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Abstract

The dynamic character of a system of the governing differential equations for the one-
dimensional two-fluid model, where the momentum flux parameters are employed to consider
the velocity and void fraction distribution in a flow channel, is investigated. In response to a
perturbation in the form of a'traveling wave, a linear stability analysis is performed for the
governing differential equations. The expression for the growth factor as a function of wave
number and various flow parameters is analytically derived. It provides the necessary and
sufficient conditions for the stability of the one-dimensional two-fluid model in terms of
momentum flux parameters. It is demonstrated that the one-dimensional two-fluid model
employing the physical momentum flux parameters for the whole range of dispersed flow
regime, which are determined from the simplified velocity and void fraction profiles constructed
from the available experimental data and C, correlation, is stable to the linear perturbations in
all wave-lengths. As the basic form of the governing differential equations for the conventional
one-dimensional two-fluid model is mathematically ill posed, it is suggested that the velocity and
void distributions should be properly accounted for in the one-dimensional two-fluid model by

use of momentum flux parameters.
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1. Introduction computer codes, such as, RELAP5/MOD3(1] and

CATHARE[2]. However, it is well recognized that

The one-dimensional two-fluid model is the state the basic form of the governing differential equations
of the art model widely used to describe the for the one-dimensional two-fluid model is
complex two-phase flow system. As an example. it mathematically ill posed as an initial value problem
is employed in the thermal-hydraulic analysis as discussed by Lyczkowski, Gidaspow. and
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Hughes[3], Ramshaw and Trapp(4], and
Stuhmiller{5). There have been efforts to improve
the one-dimensional two-fluid model stable by
considering the virtual mass force[l, 6], the
phase-to-interface pressure difference {2, 7,8,9],
and the bulk stress tensor for dilute dispersions of
bubbles[10]. The issue is still controversial.
Recently, Song and Ishii [11,12] proposed to
consider the void fraction and velocity distribution
in the flow channel by use of the momentum flux
parameters. By performing a characteristic
analysis of the governing differential equations,
they showed that the one-dimensional two-fluid
model is well posed for the whole range of flow
regime, when physical momentum flux parameters
are considered.

As the characteristic analysis only gives
information on the limiting short wavelength
behavior, it is necessary to perform a dispersion
analysis to investigate the dynamic character of a
differential model. The effect of algebraic terms
on the right hand side of the governing
 differential equations on the intermediate
wavelengths can be estimated, as these terms do
not affect the characteristic analysis. While the
characteristic analysis gives necessary condition
for the stability, the dispersion analysis provides
sufficient condition for the stability. Jones and
Prosperetti [13] performed a linear stability
analysis for the steady uniform flow by employing
a general one-dimensional two-fluid model and
considered the effect of virtual mass force term.
Pokharna, Mori and Ransom|[14] performed a
dispersion analysis and showed that the basic
one-dimensional two-fluid model results in a
positive growth factor in proportional to the wave
number.

In the present paper a dispersion analysis is
performed for the one-dimensional two-fluid
model to derive the necessary and sufficient

conditions for the stability and discuss the role of
the momentum flux parameters.

2. Dispersion Analysis of the One-
Fimensional Two-fluid Model

By defining an area average and void fraction
weighted average as below

<F>=1/A [FdA (1)
<<F,>> =< o, F,>/<0,> 2

The velocity for each phase is defined as below
<<uk>>=<akuk>/<ak> {3

Let us denote 0=< >, uy=<<u,>> and assume
that the density of each phase is uniform such that
pPr=<< p>>. Then the governing differential
equations for the two-phase flow described by the

incompressible one-dimensional two-fluid model is

written as follows [11, 12, 15, 16, 17].
ap,du,/0z +p da/ot+puda/oz = 0 4

apduddz-pdaldt-puda/dz = 0 )

op, 23t + ap,(2C, - du 0z + py(C o1 u B/ 6
- - odpldz + op goosd - F+ M, ©

apduddt + ap2C,ududdz - p{C.r1)uf Bz

= - 0,0p/0z + oupg cosB + F+ My @)

where the oy=1- o, @ is the inclination angle from
the vertical direction, F; is the inter-phase drag,
and M;; and My are the generalized drag force
including the transient forces and wall drag. It is
assumed that there is no mass transfer between
phases and the phasic pressures are the same.
The C, and C, are momentum flux parameters
(16, 17] defined as
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C =<au>/<o><<u>>? @8

By including the momentum flux parameters, we
can preserve the information on the two-phase
flow structure of void fraction and velocity
distributions in a flow channel. In the the
conventional one-diemensional two-fluid model,
this information on the flow structure is lost by
assuming that the value is unity. The momentum
flux parameter is a function of void fraction and
velocities. However, by noting the fact that the
flow regime does not change along the flow
direction, we neglected the derivatives of
momentum flux parameters in the derivation of
the above governing differential equations for
mathematical simplicity.

As previous research indicates that the
generalized drag force terms tend to stabilize the
system, we neglect the effect of those terms to
focus our analysis on the role of interfacial drag
and momentum flux parameters. By defining a
vector X = (Q, ug, u;, p). The system of continuity
and momentum equations can be written as

Aocx/ot+Box/oz+C=0 {9)

where A, B, and C are coefficient matrices. The
dependence of the solution on the prescribed
initial data can be reduced to an investigation of

the roots of equation
Determinant of (A A - B)=f(A)=0 (10)

where we have introduced the characteristic root
A. If we have real roots of A for satisfying f(A) = 0,
then the set of differential equation is hyperbolic.
If we have complex conjugate roots of A, then the
set of differential equations becomes elliptic. If the
system is elliptic, the above set of equations
becomes ill posed as an initial value problem. By
using equations (4), (5), (6), and (7), the matrix A
A- B is determined as

pg(x-ug) 'U-Pg 0 0
-pA-uy) 0 -0y 0
Con) aph-2C, 1, 0 o (11
pAC.r 1/ 0 opdh -2Crud -0y

The determinant of this matrix is calculated as

()= -a(1-0)pp{(1-0)p,(A*-2AC,
+ap(M-2CuA+Copuf )

2
et Cuty) )

For the conventional two-fluid model, the
momentum flux distribution parameters are equal
to 1. The above equation then becomes,

f0)= -a(1-0) p,pr [(1-0) py (A - u,) + pr(A - 0] (13)

The equation f(A)= 0 can have real roots only if
A=y, = u, which indicates that the basic form of
the two-fluid model becomes ill posed. On the
other hand, we can have real roots for A for the
equation f(A)= 0, if the momentum flux
parameters satisfy the following equation {11]

P = (op, C, u,top, Coue )

2 2 14
- (apgtap)(oup,Cou, taplopr) 2 o 14

It suggests that the one-dimensional two-fluid
model might allow two real characteristic roots for
A. if we use appropriate momentum flux
parameters for the two-phase flow system in
various flow regimes.

As the characteristic analysis gives information
on the system in response to the short wave
length disturbance only, a dispersion analysis is
necessary to establish the dynamic character of a
differential model over the frequency range of
interest {11,12]. The dispersion relation is
obtained for a system of quasi-linear partial
differential equations by linearizing the system
about an initial state and using a general Fourier
representation for each solution component. The
linear differential equation for the perturbation, & ¢
=0-0°is
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A 0dp/ot + B,0d¢/ot + [(OA/O),(Op/dt),

+ (9BI39) (B9l +oCIop)Jop=0 17
Equation (15) describes the behavior of a small
perturbation about the unperturbed solution. A
perturbation in the form of a traveling wave is
considered

8@=0¢°exp[i(kx-ot)] (16}

where k is the wave-number, and wis the
frequency in a complex number. A= Ag+ iA| =@y
/k + iw/k. The imaginary part of { will govern the
growth or decay of the perturbation and the real
part determines the speed of propagation for the
Fourier component corresponding to each k. If we
have positive @, the perturbation increases with
time. Then the system becomes unstable. It we
have a negative growth factor, the perturbation
decays and the system is stable. 8 ?° denotes the
initial amplitude of the perturbation. On
substitution of equation (16) into equation (15), a
compatibility condition for & ?° is obtained

-ioA 50"+ kB 5¢° + [(0A/09),(09/dt),
+ (0B/60),(0¢/0x),+(0C/09),169° = 0

Equation (17) is a homogeneous linear system of
equations which determines the components of & 9°.
The condition for the existence of a non-trivial
solution for 89° is that the determinant of the
coefficient matrix must vanish; i.e.,

det(-ioA+ikB+D)=0 (18)

D= [(9A/0q) (00/2x), + (3B/0),(00/0x),+(0C/dg),]" (19)

For nonzero ®, equation (18) can be written in a
meaningful form as

det(AA-B+ikD)=0 (20)

Note that for finite k/® in the limit k- «, equation

(20) reduces to the characteristic equation. And
the A value corresponds to the characteristic
eigen-value.

For the case of a perturbation wave-length much
smaller than the length-scale of the initial steady
state or for an initial uniform steady state, {3 ¢'8t),
and (0 A /0x), will be negligible or zero so that D
becomes

D= (6C/o0p), (21)

The drag forces consist of wall drag, inter-phase
drag and transient drag forces. For highly
dispersed air-water flow at low liquid velocity, the
inter-phase drag force is dominant. We consider
only the interfacial drag force to simplify the
analysis. It also enables us to compare our analysis
results with those of Pokharna et al. [14] who used
the simple Darcy model suggested by Ishii and
Zuber([18] for the interfacial drag

F=1/2Coplugu)lu,-udA,/V, (22)

For a mono-dispersed bubbly flow, A,/V becomes
3 /4r,. We assumed that the drag coefficient Cp is
constant for convenience. Assume that gas
velocity is bigger than liquid velocity, then the
matrix C becomes

C=[0,0, -ap,g + Kapa/, -apg - Kapu’ ] (23)

where a=1-ais liquid void fraction, K=0.5C,A,
/Vh, and u, =ug-y; is relative velocity.

Let' s consider the highly dispersed bubbly flow
in the horizontal pipe, then the body force term
due to gravity can be omitted. The matrix D
becomes

Dy=Dy;=D=D,=0. (24)
Dy= Dyy=Ds= Dy, =0. (25)

Dyy= Kpy', Dyy= 2Kappt, Dyy= - 2Kapa, Doi=0 (o

D= - Dy, D= - Dy, Dyg= - Dy, D=0 @7
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Let @*= iD31/k, Q,*= iDsy/k, then the matrix (AL
- B + i/k D) becomes

pg()"ug) 'apg 0 0
-ph-u) 0 o 0
0 Cylhu+0* ap (A(2C, - uJ+2* -

p{Crlpuf-0* .

(28)
apdh -2C,u +Q* -

3. Dispersion Relation and Stability
Criteria

The determinant of the matrix (A A - B + i/k D)
is calculated as below

f(A k)=-ap,ap; [p, 0 (A-2C, uA+C u

%)

VETE VBT R
+op(A’-2C,uA+C o)) (29)
- PP [Q*ai(}\'-ug) + Q*a(h-up)] - ap o D*

The relation f{A k)=0 gives the dispersion relation.
Let Q = Dyp/(0%)= 2K P,/ o and D@ = D3,. By
introducing the relation A =A g+id ;= 0p/k+i0,/k,
the solution for f(A,k)=0 is determined from the
real and imaginary parts of equation (29} as below

P (A’—2C, uAgtCou 2 A7)

VTR vETE
+ap(M-2C, e+ C A D) k2,0 GO
2Pg“r)‘-l(_XR—Cngg)‘*zapr}"z(}\R‘Cvfuf)

 Me@-Qua, Quu kD=0 OV

From these two equations we can eliminate Ag and
determine the relation between growth factor «
and other flow paramerters including the wave
number k. For convenience, let pa=p a +ap,,
pou=uy0+0uy and pau = P Cqu o+ p Cy ctuy.
Then the equation (31) is rearranged as

A(2pah+ Q/k)= quQ/k - D/ + 2pquh, (32)

We obtain the dispersion relation expressed as
equation (33) below from the equation (30) by

eliminating (R using equation (32)

g(ok)=4pa’e+8pa’Qu+50a 0+ Q%
+k’(4pawP+4Qw,P-Q)=0 (33)

where P is the same one as that in equation (14)
and Q is presented as

Q = ap,[(Qow-®)-2C, u( Qou -P)Q+C ']

34
+opf(Qau-DY-2C, 0 Q- ),

If we have positive real solution of @, at a given
wave number for equation (33}, the disturbace will
grow expoentailly with time. So the system is
unstable. If we have neagative real solution, the
disturbace will decay exponentially with time and
the system is stable.

From equation {33), we can see that the solution
of o for g{ 0,k) =0 at given k is determined by
the intersection of two curves

gl(o)= o, [4px’o+8pa’Qul+5pa’0+Q"] (35)
g2(w,k) = - kK(4paw,’P+4QwP- Q) (36)

The fact that the four roots of the g1{w)=0 can
be analytically determined from the following
equation, greatly helps us to understand the
behavior of fucntion g1.

gl(e)= 4QYpa x(x+2x*+5/4x+1/4)
= 4QY pa(x+1/2)*(x+1)x = 0

where x=0Pa/Q. The function gl(®)=0 has
roots of ®= 0, ® = -0/pP g, and double roots at ©,
= -0.5Q/p o The minimum of the function gl{w))
is -1/16Q%/ pa at x= (-2+ 42 )/4.

The curve in equation (36) is a parabolic curve
and can be rearranged as below.

£2(w,,k) = - K2 {4PQ/pa(x+1/2)-PQY<pa>-Q} (38)

In the section below, we will compare the case
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of the basic form of the one-dimensiona two-fluid
model with the case with the momentum flux
parameters. As indicated before, we neglected the
effect of virtual masss force terms and phasic
pressure difference to focus our analysis on the
role of momentum flux parameters.

3.1. Basic form of the One-dimensional
Two-fluid Model

The basic one-dimensional two-fluid model
assumes that the value of momentum flux
parameters is unity. Then P is presented as

= - 0P, 0Py (1 - up) (39)

By using the fact that P is always less than zero,
let’ s determine the growth factor for the case with
no interfacial drag and the case with interfacial
drag.

For the case with no interfacial drag, as Q
becomes zero, equation (33) is simplified as below

8(0,k) = 4pa’ey’ - 4K pa0lop,ap,(uu)’ = 0 (40)

Then the growth factor is easily determined as

o= k/(p,ot ap)u. (p,o0p)'” (41)

This result is the same as that of Pokharna and et.
al. [14] and Ramshaw and Trappl4], which shows
that the growth factor is proportional to the wave
number and the relative velocity.

When the interfacial drag is present, Q is
determined as Q=aP [(Qou-® )Q uff+paf(Qpu
® )-Qui® and it is always positive. So, we have
negative P and positive Q. With this information,
the general shape of curves in equation (37) and
(38) is determined and they can be utilized to find
the location of intersections of those two curves,
where the growth factor @, of the system is
determined.

We assumed that k=0.5 or 1.0, P=-1.0, Q=
1.0, <pa>=1.0, Q=1.0 for convenience to figure

Fig.1(a). Plots of Functions gl(x) and g2(x,k)
with (=1 and k=0.5 or 1.0

/
s / 4
/
e
82(x,05) 4" /"_’,: —
P A
gl(x) 7
—_— 2 -y -

-2

=02 =01 L] 0.1 02

Fig.1(b). Plots of Functions gl(x) and g2(x,k)
with 2 = 2 and k=0.5 or 1.0

out the typical shape of those two curves. It is to
be noted that positive €2 has physical meaning.
The curves are shown in Fig. 1(a).

The function g1(x) has zeros at x=0, -1/2, -1.0
and is always positive for the positive value of x, as
it has the minimum value of 1/16 at -0.5++2/4.
The parabolic curve g2(x) has a positive value of
k?Q at x=0. So, it can be seen that the function
gl(x) and g2(x) always intersect at the positive
value of x. The general shape of the curve
indicates that this conclusion does not change,
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even though the parameters k, Q, and <pa>
change. So, it is cleary demonstrated that the
basic form of the conventional one-dimensional
two-fluid model always results in a positive growth
factor. From Fig. 1(a), we can also notice that the
growth factor increases as the wave number
increases.

Figure 1{b) shows the curves for the case with
Q =2 to illustrate the effect of interfacial drag. As
the function g1{x) is proportional to 3, while g2
is proportional to Z, the growth factor decreases
as Q7 increases. This trend is the same as that
discussed by Pokharna et. al.{14].

While previous researches|[13, 14] calculated the
growth factor at specific values of flow parameters
by numerical analysis, the present analysis has an
advantage of being able to show the general
picture by the analytically derived dispersion
relation in equation (33). It clearly illustrates that
that the basic form of the conventional one-
dimensional two-fluid model is unstable to the
disturbances at all wave numbers and the growth
factor is proportional to the wave number and
inversely proportional to the interefacial drag.

3.2. When the Momentum Flux Parameter
is Considered

Firstly, consider the case with negligible
interfacial drag force. As Q and Q becomes zero,
equation (33) becomes

g(o,k)= 4paw/ [pa’w+ k* P 1=0 (42)

As P is positive, it has the solution of «=0. It
means that the perturbation does not grow and is
stationary.

Let's consider the case with the interfacial drag.
If we employ the physcial momentum flux
parameters that suggested by Song and Ishii {12],
the qunatity P in equation (14) is expected to be
positive for the whole range of flow regime. As P

'
B2A(x.05,-5}
E:o.s, 10) g
e

o 0

=06 ~04 =02 [ 0.2 04

Fig.2(a). Plots of Functions gl1(x), g2(x,k,Q) at
k=0.5, Q=1.0 and Q=-0.5

82(x,1.0,1.0)
82(x.05,10)
gl(x)

=06 —04 =02 [ 02 04

Fig.2(b). Plots of functions gl(x), g2(x,k,Q) at
Q=1.0, k=0.5 and k=1.0

is positive, the parabolic curve in equation (38} has
maximum value of K[PQ%/pa+Q] at -Q/(2pa),
while the curve in equation (37) maintains the
same shape as in the previous sectior.

Figure 2(a) below illustrates the general shape of
the curves represented by equation (37) and (38). We
assumed that k=0.5, P=1.0, Q=1.0, <po>=1.0,
Q=1.0 or -0.5. From the shape of these two
curves, we can easility see that the curve gl{x) and
g2(x) will intersect at the positive value of x if Q is
positive On the other hand, if Q is negative, the
two curves would not intersect at the positive value

of x, because the curve g2(x} is always negative at
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the positive value of x. In this case the growth
factor cannot be positive and the disturbance does
not grow with time. The general shape of the curve
indicates that this conclusion does not change,
even though the parameters k, Q, and <pa>
change. From this we can conclude that the
disturbaces at all wave length does not grow if Q is
positive.

Figure 2(b) shows the comparison of the cases at
different wave numbers of k=0.5 and 1.0. It
shows that the growth factor will increase as the

wave number increases.
3.3. Stability Criteria

From the discussions above, we can determine
the conditions for the stability of the one-
dimensional two-fluid model by the following two
inequalities

P = (alpa Cvgu|+apf Cvfuf )2

- (apgtap)(op,Chu,’ +apCul) 2 0 (14)
43
Q = ap,[(Qow-0)-2C,,u,( Qou -P)QA+Q'C,u 2] @3

+apd(Qau-P)-2C u(Qau-B)Q+Q'C.af] <0

If these two inequalities are met, the one-
dimensional two-fluid model is stable to the linear
disturbances. The first criterion in equation (14)
makes the system of governing differential
equations hyperbolic. The second criterion
expressed in terms of momentum flux parameter,
interfacial drag, densities, and velocities makes the
flow stable to the perturbations in all wave-lengths.
From these observations, we suggest that the
stability criteria proposed by the dispersion
analysis are necessary and sufficient conditions for
the stable two-phase flow.

The dispersion analysis performed in this paper
shows that the basic form of the one-dimensional
two-fluid model is always unstable to the linear

distuirbances, which is contradictory with the
existence of various flow regimes. This dilemma is
solved by considering the velocity and void fraction
profiles by use of momentum flux parameters.
Song and Ishii [11] demonstrated that the first
criterion of positive P in equation (14) is satisfied
by the momentum flux paprameters of the
simplified two-phase flow .configuration in various
flow regime. So, if the second criterion could also
be met for the typical two-phase flow by use of
thes momentum flux parameters, it can be
suggested that the nature is such that the flow and
void distributions adjust to make the flow stable. In
other words, the two-phase flow configuration
always has distributions of void fraction and
velocity such that the flow is stable. Otherwise, the
distributions should change immediately.

4. Application of the Proposed Arguments
for the Bubbly Flow and Slug Flow

To investigate the feasibility of the proposed
arguments, we consider the typical steam-water
two-phase flow system in bubbly and slug flow
regime. We limited the discussion to the dispersed
flow regime of bubbly and slug flow. Because, the
annular flow can be treated by seprated flow
model, which does not encounter the problem of
mathematical ill-posedness.

The first stability criteria in equation (14) can be
written in a non-dimensional form by introducing
the parameters S=uy/u; and R=pa/((1- a) p,)} as
discussed in Song and Ishii[11].

Cy 20.5(14R) + 0.5[(1+RY-4(14R)RC,1/S(S-1)]' (44)
-RC,1/S

Co 2U[IR+1]SUS -1), §>1 (45)

If either of equation (44) or (45) is met, the equation
(16) is met. By using the relation_ of O=cq () , the



A Dispersion and Characteristic Analysis for the One-dimensional --.J.H. Song and H. D. Kim 417

equation (43) can be simplified in a non-
dimensional form as below

S[1-a(S8-1)]C,, 2 - [S+a(1-S)] RC,,
+0.25(1+R)(1+o+a,S)?

To demonstrate the applicability of the
proposed argument, consider a typical steam
water flow at 460K and 1.17 MPa. The properties
are determined as p,=5.9795 kg/m® p,=879.55
kg/m?.

Before evaluating the momentum flux
parameters, we need to determine the parameters
R and S. The modified density ratioc R=pa,/{{1- t)
pg) can be determined from the average void
fraction and densities of two phases. To determine
the slip ratio S = uy /u;, we neglected local slip for
mathematical simplicity. As the global slip has a
dominant effect than the local slip, this is a good
first order approximation. Then, the slip ratio S
can be determined by using the Ishii correlation
(17] for C..

Co= (1.2-0.2V(p/p)(1-€™), 0<<0.7 (47)

S=(1-a)C /(- C,a), (48)

4.1. Bubbly Flow and Slug Flow

Consider a bubbly and slug flow with the void
fraction in the range of 0.2-0.7. When the void
fraction is very low between 0.0-0.2, the local void
fraction tends to be in wall-peaked profile (19,20].
It will be discussed in the next section.

We determine the void fraction and velocity
profile and corresponding momentum flux
parameters for the simplified bubbly flow at typical
steam-water two-phase system according to the
procedure described in Song and Ishii{11]. Then,
the parameters of n and m of power law profiles

~
1--
-

I(r,0.2 \
olr.02) o5

al(r,0.7) '

1 =

V(r,0.2)

————

0.
V(r,0.7)

cwoa

5

1
0 0.5 i

r

Fig. 3(b) Local Velocity Profile

are determined as
m=10(1-a) (49)
n=05(Cx1)-m-2 (50)

and corresponding velocity and void fraction
profiles are determined as shown in Fig. 3(a) and
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Cvg(a) ."
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Cvfla) L
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0.2 04 0.6
a

Figure 4. Gas and Liquid Momentum Flux
Parameters

3(b), where a, indicates the local void fraction.
They are consistent with the typical velocity and
void fraction profile observed in the experiments
[19,20]. The momentum flux parameters are
determined as

Cq =mH2)/(m+1)[1+ (mtn+2)(C,- D(m,n)}/C;” (51)

Cv =(1-a)m+2)/(m+1)[1-a - a(m+n+2) (52)
(Co-1)i(m,n)] /(1-C 01y’
where

I(m,n)={1+(2m+2)/(m+n+2)}/(2m+2+n) (53)

The calculated liquid and gas momentum flux
parameters for simplified bubbly flow are shown in
Fg. 4.

At given liquid momentum flux parameter, we
can compare the calculated momentum flux
parameter with that of the criterion (44) and (46)
respectivley to evaluate whether they are located
in the stable region or located in the unstable
region.

The comparisons are shown in Fig. 5(a). The
stability boundary of equation (44) and (46) at

-10 b~
CVGP(a)

Cvg(a) -2 b

CVGQ(a)

-30

-40

=50

Cvia)

Fig. 5(a). Comparison of Calculated Gas Momentum
Flux Parameter Cvg and Stability
Boundaries (CVGP, CVGQ) at Given
Liquid Momentum Flux Parameters Cvf

2 T T T

1
CVFP(a)

Cvia)

Fig. 5(b). Comparison of Calculated Gas
Momentum Flux Parameter Cvf and
Stability Boundary CVFP at Given Void
Fraction

given liquid momentum flux parameter is denoted
as CVGP and CVGQ respectively. It is shown that
the momentum flux parameters of the simplified
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bubbly flow is bigger than the boundary CVGP
and CVGQ. It demonstrates that the simplified
bubbly flow satisfies the criteria of positive P in
equation (14) and negative Q in equation (43).

Figure 5(b) shows the comparison of calculated
momentum flux parameter and stability boundary
in equation (45) at given void fraction. However,
as the condition of positive P is already satisfied
for the proposed momentum flux parameters by
satisfying equation (44), this criterion is not a
necessary condition. It is redundent.

4.2. Wall-peaked Bubbly Flow

When the void fraction is very low, the local
void fraction tends to be in wall-peaked [19,20].
By following the same procedure described in
Song and Ishii [11], we can determine the void
fraction and the velocity profiles for the
simplified wall-peaked bubbly flow at void
fraction below 0.2.

The parameters of m, n, and wall void fraction
{(w are determined from the following relation

m=8 (54)

n=0.4836/a (65)

a, =afl +0.5(m+n+2)(1- C))] (56

The local void fraction is shown in Fig. 6. Note
that the velocity profile maintains the same
shape as that at void fraction of 0.2.

The momentum flux parameters are determined
from equation {51) and (52). The calculated liquid
and gas momentum flux parameters for the wall-
peaked bubbly flow are shown in Fig. 7.

At given liquid momentum flux parameter, we
can compare the calculated momentum flux
parameters with those criteria (44) or (45), and
(46) to evaluate the stability of proposed
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Fig. 7. Gas and Liquid Momentum Flux Parameters

simplified velocity and void fraction profile. The
comparisons are shown in Figure 8(a) and 8(b).
The stability boundary of equation {44) and
(46) at given liquid momentum flux parameter is
denoted as CVGP and CVGQ respectively. It is
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Fig. 8(b). Comparison of Calculated Gas
Momentum Flux Parameter Cvf and
Stability Boundary CVFP at Given Void
Fraction

shown that the momentum flux parameters of
the wall-peaked bubbly flow is bigger than the
boundary CVGP and CVGQ. Figure 9a) shows
that the wall-peaked bubbly flow is stable with
respect to the equation (16) by satisfying either
equation (44) or (45).

Figure 9(b) shows the comparison of calculated
momentum flux parameter and stability boundary
in equation (45) at given void fraction. As the
condition of positive P is already satisfied for the
proposed momentum flux parameters by
satisfying equation (44), this criterion is
redundent.

It can be concluded that the wall-peaked bubbly
flow considered in the present study satisfies the
stability criteria in equation (14) and (43).

5. Summary and Conclusions

A dispersion analysis is performed for the one-
dimensional two-fluid model with momentum flux
parameters. The necessary and sufficient
conditions for the stability are analytically derived
for the dispersed flow including wall-peaked
bubbly flow, bubbly flow, and slug flow. It is
shown that the one-dimensional two-fluid model
is mathematically well posed by use of physical
momentum flux parameters, which are calculated
from the simplified bubbly and slug flow
constructed from available experimental data,
while the basic form of the conventional one-
dimensional two-fluid model is unconditionally
unstable. It suggests that the nature might be
such that the flow and void distributions adjust to
make the flow stable in each flow regime stable.
Though the present analysis took a simplified
approach for mathematical clarity, the concept
can be extended to cover a more general case by
a numerical analysis. We could consider a local
slip, generalized drag forces, and separated
flows. Therefore, we propose the use of one-



A Dispersion and Characteristic Analysis for the One-dimensional -.-J.H. Song and H. D. Kim 421

dimensional two-fluid model with momentum flux
parameter for the analysis of complex two-phase
flow system.
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