monte Carlo calculations. The new cross sec-
tion library, called HYUXS, was generated at the
operating core temperature by NJOY[8] and
ENDF/B-VL[9]. The HYUXS are to be compared
with the existing libraries of the MCNP, i.e., BMCCS,
RMCCS, and ENDF5P, which were generated from
ENDF/B-V or older ENDF/B versions at the room
temperature.[S] The slow neutron scattering cross sec-
tion data was evaluated at 600 K. This thermal scat-
tering data library, TMCCS, is essential to model the
neutron interactions at energies below 4eV accu-
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rately. The temperature of the moderator and cool-
ant were assumed to be 573.0°F which is an average
temperature for the core. All of the libraries in the
this work are continuous energy cross sections.

5. Monte Carlo Calculations

All of the crificality calculations were performed
with the KCODE option in the MCNP version 4A.[5]
The Monte Carlo discrete representation of a fission
generation is a cycle. Cycles are made up of histor-
ies, where each history is the random walk of a sim-
ulated neutron from its birth as a source neutron to
its death by escape, absorption, or fission. In criticality
calculation of the MCNP, however, the neutron sour-
ces are started from the fission neutrons which are
settled from seed neutrons in initial cycles. Initial

cweles, called inactive ciycles, serve to converge the fis-

sion source spatially. In this work, 84 neutrons were
used as the seeds in the initial cycles. Once the sour-
ce is converged, the subsequent cycles are called the
active cycles. The criticality calculations were perfor-
med during the active cycles, 100 cycles in this study.
The number of neutrons per cycle is 5000, and the
total number of cycles is 110 for the eigenvalue and
fission reaction density calculations.

The fission reaction density calculations were per-
formed in all rods of the four segments. F4 tally and

FM4 multiplier were used to calculate the fission reac-

tion density during the active cycles. The F4 tally
estimates the flux in volumes. The FM4 multiplier
provides the fission reaction cross sections. Fission

reaction density in each tally cell are calculated as fol-

lows.

Fission reaction density in a cell

=N v J, [¢ 56", ) O, E, 0) dE dtSs-

+ Nos o . Je o, E) OF, E, ) dE 9y (1)

where,
®(7", E, t) =particle flux, neutron/cm?-sec - MeV,

Nps  =atomic number density of *U,
atoms/cm”,
Npz  =atomic number density of U,
atoms/cm’,
o2(7", E} =microscopic fission cross section of 2,
cm?/atom,
(7", E) =microscopic fission cross section of 22{,
cm®/atom,
and V =tally cell volume, cm’.
The approximate run time for both the eigenvalue
and fission reaction density calculations is about 5,
700 CPU minutes on the HP 9000/770 workstation.

6. Computational Results and Discussions

The fission reaction density calculations in each
pin in four segments were carried out, after running
the KCODE calculation of the MCNP. About 500,
000 initial source neutrons with Watt fission spec-
trum were used to obtain a pin-by-pin fission density
in the full core assemblies.

Two calculations were carried out with different
cross section libraries. The first calculation, called
ROOM, was performed with the MCNP library of the
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Fig. 7. Cummulative Average k Values of the Kori Unit
1 Core in KCODE Mode
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4 Segments in the CORE Case(Near Beginning
of Life Unrodded Core, Hot Full Power, No Xen-
on)

room temperature. In the other calculation, called
CORE, the MCNP library was replaced by the HYUX-
S library for the core temperature.

The full core systems of the ROOM and CORE
cases were converged to the k values of 1.01556=>0.
00084 and 1.00039>0.00084, respectively. Figure 7
shows the convergence of the k values with cycle
increase. The calculated criticality of the CORE case
is closer to the unity than that of the ROOM case. It
shows that the HYUXS library can be used in the
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MCNP simulation of the Kori Unit 1 core.

The pin-by-pin power distributions were normal-
ized by dividing the pin-by-pin fission reaction density
to the total fission reaction density in the whole core.
The normalized pin power distributions are the rela-
tive pin powers in each segment. The relative assem-
bly powers were then calculated by averaging the rel-
ative pin powers in each assembly. Figures 8 and 9
are the ROOM and CORE cases, respectively.

The axially averaged pin powers were calculated
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Fig. 12. Relative Pin Power Density of Outer Assemblies in Percent
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from the pin powers of the same rod in four segmen-

ts. The averaged relative assembly power was calcul-
ated from the averaged pin powers. Figures 10 and

11 show the averaged relative assembly power distrib-

utions together with that from FSAR[7] of the Kori

Unit 1. Figures 10 and 11 are the ROOM and
CORE cases, respectively.

Maximum relative error of the CORE case shous
—5.735% and relative root mean square error gives
2.159%. Maximum relative error of the ROOM case,
—8.864%, is larger than that of the CORE case. The
root mean square emror of the ROOM case gives 4.
468%. Figure 12 shows the axially averaged pin pow-
er distributions of the outer assemblies, which can be
used as a source term for the reactor vessel fluence

calculation.
7. Conclusions

The full-scope Monte Carlo modeling of the Kori
Unit 1 was established by using MCNP code. The
modeling was confirmed by the criticality and the rel-
ative power distribution calculations. The k values ap-
proximated to unity in the MCNP criticality caicula-
tions. The MCNP criticality calculation with the core
temperature library gives better k value than that with
the room temperature library. The relative assembly
power distributions with the core temperature library
are also more accurate than that with the room tem-
perature library. The root mean square errors of the
relative assembly power distributions are less than 5%
in the two cases, ROOM and CORE. The results of
the criticality and the relative assembly power distri-
bution show that the full-scope MCNP modeling of
this study is well constructed.

A usage of the flux suppression fixture in support
of vessel life extension is recently issued.[11] In such
case, the pin-by-pin power distributions due to chan-
ges of the reflective regions have to be newly calcul-
ated for the pressure vessel fluence calculation. It is

expected that the full-scope Monte Carlo simulation

will be a useful tool in the power distribution calcu-

lation.
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