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Abstract

Effects of the rotary inertia of concentrated masses on the natural vibrations of fluid
conveying pipes have been studied by theoretical modeling and computer simulation. For
analysis, two boundary conditions for pipe ends, simply supported and clamped-clamped, are
assumed and Galerkin' s method is used for transformation of the governing equation to the
eigenvalues problem and the natural frequencies and mode shapes for the system have been
calculated by using the newly developed computer code. Moreover, the critical velocities related
to a system instability have been investigated. The main conclusions for the present study are
(1) Rotary inertia gives much change on the higher natural frequencies and mode shapes and its
effect is visible when it has small value, (2) The number and location of nodes can be changed
by rotary inertia, (3) By introducing rotary inertia, the second natural frequency approaches to
the first as the location of the concentrated mass approaches to the midspan of the pipe, and
(4) The critical fluid velocities to initiate the system unstable are unchanged by introduction of
rotary inertia and the first three velocities are 7, 2, and 3« for the simply supported pipe and
2r, 8.99, and 12.57 for the clamped-clamped pipe.
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1. Introduction

The flow induced vibration in industry fields has
been studied for a long time since it always contain
a possibility of severe accidents by the several types
of vibrations related to a fluid and structure
interaction. A fluid flowing through a pipe can
impose pressure on the pipe walls and deflect the
pipe. Special interest is on a nuclear power plant
which consists of many pipe lines containing high
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velocity fluid. The study on the flow-induced
vibrations in nuclear power plants has been focused
both on design and maintenance. The main
purposes are (1) to supply proper supports to
reduce deflection of a system and (2) to find out the
fluid velocities which causing system instability. The
selection of the proper support locations is closely
related to the analysis on the natural frequencies
and mode shapes of a system. Once proper points
are selected, this can reduce fatigue-related pipe
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failures due to vibration and, of course, preclude
anticipated consecutive failures due to broken
parts. While the large deflection of a pipe is related
to the fatigue failures, system instability is directly
related to the abrupt pipe break. If a piping system
gets a critical fluid velocity, pipe gets broken
suddenly and discharges fluid of high pressure and
high temperature into the environment. Moreover,
broken pipes can cause secondary pipe failure due
to pipe whipping. Such that, these kinds of failures
always have the possibility of damaging staffs and
relevant piping systems.

Since nuclear power plants consist of many pipe
lines having heavy valves, connections, and flow
regulatory parts which can be modeled as the
concentrated masses, to investigate the effect of
the concentrated masses on the vibrations is very
important. Above all the studies, knowledge on the
natural frequencies and mode shapes of a system is
the most important and is the basis of vibration and
noise analyses. Moreover, the stability of the fluid
conveying pipes is of practical importance since
the natural frequencies of a pipe generally decrease
with increasing the fluid velocity. Such that, to
study about the correlation between concentrated
masses and natural vibrations (including system
instability) is very important in the nuclear power
plants which having many pipe lines containing
high velocity fluid.

Housner [1] was the first who had derived the
correct governing equation for the motion of a
fluid conveying pipe. For several decades, many
investigators have studied about this problem by
assuming several boundary conditions. Although
the vibration analysis of a pipe which having some
concentrated masses without a fluid flow had been
studied early {2-5], the vibration analysis of that
case when fluid flows through the pipe was not
until 1970 when Hill and Swanson [6] published
their paper on ASME. Hill and Swanson [6]

investigated the effect of concentrated masses on

the instability of the fluid conveying cantilever
pipe. According to their results, concentrated
masses can reduce the critical velocities occurring
system instability. Since then, effects of
concentrated masses have been studied in the
flow-induced vibration field. Chen and
Jendrzejczyk [7] experimentally studied the natural
frequencies, mode shapes, and critical velocities
for the fluid conveying cantilever pipe with a
concentrated mass at the end of the pipe. Wu and
Raju [8] proposed that a concentrated mass
installed at the midspan of the simply supported
pipe could change natural frequencies and mode
shapes. Although some interesting papers [4,5,9]
regarding the rotary inertia effect of the
concentrated masses were published, no one
introduced it into the flow-induced vibration field
until Kang et al. [10] published some preliminary
results on the natural vibrations for the simply
supported pipe.

Therefore, the main objectives of the present
paper are (1) to develope a new governing
equation which containing the effect of the rotary
inertia of concentrated masses attached on the
fluid conveying pipe, {2) to develope a new
computer code which can supply proper ways to
solve eigenvalues problem, and (3) to analysis the
effect of the rotary inertia of concentrated masses
on the vibrations (natural frequencies and mode
shapes) and instability of the given system.

For the analysis simply supported and clamped-
clamped pipe boundary conditions and
incompressible fluid flow have been selected.
Moreover, the approach according to Hill and
Swanson [6] and Meirovitch [11] is used to
develope a new computer code.

2. Theory and Mathematical
Development

The well known governing equation [1,12] for
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Fig. 1. Schematic Diagram of the Fluid Conveying Pipes

the pipes conveying incompressible fluid becomes

EI +zm,U—J-+m,UZ

T m,+m,) 8t2 =0 1)

According to Pan [4] and Sato et al. [5], the effect
of concentrated masses placed at x=x; can be

written as follows :

ﬁ"ma(x x)—l——{ ﬁfﬁ(x x) 6x8t2]

The first equation containing m; represents the
inertia force due to lateral acceleration of the
concentrated masses while the second equation
containing J; represents the rotary inertia force
due to the angular acceleration of the
concentrated mass. If a mass m, is located at a
distance x;, the rotary inertia term J; can be
expressed as myr? Here, r, is the radius of
gyration of the concentrated mass, m,, about an
axis through its center of mass [13].

Finally, the governing equation for the pipe
conveying incompressible fluid and having several
concentrated masses can be expressed as

followings;

2
E]—l+2m,u L ,(F%+{m,+ mt gmﬂx—xo]—g;}

- g Fn ‘3’

The boundary conditions for the two fluid
conveying pipes shown in Fig. 1 are as follows
(14]:

« simply supported pipe; y(0, t} = y(L, t} = 0 and

2 2
-%;%(0,t)=—%c%(L, D=0

» clamped-clamped pipe; y(0, t) = y(L, t} = 0 and

Oy _ 9y _
x(O,t)— ax(L,t)—O

Here, v is the pipe displacement, x the axial
coordinate, t the time, m; and m, the mass per
unit length of the fluid and pipe, respectively ; U
the constant flow velocity, m, and J, the
concentrated mass and its rotary inertia placed at
x=x;, respectively ; M number of the concentrated
masses, 8 Dirac delta function, and EI the flexural
rigidity of the uniform pipe. To derive the
governing equation Euler-Bernoulli type pipe,
small lateral motion about the equilibrium position,
neglect the effect of the gravity, uniform pipe
except concentrated masses, neglect rotary inertia
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and shear force of the pipe itself, and steady state
uniform flow are assumed.

Introducing dimensionless parameters, eq. (3)
becomes

—9—41+2u,92—3—1+u212’l+{1+f‘a5(5 g}—"fﬁ

2 ogr " ¢ Flg
(4)
| Bpte- 0=
where the dimensionless parameters are
= i ﬂ_ m[ 7]=l i ]i
L(m,+ mJ mytmy L (m/-{- myL
i 1
D Y S R R . I A/
= | Y [EI] L =7 &7
i
- mﬁ‘ Mf] 3
o i L9

The motion g(€, t) can be written as follows

72(€,7) = an(D)D (&) (5)

By inserting eq. (5) into eq. {4), the governing

equation becomes

[+ Baste-e)ono- Buate-t)0o

1 . .
- S £0.(8)] a0 +2087 0L(8) (o)
+{0, (O+40,(8)an(D)=0

(6)

3. Computational Analysis Procedure

Galerkin' s method [6,11] says that @,.(§) can be
represented by the superposition of ¢, (§) which
is the mode shape function of the pipe without
fluid and the concentrated masses. Then eq. (5)
becomes
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NED= 2 an(D$n(®) g

Introducing the orthogonality of the functions,
multiplying eq. (6) by @ (), and integrating it
about § from & = 0 to é=1, we finally obtain the
governing equation in the matrix form

(A 8w (D+ Byl (D +HCrlan(D)=0 ®

The equations of ¢ .{§) [14] and matrices of [A],
[B], and [C] are shown in Table 1 and 2,
respectively.

Rearranging eq. {8) we get

[MI{ () Y+ [KHp(D)} = {0} )

where,

W= l{{:: T)} (M= [[0] (Al [K]= [-[[A] [U]}

(4] [B] q [d

Multiplying eq (9) by [M]*, we get
[0{(D}+IM KB} = {0} (10)

Since an(r) = ™ ¥ (where, j = +'1 and ¥ are
constants),

{t(D}= { { {Z:((rg))}] =e™ (W} (11

Introducing eq. (11) into eq. (10),

ol H{T+{M T KH{@ = (0} (12
[DHE} - 11{T}= {0} (13)

where,

[A17'[B [A]7'[C]

v=—jo [D]=[M""[K]= -[1 [0]
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Table 1. Mode Shapes, ¢ .(£) for the Two Pipe Boundary Conditions [14]

Ends condition A,;m=123,:.

Mode shape $ (&)

%y ;m=123,

simply supported mmr

sin { A,&) -

m=1, 4,=4.73004074
m=2, A,=7.85320462
m=3, 4,=10.9956079
m=4, 4,=14.1371655
m=5, 4,=17.2787597
m>5, A,=(2m+1) -5—

clamped-clamped

cosh(A,€) - cos (A,.€)
- a{sinh(A.8) - sin(A,€)}

m=1, ¢,=0.982502215
m=2, ¢,=1.000777312
m=3, ¢,=0.999966450
m=4, ¢,=1.000001450
m=>5, ¢,=0.999999937
m>5, 6,= 1.0

Table 2. Matrices of [A), [B], and [C]

Matrix Simply supported pipe

Clamped-clamped pipe

ok Bt B {aBnEDE) T I EDE))

bt 0 u(ED0E) + HALENHEN

3 Al =(=1) """

1 a220-(-n*")

[an] Zuﬁ AE_A?“ SuB ¢ Al —A‘
" AAL(0,A,— O {1+ (= 1) ™"}
(Com] (A4 = 222260 AL—25,

+ {A:, + uz,i ,,.6,.(2 - Amau)}anm

Equation (13) can, therefore, be written as
[AV T} = {0} (14)

where,

[AN]=[Dl1-u1]

The eigenvalues problem (14) has a nontrivial
solution only if the characteristic determinant, i.e.
the determinant of the matrix [f ()], vanishes [11]:

[AVI=0 (15)

Generally, eigenvalues of the determinant have its
real and imaginary parts as follows:

w= Re(w)+ ;Im(w) (16)

The real component, Re (@), corresponds to the
frequency of oscillation, whereas the imaginary
component, Im (), is associated with stability of
the system. Im (0} > O signifies damping motions,
while Im (&) < 0 amplifying motions. Hence, the
point of crossing the Re(w) axis to negative Im (@)
represents the threshold value of flow velocity for
the onset of unstable motions. It is seen that the
system is subject to a large number of stabilities, in
the regions over which Im {w) < 0, by buckling if
Re(w)=0, and by flutter if Re(w) > 0 [12]. The
condition of neutral stability is one of dynamic
equilibrium where, in the course of one cycle of
oscillation, the energy transfer from fluid to pipe
and vice versa exactly balance. When the energy
of the fluid stream exceeds that of the pipe, the
amplitude increases without limit: in the opposite
case oscillations are damped.
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Table 3. The Effect of m on the Results*

Natural frequencies
Number of m Simply supported pipe Clamped-clamped mpe
First Second Third First Second Third
3 7.6176 25.5972 56.8443 15.8445 28.1210 63.0836
5 7.6162 25.1329 49.8033 15.7346 26.3881 49.6429
7 7.6156 24.9385 45.7688 15.6929 256035 456103
8 7.6156 24.7748 45,7421 15.6878 25.1641 45.3679
9 7.6155 24.7730 45.4885 15.6871 25.1641 45.2096

* (conditions; u=1.5, @;=0.2, 2,=0.1, $=0.2, £,=0.3, £§,=0.5, 1,=0.018, #,=0.025)

@
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Fig. 2. Natural Frequency Variation Due to Fluid Velocity Change; 2,=0.2, ,=0.1, 8=0.2, #,=0.018,
[lz=0.025, $1=0.3, Ez=0.5

values can be achieved by superposing the mode

4. Results and Discussion shape ¢, (§) more than 7. As shown in Table 3,

values of the first, second, and third natural

The natural frequencies, mode shapes, and frequencies have similar values, respectively, if m

instability of the system have been calculated by is larger than 7. The present paper will discuss
using the developed computer code. The needed some results obtained by assuming m as 9.
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4.1. Natural Frequency

Figure 2 shows variation of the natural
frequencies of fluid conveying pipes with two
concentrated masses. Through the analysis the
first three natural frequencies have been found as
a function of the fluid velocity. The dotted lines are
results of the system with rotary inertia while solid
lines are without rotary inertia. Introduction of
rotary inertia gives much change for the second
and third natural frequencies while it gives
relatively small effect on the first natural
frequency. As shown in the figure, the natural
frequencies are decreased and become zero with
increasing the fluid velocity. When the
dimensionless fluid velocity gets @, 27, and 37 for
the simply supported pipe and 2=, 8.99, and
12.57 for the clamped-clamped pipe the first
three natural frequencies have zero value. Once a

natural frequency arrives in zero value, instability
of the system begins.

The natural frequencies with or without rotary
inertia are shown in Fig. 3 as a function of the
mass ratio, 8. With assuming two concentrated
masses at 0.2L and 0.5L of the pipe, respectively,
the mass ratio 8 between pipe and fluid has been
changed from 0.0 to 0.5 to find out variations in
the natural frequencies. According to the results,
the mass ratio gives no visible change to the
natural frequencies. For the case, inclusion of the
rotary inertia into the analysis results in much
change on the higher natural frequencies.

The change on the location of a concentrated
mass, &, gives much variation on the natural
frequencies. The effect of § change on the first
three natural frequencies for the two pipe
boundary conditions is shown in Fig. 4. For the

analysis, one concentrated mass {a,=0.1) is
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assumed and its location has been changed from
£,=0.0 to 1.0. To verify the effect of the rotary
inertia of the concentrated mass, #, on the natural
frequencies ;=0 and 0.01 are assumed for the
cases of without and with rotary inertia,
respectively. According to Fig. 4, it is verified that
rotary inertia greatly change natural frequencies.
When a; is located at £,=0.5 the second natural
frequencies for the simply supported and clamped-
clamped pipes have been reduced to 83.2 % and
60.6 % of the natural frequencies without rotary
inertia, respectively. By considering rotary inertia
into the analysis the second natural frequency
approaches to the first natural frequency as a,
approaches to the midspan of the pipe.

Figure 5 shows the correlation between the
value of the rotary inertia, g, and the first three
natural frequencies. For the analysis, a
concentrated mass (a;=1.0) is assumed to be at
0.3L {i.e., £,=0.3) of the pipe and the rotary
inertia of it is changed from ,=0.0 to 0.5. As
shown in the figure, the consideration of the
rotary inertia gives much change on the natural
frequencies. lts effect on the change of the natural
frequencies is visible as #; has small value (i.e., less
than 0.1 for the present case). Further increase in
#; gives relatively small effect on the natural
frequencies in comparison with the former case

which having small g, value.
4.2. Natural Mode Shape

Figure 6 is the natural mode shapes of the
systern for the case of having two concentrated
masses {(@,=1.0 and a,=0.2}). The heavier one is
located at 0.1L and the lighter one is at 0.5L. In
the figure, solid lines are mode shapes of the
system without rotary inertia and dotted lines are
with rotary inertia. As shown in the figure, rotary
inertia gives small change on the first mode shape
while it gives much change on the second and

third mode shapes. By introducing rotary inertia,
the number of nodes and its location can be
changed. There is no fixed node at the second
mode shape of the clamped-clamped pipe when
the rotary inertia effect is included into the
analysis. The number of the node is also changed
at the third mode shape with considering rotary

inertia.
4.3. Stability Criteria

A steady, high-velocity flow through a thin
walled pipe can buckle or deform the pipe and
these deflections are called instabilities of fluid
conveying pipes. The stability of fluid conveying
pipes is of practical importance because the
natural frequency of a pipe generally decreases
with fluid velocity increase. The type of instability
depends on the end conditions of the pipe. Pipes
supported or clamped at both ends bow out and
buckle when the flow velocity exceeds the critical
velocity.

Figure 7 shows the variation of the imaginary
natural frequencies due to the fluid velocity
variation. The instability begins if the imaginary
natural frequency gets negative. According to the
figure, the fluid velocities for the three natural
frequencies to occur system instability are m, 2m,
and 3r for the simply supported pipe and 2nx,
8.99, and 12.57 for the clamped-clamped pipe.
Through the analysis it is identified that the
consideration of the rotary inertia can not change
the critical fluid velocities for the system instability
as suggested by Paidoussis and Issid [15] and
Laura et al. [16] for the fluid conveying pipe
without concentrated masses.

Mathematically, the instability arises from the
mixed derivative terms. The mixed derivative
terms represent forces imposed on the pipe by the
flowing fluid that is always 90° of phase with the
displacement of the pipe, and always in phase
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with the velocity of the pipe. Theses forces are
essentially a negative damping mechanism which
extracts energy from the fluid flow and inputs
energy into the bending pipe to encourage,
initially, vibration, and ultimately, instability
{12,15]. However, the rotary inertia considered in
the present paper expressed as the second
derivative with time. Such that, this gives similar
effect to the system like mass addition.
Accordingly, although rotary inertia gives much
change on the natural vibration no change is
identified in the system instability.

5. Conclusions

The effects of the rotary inertia of concentrated
masses on natural vibrations and system stability of
the simply supported and clamped-clamped pipes
conveying incompressible fluid have been analyzed

by proposing a new governing equation and by

developing a new computer code. The major

conclusions for the present study are as follows:

1) Rotary inertia gives very much change on the
higher natural frequencies and mode shapes.

2) The number and location of the nodes can be
changed by considering the effect of the rotary
inertia of concentrated masses.

3) The rate of decrease of the natural frequencies
due to the effect of the rotary inertia of the
concentrated mass increases when #, has small
value {e.g., less than 0.1 for the present case).

4) By introducing rotary inertia, the second natural
frequency approaches to the first natural
frequency as the location of the concentrated
mass approaches to the midspan of the pipe.

5) The increase of the mass ratio between fluid
and pipe gives no visible change on natural
frequencies whereas the fluid velocity gives



much change.

6) The first three critical fluid velocities for the

system instability are unchanged by introduction
of the rotary inertia and have the values of =,
2r, and 37 for the simply supported pipe and
2, 8.99, and 12.57 for the clamped-clamped

pipe.
References

. G. W. Housner, “Bending Vibration of a Pipe
Line Containing Flowing Fluid,” Trans. ASME,
J. of Applied Mechanics, 74, 205 (1952).

.W. H. Hoppmann, 2nd, “Forced Lateral
Vibration of Beam Carrying a Concentrated
Mass,” Trans. ASME, J. of Applied Mechanics,
19, 301 (1952).

.Y. U. Chen, “On The Vibration of Beams or
Rods Carrying a Concentrated Mass,” Trans.
ASME, J. of Applied Mechanics, 30, 310
(1961).

. H. H. Pan, “Transverse Vibration of an Euler
Beam Carrying a System of Heavy Bodies,”
Trans. ASME, J. of Applied Mechanics, 32,
434 (1965).

. K. Sato, H. Saito, and K. Otomi, “The
Parametric Response of a Horizontal Beam
Carrying a Concentrated Mass Under Gravity,”
Trans. ASME, J. of Applied Mechanics, 45,
643 (1978).

.dJ. L. Hill and C. P. Swanson, “Effects of
Lumped Masses on the Stability of Fluid
Conveying Tubes,” Trans. ASME, J. of
Applied Mechanics, 37, 494 (1970).

.S. S. Chen and J. A. Jendrzejczyk, “General

Characteristics, Transition, and Control of

Effect of Rotary Inertia of Concentrated Masses --- M.G. Kang 213

Instability of Tubes Conveying Fluids,” J. of
Acoustical Society of America, 77, 887 {1985).

8. T. T. Wu and P. P. Raju, “Vibration of a Fluid

Conveying Pipe Carrying a Discrete Mass,”
Trans. ASME, J. of Pressure Vessel
Technology, Nov., 154 (1974).

9. M. N. Hamdan and M. H. F. Dado, “Large
Amplitude Free Vibrations of a Uniform
Cantilever Beam Carrying An Intermediated
Lumped Mass and Rotary Inertia,” J. of Sound
and Vibration 206(2), 151 (1997).

10. M. G. Kang, S. J. Cho, and B. S. Kim, “Effect
of Rotary Inertia of Concentrated Masses on
Natural Vibration of Simply Supported Simply
Supported Fluid Conveying Pipe,”
Proceedings of the Korean Nuclear Society
Spring Meeting, 503 (1997).

11. L. Meirovitch, Analytical Methods in
Vibration, p. 275, The Macmillan Company,
London {1967).

12. R. D. Blevins, Flow-Induced Vibration, p.
287, Van Nostrand Reinhold Company, New
York (1977).

13. J. L. Meriam, Dynamics, 2nd ed., p. 228,
Wiley International Edition, New York (1975).

14. R. D. Blevins, Formulas for Natural Frequency
and Mode Shape, p. 101, Van Nostrand
Reinhold Company, New York (1979).

15. M. P. Paidoussis and N. T. Issid, “Dynamic
Stability of Pipes Conveying Fluid, J. of Sound
and Vibration,” 33(3), 267 (1974).

16. P. A. A. Laura, G. M. Ficcadenti de Iglesias,
and P. L. verniere de Irassar, “A Note on
Flexural Vibrations of a Pipeline Containing
Flowing Fluid, Applied Acoustics,” 21, 191
(1987).



