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Abstract

A new extrapolation method is developed and applied to the additive angular dependent

rebalance (AADR) acceleration for discrete ordinates neutron transport calculations. With this

extrapolation, the convergence of AADR solution for distinct discretizations between the high-

order and low-order equations is remarkably improved and thus the “inconsistent discretization

problem” is resolved. Fourier analysis is also performed to find the optimal extrapolation and

weighting parameters, which give the smallest spectral radius. The numerical tests demonstrate

that the AADR with extrapolation works well as predicted by the Fourier analysis.
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1. Introduction

It is known that most linear acceleration
methods based on low-order equation for
correction, for convergence, require the low-order
preconditioning equation to be discretized
consistently with the discretizaion of the high-
order transport sweep [1]. On the other hand,
nonlinear methods do not, for rapid convergence,
require the low-order equation to be discretized
consistently with the high-order equation. To avoid
the above consistency requirement, an
extrapolation concept is considered in this paper
for the additive angular dependent rebalance
(AADR) method [2](3]{4] which is a linear form of
ADR [5][6]. An extrapolation concept was used

previously in the diffusion synthetic acceleration
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{DSA) method [7]. But, a different extrapolation is
considered in this study. The new extrapolation
applied to AADR affects the convergence of the
solution drastically and it provides stability with
better performance of AADR with inconsistent
discretization. Fourier analyses as well as
numerical tests for various cases are performed
and the optimal parameters, which give the
smallest spectral radius, are also found from
Fourier analysis. This work was presented in

preliminary form in Ref. 8.

2. Description of AADR with
Extrapolation

Basic equations of the additive angular
dependent rebalance (AADR) with S2-like
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rebalance are given as follows. The high-order
equation, which provides angular flux {(y"*'9), is
given as

1+1/2

dy

1+41/2 I
+ = +q(x), (1)
oV o4 +q(x)

H

where [ is an iteration index, p is a directional
angular cosine, ¢ is a macroscopic total cross
section, O, is a macroscopic scattering cross
section, and g(x) is an external source. The scalar
flux (0"*) is obtained by integrating angular flux
over angular domain:

1 ¢l

¢l+112 -

1+1/2
5 LY du. (2)

To derive the low-order equation for acceleration,
changing all indices in Eq. (1} into /+1,

d(// 1+1

+ I+l: I+1+ x), 3
o TV o4 +q(x) (3)

yii

and then subtracting Eq. {1} from Eq. (3), we
obtain

Ay -y

— to WM -y =g (4 - 4).14)

We then integrate the resulting equation over half-
angular space with a weighting function (W(u)) to

obtain
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where k is a weighting parameter which is defined
as

k= j; LW Xy / _’.(:W(ﬂ)dﬂ’ (7)

and rebalance factors are defined as

1 1+1/2

f+M=V/I+ _p a0,
I+t 141 1+1/2 (8)

L=y -y, u<0.
The optimal weighting parameter (k) can be found
from Fourier analysis. Finally, the scalar flux is
updated with the previous scalar flux which is the
result of the high-order equation and rebalance
factors which are the solutions of the low-order

equation:

1+1 1+1

I+l _ g l4102
g =9 5

An extrapolation concept for AADR is first
considered with scalar flux ¢™'. Thus, we may
modify Eq.(9) as

fl+l +fl+1

——)+(1-a)’, (10)

1+1 1+1/2
=a +
¢ = a(s .

where o is an extrapolation parameter. A similar
idea was used before to get better performance of
the diffusion synthetic acceleration (DSA}.[7] But
when applied to AADR, it turned out that the
method does not work, because the spectral radius
can be larger than unity. So a new extrapolation
concept with ¢ "'/ (not with ¢ ") is devised in this

paper. Thus, Eq.(2) is replaced by

12 za_;_J" W2 (- a)g. (11)
-1

The way o is introduced in Eq. (11) avoids
multiplication of the extrapolation parameter with
the rebalance factors. This extrapolation concept
is found to provide better results from Fourier

analysis and numerical tests.

3. Continuous Fourier Analysis of AADR
with Extrapolation

Fourier analysis is performed to investigate the
efficiency of the extrapolation. Let us define

Fourier ansatz as
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w'"? = 4 ' Exp(jix ),

¢' = Bo' Exp(jix ),

¢I+l/2 :leExp(ij )
M = F,0 Exp(jix ),

(12)

where j = 4-1 And several assumptions, without

loss of generality, are given as

o =1, o,=¢, q(x)=0. (13)
Then, Eq. (1) becomes
(jAu+1)A=cB, (14)
and Eq. (11)
D—gj —i—dy+(]—a)B. (15)
2 1 jAu+1

Low-order equations (5) and (6) are also expressed

as

(JAk+1)F, =c(w-1)B, (16)

(-jAk +1)F. = c(w -1)B. (17)
Using the above two Egs. (16) and (17), we obtain

(w—1)c

F . +F_ =
1+ A%k?

(18)

Finally, using Egs. (14} and (18), Eq. (9) becomes

cB ((o l)c

B+(1-a)B, (19
PSrE +-mB, (19)

wB:g‘[
2 - jAu+l

and arranging for eigenvalue ()}, then we obtain

4 4

c a
ol -———=)=— dy - +(1-a).(20)
¢ 1+).2k2) 2I|1+12y2” 1+ %2 (-a)

Multiplying the denominator on both sides of Eq.
(20), Eq. (20) can be expressed as

ek +a-1- Rty + (-l + 2R+ 2 2
iy

22
ofl+ k)= 2j] d (21)
Finally, the eigenvalue is expressed in the
following inequality as

L= ik -a ., ,
Lo T ~ A (22)
a)_—L 1+A22 u,

and the spectral radius {®), maximum of the

eigenvalues, is obtained in an analytic form:

) 2,2
;f 1+ Ala, ) ,

=Sup,|—
p p} ) l+/12,u2 I

)+ { —A(a,l;)atctan(/l)

, (23)

=sup,

where A{a,A)=((1 - &) A*k? - 0)/(A*k?).
Eq. (23) can be rewritten as

. (24)

- (- A(l,l))arctan(l)) -a)

A

a(A(l,,l)+

The S,-like rebalanced AADR is also analyzed by
Fourier analysis. The lower-order equations of S;-
like rebalanced AADR are given as

fl+l
I my Hmr | 5 fl+| _o_s(¢l+| _¢I)’ u> 0’ (25)

141
I f Im L5 fl+l (¢I¢| _¢I)’ ”<0’ ’n=0’1’ (26)

where

L= ‘LJ/JW(#)@ / I:W(;z)dﬂ,

1 ! (27)
= [uwiuf [Wodu, 0<s<1.

The scalar flux is updated as

iz , S+ S )+ A=A + ) (g

I+ _
¢ =9 5

For simplicity, the constant & is chosen as 1/42
not § in this study. The spectral radius with
extrapolation is given in a general form such as
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Fig. 1. Optimal Weighting and Extrapolation
Parameters in S;-like AADR
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Fig. 2. Spectral Radius for Various Extrapolation
Parameters in Sz-like AADR

p=sup ¢

A
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(@) -2 )m_a)
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where a(A)=1/(1+2%k? for S,-like AADR and
a(A)=(1/(1+ 221+ 1/(1+221%)))/2 for Selike AADR.
From the continuous Fourier analysis for various
rebalance methods, we can find optimal ¢, which
provides the smallest spectral radius:
i) spectral radius (Ss-like rebalanced AADR):
0.1865 {(o=1.0),
ii) spectral radius (S,-like rebalanced AADR):
0.0864 (a=1.2),

iii) spectral radius (S4-like rebalanced AADRY}:
0.0485 (0=1.0),

iv) spectral radius {S4-like rebalanced AADR):
0.0141 {a=1.1).

Fig. 1 shows spectral radii for various
extrapolation parameters and weighting
parameters from continuous Fourier analysis. Fig.
2 depicts spectral radii of AADR with
extrapolation for various weighting parameters.
We can find optimal and k in this figure, which
provides smallest spectral radius, 0.0864, when
approaches about 1.2.

4. Inconsistent Discretization of AADR

The convergence of linear acceleration methods
may be poor, if different spatial schemes are used
for the high-order and low-order equations. In this
study, it is shown by the Fourier analysis and
numerical tests that AADR with extrapolation can
mitigate this inconsistent discretization problem. In
other words, in contrast to DSA, AADR does not
have difficulty in discretizing the low-order
equation consistently, because the low-order
equation of AADR has the same form as the high-
order equation. Furthermore, AADR with
extrapolation allows inconsistent discretization. We
have chosen four cases of S,-like rebalanced
AADR with step difference {SD) scheme and
diamond difference (DD) scheme. If the consistent
discretization with diamond difference (DD)
scheme is considered on both the high-order and
the low-order equations, the high-order equations

are derived as :

1172 112 14172 14112
—Wpi- i T Wnis !
Vainiia ~¥ni-12 s+ Y T Vnicir2 = 0,4 +g;, (30)

n A/ i 2

N
2 _ 1 14172 14172
i = ZZW" Wain1i2 ¥ Waictia s (31)

n=\

and the low-order equations of S;like AADR with
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DD scheme are derived as :

Mo il i
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Inconsistent discretization with diamond
difference (DD) scheme for the high-order
equation and step difference (SD) scheme for the
low-order equation of S,-like AADR provides the
following the low-order equation as :
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The spectral radii obtained from discrete Fourier
analysis can be derived. The spectral radii of
AADR with various combinations of DD and SD
are given as:

a) AADRO (DD-DD}:
& w,l(-za +x)e0s’ (1)

=sup, ca
p p“C ngxzsinz(rﬁxzcosz(r)

+(1—a)‘, (38)

b) AADR1 (DD-SD}:
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c) AADR2 (SD-DD):
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where 1=AA/2, x=2k/A, Y.=2u./A. Here DD-SD
means that the diamond difference scheme is
applied for high-order equation and the step
difference scheme for low-order equation.

Discrete Fourier analysis is also performed for
the S,-like rebalanced AADR with diamond
difference {DD) scheme for the high-order
equation and step difference (SD) scheme for the

low-order equation. The spectral radius is given as

Ni2

p=sup1aczw,,§+(l—a)
=]

, (42)

where

§ = 4,cos*(r)+ B, sin’(r)cos’ (r)+ C; sin*(z),

T = 4y cos*(z) + B, sin’ (r)cos’ (7)+ C, sin*(7),

=B+ -1 -1, B =20 ~LL(Ly+L)+M*4,

C =M QLL - LL(L+h)),

A= 4 -2M* B, =2 - L L(Ly+L)- M+ [ + L + L),
C,=-M'LL}L,+L),

L= /8, +1), L =244+, M=(Qpu,/A).

Spectral radii for various cases of Si-like
rebalanced AADR without extrapolation are
depicted in Fig. 3.

The spectral radii of consistently discretized
AADR (DD-DD, SD-SD) are very small for various
mesh sizes. But in the case of inconsistent
discretization (DD-SD, SD-DD), the spectral radii
approach around unity for large mesh sizes, which
will take a large number of iterations or may not
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Table 1. Number of Iterations and Computing Times for $2-like AADR

AADR AADR AADR AADR
(DD*-DDY) (DD-SD) (SD-DD) (SD-SD)
Source 39171° 39171 6549 6549
[teration 0.9997¢ 0.9997 0.9986 0.9986
(19.2 sec)® (19.2 sec) {2.67 sec) (2.67 sec)
AADR 10 566 98 7
without 0.0908 0.9701 0.8422 0.0348
Extrapolation (0.03 sec) (1.42 sec) (0.13 sec) {0.03 sec)
0a=1.00 o=1.00 0=1.00 0=1.00
k=0.55 k=1.86 k=1.22 k=051
W=1pnl+1.17) (W=1pl-0.44) (W=1p1-0.38) (W=1p1+7.83)
AADR 8 6 5 6
with 0.0245 0.0264 0.0105 0.0111
Extrapolation (0.02 sec) (0.02 sec) (0.02 sec) (0.03 sec)
o=1.24 0=-9.00 o=11.4 o=1.24
k=0.63 k=-4.30 k=5.70 k=0.63
W=1pul+0.14) (W=1u1-0.52) (W=1p1-0.48) (W=1p!+0.14)

®: Solver for high-order equation,

4 Numerical spectral radius,®. Calculation on SUN-ULTRA1 system

converge. With optimal extrapolation parameter
(o) and optimal weighting parameter (k), the
spectral radii of S,-like AADR (DD-SD}) are

depicted in Fig. 4. Note that the spectral radii are
very small for large mesh sizes if optimal

parameters are used in inconsistently discretized

5. Numerical Tests and Results

®. Solver for low-order equation,: Number of iterations,
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The first test problem is an isotropic

homogeneous slab, 100 cm wide with scattering
ratio (c) of 1, total cross section of 1 cm?, and a
uniform source of 1 em®”. The vacuum boundary

conditions are imposed on both sides and S, Gauss-

Spectral Radius (p)

AADR.
1.0 —
®» AADR(s,;DD-DD) |
08| ® AADR(SDD-SD) |
- 4 AADR(S,SD-DD) _~','
S * AADR(S,SD-SD) |./
® 0.64 N
% i
& Al
® 044 o
= ot
g .,
» g24d " e *' - ' 4 -
== \.‘;(‘_‘ - b
X a
0.0 —r T T T T
1E-3 0.01 01 1 10

Mesh Size (ca)
Fig. 3. Spectral Radius for Various Mesh Sizes
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Fig. 4. Spectral Radius for Inconsistently

Discretized S;-like AADR (DD-SD)
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Table 2. Cross Section for Heterogeneous Problem

Cross Section Region 1 Region 2 Region 3 Region 4 Region 5
o {emY) 50 5 0.001 1 1
o (cm™) 50 5 0.001 0.9 0.9
Q (#/cm’) 50 0 0 1 0.0
, Q= 1.0 #/cm sec
Vacuum Vacuum reflective 2 3 4 5 vacuum
o=q; = 1 cm’l
Oem 100 cm Ocm 2 3 5 6 8

Fig. 5. Configuration of Homogeneous Test
Problem

Legendre quadrature is used. The mesh size is
chosen as 10 ¢cm and convergence criterion is given
as 1.0E-9. Fig. 5 shows the configuration of
homogeneous test problem. Table 1 shows the
number of iterations and computing times for
various cases of Sy-like rebalanced AADR. AADR
with extrapolation shows better results than AADR
without extrapolation. For example, S;-like
rebalanced AADR with inconsistent discretization
(DD-SD} requires 566 iterations without
extrapolation but 6 iterations with extrapolation. The
Fourier analysis for this case indicates that its
spectral radius without extrapolation is nearly unity,
but if extrapolation is considered, its spectral radius is
less than 0.13953 as shown in Fig. 4. We also
obtain similar results with Sy-like rebalanced AADR.
All optimal parameters are found from Fourier
analysis and the numerical results are in good
agreement with those of discrete Fourier analysis.
The second test problem is a heterogeneous
problem depicted in Fig. 6 and Table 2 shows the
cross sections. The convergence criterion is 1.0E-
9 and S, Gauss-Legendre quadrature is used. This
problem is a modification of the Reed' s test
problem([9] by changing the scattering cross

Fig. 6. Configuration of Heterogeneous Problem

sections in regions 1 and 2. In fact, any
acceleration methods (DSA, AADR, etc) would not
provide any gains for the Reed’ s problem,
because it is a nearly-pure-absorption problem.
Thus, the scattering cross sections of regions 1
and 2 are increased in this problem to test the
effectiveness of acceleration methods. Table 3
shows the results of calculation with Sa-like and S,-
like AADRs which also provide good results even
if inconsistent discretization is used The diffusion
synthetic acceleration (DSA) method in the
DANTSYS[10] code system is compared in this
test. In principle, to get the better performance
with inconsistent discretization, different weighting
parameters should be used in each region. In this
test problem, region 1 is optically much thicker
than other regions, thus only the weighting
parameters of region 1 are important. The
weighting parameters used for this region were
determined from the results of discrete Fourier
analysis. In the other regions which are
comparatively optically thinner, the weighting
parameters obtained for the case of consistent
discretization without extrapolation were used. As

the problem becomes optically thick, the
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Table 3. Number of Iterations and Computing Times for AADR

mesh size So-like AADR Ss-like AADR
DD°-DD® DD-SD DD-DD DD-SD
0.1ecm o=1.00 12° 327 10 796

{0.10 sec)’ (2.32 seq) {0.10 sec) {19.1 sec)

k=0.56 k=0.56 1,=0.35 [6=3.0

1,=0.80 1=3.0

Extrapolation 11 18 8 20

in Region 1 (0.12 sec) (1.3 sec) {0.15 sec) (0.73 sec)

k=0.56 =-1.76 1=0.35 lo=—-2.1

o=1.05 o=-35 1;=0.80 h=-0.7

a=1.05 a=-2.7

c.f. Source lteration : 155534 (355 sec)
DSA®: 12 {0.20 sec)
0.01cm o=1.00 12 17 10 21

(1.13 sec) (4.44 sec) (1.34 sec) (2.48 sec)

k=0.56 k=0.56 10=0.35 1=0.36

11=0.80 1,=0.80

Extrapol-ation 11 12 8 11

in Region 1 {0.95 sec) (2.60 sec) (2.77 sec) (1.53 sec)

k=0.56 k=0.41 [o=0.35 10=0.23

a=1.05 o=0.8 [,=0.80 11=0.51

o=1.05 a=0.7

c.f. Source lteration : 155541 (3411 sec)
DSA : 12 {1.70 sec)

% Solver for high-order equation,
4. Caleulation on SUN-ULTRAL system,

convergence will be poor without extrapolation as
shown in Fig. 4. Therefore, more accurate
weighting parameters with extrapolation were
used only in optically thick region.

The solutions of inconsistently discretized
AADRs converge to those of high-order solvers,
but in the case of nonlinear acceleration methods,
the solutions approach those of low-order solvers.
Thus, when AADR with extrapolation is applied to
realistic problems, we should choose a highly
accurate scheme as the solver of the high-order

equation and a simple scheme such as step

®. Solver for low-order equation,
. DANTSYS code system {solver module).

‘. Number of iterations,

difference scheme as the solver of the low-order
equation. In this study. the preconditioned bi-
conjugate gradient stabilized (PBi-CGSTAB)
algorithm with the “transport sweep product
(TSP)” preconditioner [3][4] was used to solve the
low-order equation. A nice property of the TSP
preconditioner is that it is already in LU
decomposed form so that the low-order solution
can be obtained directly. Thus, the low-order
equation is solved efficiently and even a negative
value of the weighting parameter k does not cause

any numerical problem.
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6. Conclusions

A new extrapolation concept is applied to the
AADR acceleration method, resulting in
remarkable improvement in convergence and the
inconsistent discretization problem resolved.
Continuous and discrete Fourier analyses show that
AADR with extrapolation provides significantly
improved convergence. Even with inconsistent
discretizations, the AADR with extrapolation works
well and provides fast convergence. Optimal
parameters (o, k) can be obtained from Fourier
analysis and they are demonstrated by numerical
results. Since it is usually known that the
extrapolation concept is more effective in two- and
three-dimensional problems, where o could be
estimated during iteration, future work should
address online o-adaptation.

As a conclusion. AADR fa linear acceleration
method) with the new extrapolation concept does
not require the low-order equation to be discretized
consistently with the discretization of the high-order
transport sweep, in contrast to the case of DSA.
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