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Abstract

Using a three-dimensional numerical code, B3R developed for nuclide transport of an
arbitrary length of decay chain in the buffer between the canister and adjacent rock in a high-
level radicactive waste repository by adopting a finite difference method utilizing the control-
volume scheme, some illustrative calculations have been done. A linear sorption isotherm,
nuclide transport due to diffusion in the buffer and the rock matrix, and advection and
dispersion along thin rigid parallel fractures existing in a saturated porous rock matrix as well as
diffusion through the fracture wall into the matrix is assumed. In such kind of repository, buffer
and rock matrix are known to be important physico-chemical barriers in nuclide retardation. To
show effects of buffer and rock matrix on nuclide transport in HLW repository and also to
demonstrate usefulness of B3R, several cases of breakthrough curves as well as three-
dimensional plots of concentration isopleths associated with these two barriers are introduced
for a typical case of decay chain of 2*U—***Th—?**Ra, which is the most important chain as far
as the human environment is concerned.
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Notation ¢; = concentration of nuclide /, [ML3]
¢y, = initial concentration of nuclide | at the inlet,
2b = fracture aperture, (L] (ML
b = super- and subscripts denoting the buffer D" = molecular diffusion coefficient in water, [L*T"]
b,p = super- and subscripts denoting the buffer Dy, Dy = interface diffusion coefficients
and the matrix together through the buffer-fracture and the
Elt) = concentration of nuclide | at the inlet, [ML?] fracture-buffer interfaces as defined in
Ce, Cw, Cn, Cs, Cr, Ca Cp = concentrations at each Appendix I, [L?T")
grid point as shown in Figs. 4 and 5, [ML? D,.,, D, = interface diffusion coefficients
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through the buffer-matrix and the matrix-
buffer interfaces as defined in Appendix II,
LT

D;.,, D,.; = interface diffusion coefficients
through the fracture-matrix and the matrix-
fracture as defined in Appendix I, {L*T"]

D, = longitudinal hydrodynamic dispersion
coefficient in the fracture, further
expressed as, D, = o - v+D ", [L°T"]

D, D. = transverse hydrodynamic dispersion
coefficients in the fracture in the y- and z-
direction, respectively, [L*T"]

e, w, n, s, f, b = control volume faces as defined
in Figs. 4 and 5

E, W, N, S, F, B, P = subscripts for grid point
concentration as shown in Figs. 4 and 5

f = super- and subscripts denoting the fracture

J = total flux in the fracture as defined in
Appendix I, [ML?T"]

| = subscript denoting parent nuclide

I-1 = subscript denoting daughter nuclide

p = super- and subscripts denoting the matrix

R, = retardation coefficient in the fracture for
nuclide [

R, = retardation coefficient in the buffer for nuclide |

R, = retardation coefficient in the matrix for
nuclide |

t = elapsed time, {T}

tos = half-life of nuclide, [T]

v = groundwater velocity in the fracture, [LTY

x, y, z = coordinates as defined in Fig. 1, [L]

x, = radius of canister (see Fig. 2), [L]

x, = outer radius of buffer region (x; - x. = buffer
thickness), {L]

xi, y. = distances to the outlet boundary in the x-
and y-direction, respectively, [L]

oy = dispersivity along the fracture, (L]

(8x)e, (8%)wr (8Y)s, (8y)n, (82}, (82)s = distances
between nodes as defined in Fig. 5(b}, [L]

(6x)., = distance as defined in Fig. 5(b), (L]

Ax, Ay, A = spatial discretization increment in the

x-, y-, and z-direction, respectively [L]

A, = temporal increment, [T]

A = decay constant of nuclide 1, [T"]

8, = porosity of the buffer

8, = porosity of the fracture set to 1.0

8, = porosity of the matrix

(8, D), (8, D,%), (8, D.’) = effective diffusion
coefficients in the buffer in the x- and y-,
and z-direction, respectively, [L*T]

8, D7), (8 D)), (8, D,*) = effective diffusion
coefficients in the matrix in the x- and y-,
and z-direction, respectively, [L*T"]

1. Introduction

The potential repository for the final disposal of
high-level radioactive waste (HLW) is very likely to
be located in deep geological formation in Korea.
This kind of concept would be similar to that for
Swedish KBS-3 (1983) in which the disposal of
spent fuel assemblies in canisters individually
emplaced in vertical deposition holes is
considered. In this case the buffer material is
designed to have low permeability to delay the
contact of the waste by groundwater as well as to
retard nuclides transporting to the host rocks. Also
the significance of rock matrix in the host rock has
also been noted in the literature (e.g., Neretnieks,
1980) showing a few hundred meters of good
rock could be a most effective barrier for most
important nuclides in HLW.

Also for such HLW repository located in deep
geological formations, behavior of chain decaying
nuclide in geological media has been an important
topic in assessing its performance.

However, unfortunately, only a limited number
of analytical works for limited modeling system are
available relating the multi-member chain decay
transport. In order to overcome limitations
associated with analytical models, many numerical

approaches have been developed for decades
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(e.g., Grisak and Pickens, 1980; Huyakorn et al.,
1983a; Lee et al., 1989; Kennedy and Lennox,
1995). However, many of these do not provide an
exact solution or are not capable of adequately
modeling transport for decay chains of an arbitrary
length, which is essential in analysis of radioactive
waste disposal systems. As for the decay chain
models, although Sudicky and Frind (1984)
developed an exact analytical solution for two-
member decay chain transport in a fractured
medium, neglecting hydrodynamic dispersion
along the fracture, a complete analytical solution
in a closed form may not yet available for multi-
member chain decay and transport, whereas many
solutions for a porous medium without matrix
diffusion or for the media having rather simple
geometry have been found in the literature (e.g.,
Harada et al., 1980; Lung, 1986; Gureghian,
1987, Kang, 1989).

Since Huyakorn et al. (1983b) dealt with decay
chain transport in a fractured porous medium by
utilizing a finite element technique, various
different kinds of numerical scheme have been
introduced (e.g. Yamashita and Kimura, 1990 ;
Lee and Lee, 1995).

Recently a series of studies associated with chain
decay transport have been done numerically by
authors (Lee et al., 1993; Lee et al., 1995; Lee
and Lee, 1995; Lee et al, 1996; Lee and Kang,
1997; Lee et al, 1997).

Also, a two-dimensional finite-difference
numerical solution for nuclide transport of an
‘arbitrary decay chain length’ (i.e., multi-member
chain decay) through a buffer and adjacent
fractured porous medium by utilizing a control
volume method has been developed and the
exactness of this solution by comparisons with
available analytical solutions has been investigated
in a series of works by Lee and Kang (1999a;
1999b} and Lee et al. (1999).

The purpose of this paper is to extend the

previous work by considering the media as a
three-dimensional modeling domain and visualize
how nuclides can be transported across the buffer-
matrix and buffer-fracture interfaces around a
canister. In other words, the primary application
of the model and the code is to evaluate and to
visualize the effect of nuclide behavior in the HLW
repository, the model in this paper accounts for
chain decay transport in buffer and fractured
porous media. Adopting this model a computer
code named B3R has been developed.

The examples presented in this paper are
limited to and concerned with transport of nuclide
having decay chains and its effect in the presence
of buffer and rock matrix diffusion, considering in-
growth due to daughter nucides’ decay even
though any in-depth sensitivity studies in relation
to buffer thickness and matrix properties are not
dealt with to show the importance of such barriers
in view of HLW repository safety.

2. Three-Dimensional Numerical Model

Soon after nuclides escaped from a penetrated
canister having HLW in it, they will diffuse through
the buffer material around the canister and
eventually will be transferred to the host rock.
Fractures in the host rock around the buffer may
intersect disposal holes for canister providing
groundwater pathways for the hydrogeologic
nuclide transport due to advection, whereas
porous rock matrix interfaced with buffer will
provide diffusive transport pathways for nuclides
(se Fig. 1). Since fractures having permeabilities
several orders of magnitude higher than the rock
matrix itself provide a main hydrogeologic
pathway for the transport of the nuclide into the
far-field region, the assumption that the rock
matrix surrounding the buffer is impervious to
nuclide transport has commonly been made.
However, recently, studies show that the nuclides
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are available to diffuse freely across the buffer-
matrix boundary and the matrix can ply an
important role to retard the nuclides requiring
rather in depth studies involved. However, such an
approach is difficult to be handled with an
analytical method due to the complexity of
domain.

The physical system of the fractured rock
modeled here is similar to that treated in many
works (e.g., Sudicky and Frind, 1982; Sudicky and
Frind, 1984; Lee et al., 1989; Lee et al., 1993;
Lee and Lee, 1995; Lee and Kang, 1997). In
these models thin rigid parallel fractures are
embedded in a saturated porous rock matrix by
approximating the fractured porous medium as
three-dimensional parallel fracture-embedded rock
block. The buffer is modeled as a common three-
dimensional porous medium as shown in Fig. 1.
The geometry and dimension of the modeled
domain are also shown in Fig. 2.

Assuming a linear sorption isotherm, transport
for the nuclide | in a saturated fracture can be
described by
R,%ct’-+).,c, , ai(D a;’—vc,] %[D,,?;]wug[vu %C’)-f»k,_,c,_lR,_x,

x,5in0<zS x, N0Sx< 3,
x,c080<x<x, (0<% 0Sy<h (™" g *1>0
scost 0<0<)0<y { 0szsx,Mx2x,

(1)

Also, unlike fracture, assuming that no advective
transport takes place in the buffer as well as in the
matrix, the governing equation for nuclide
transport in such porous media is

Rf"aa AR = a{e”of’?] :y[e“nf’?;'] a(e,pnf"‘; ]+A,1c,, b

{xrcos¢s<x<x,cos¢+(xb -x)0<y<y, x sind<z<x,cosw,¢>0; forbufffer

@)

x,c0s9<x<x,b<y<y, x,sing<z<x,1>0; formatrix.

The discretized domain for the buffer and
fractured porous media is as depicted in Fig. 3,
where the boundary conditions are zero
concentration gradient (Neuman-type) boundary
conditions as represented in Eq. (3) at all

boundaries only except at the canister surface
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interface, i.e., except for the inlet:

g=0, x=x, (3)

For initial and boundary conditions associated
with the inlet of the buffer, nuclide decay and
transformation of the parent nuclide into its
daughter products are considered together by
Bateman's decaying source. Therefore the
concentration at the inlet boundary for the I-th
component of the decay chain, ¢l(t), which is

written as
1
&)= 2 Be™ @)
where o
=$eTIn{TI0, -2,)
n=1 nk=n * Jj=n ! " (5)

jrm

and ¢’ denotes the initial concentration due to

inventory at the inlet.

Matrix

30_doman cor

GW flow

Fracture

Fig. 1. Schematic View of a Deposition Hole
Intersected by a Fracture in a Potential
HLW Repository Tunnel

To derive a three-dimensional discretization
equation by control volume approach, first of all, a
grid-point cluster is introduced. (See Figs. 3 and
4.) The modeled domain is divided into variably
sized control volumes, each of which has a central
grid point, P located in the geometrical center of

the control volume. The control volume faces are
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Fig. 2. The Dimension of the Modeled Domain
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Fig. 3. Three-dimensional Discretization of the
Domain

not necessarily located equidistant from the each
adjacent node. Once the control volumes have
been defined, the concentration value is evaluated
at each node. The full description for the
discretization procedure is represented in detail in
Appendix 1.

In order to avoid a discontinuity in physical
properties within a control volume, discontinuities
in the medium, such as at the no flux boundary and
the fracture-matrix boundary, are recommended to
be located at control volume faces. Although it
leads to the half-sized control volumes around the
grid points, by postulating a grid point at the face

Control
Volume

Fig. 4. A Control Volume with Notations
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Fig. 5. (a) Steady State One-dimensional
Consideration for the Flux in the Fracture
(in the x-direction); (b) Two-dimensional
View of Control Volume in the x-y Plane
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Table 1. Spatial Increments for the Control Volume

Ax;, cm

i=1,2,3,..,100 7(i=1..5), 10(i=6, . 10), 15(i=11...50), 20(i=51...100)

Ayj, cm

=1,2,3,..,20 0.006(=b/2), 0.009, 0.015, 0.025, 0.045, 0.07, 0.13, 0.25, 0.45, 1(j=10...20)
Az, cm

j=1,23,..,10 7k=1...5), 10(k=6...10)

Table 2. Nuclide Data

Nuclide tos, yr R, R%, R, c?
B4y 2.47 x 10° 120. co=1.0
20T 8.x 10* 1500. co=0.0
2Ra 1600, 300. co=0.0

having control volume of zero thickness, the need
for special discretization at discontinuities can be
eliminated.

The solutions of the algebraic equations (A7)
and (A8) are then obtained using a simple Gauss-
Seidel iteration scheme.

2.2, Retardation Effects of the Buffer and
the Rock Matrix on Transport

Any works associated with demonstration of the
validity and relative accuracy of the scheme
developed associated with this study has not
shown. Since several examples which is limited to
two-dimensional work for the fractured rock
medium have been considered in comparisons
with available analytical solutions through other
works (e.g., Lee and Kang, 1999a), no further
verification for current three-dimensional model,
which is an extended version of two-dimensional
model, are not made through this study.

As seen in the Table 1, the number of control
volumes used is 100 along the fracture axis in the
x-direction, 20 in the y-direction into the matrix,

and 10 in the horizontal z-direction, giving a total

of 100 % 20 x 10 control volumes.

Parameters used are also listed in Tables 2 and 3.

In Figs. 6 and 7, both of which take zero buffer
thickness, the effects on concentrations of #*U—
**Th—?*Ra chain, normalized to parent nuclide
concentration in the fracture at the distance of
x = 6.775m in view of matrix diffusion in the host
rock are shown. Fig. 6 which does not consider
any retardation effect throughout all media show a
little higher values of concentration from early
time, compared to the case retardation effects are
considered, as represented in Fig. 7. Nuclide
concentrations of daughters for the case of no
retardations throughout the media have the quite
higher values earlier than those retarded as well.
The parameters of the calculation are listed on the
figure, and all these parameter are fixed through
calculations in this study at values given. In the
figures, solid lines and dotted lines represent the
concentrations of parent nuclide and its daughters,
respectively normalized to the parent concen-
tration as a function of time.

As shown in both figures the concentration of
parent nuclide, #*U is almost constant after reach

at the peak until the decay effect becomes
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Fig. 6. Breakthroughs as a Function of Time at x =
6.775m in the Fracture, Showing
Comparison of the Cases of Matrix
Diffusion Available or Not (no retardation)
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Fig. 7. Breakthroughs as a Function of Time at x
= 6.775m in the Fracture, Showing
Comparison of the Cases of Matrix
Diffusion Available or Not (retardation)

pronounced. The concentration of daughters,
2°Th and **Ra increase from zero to the highest
peak values about at several 10° years, and then
decrease as the concentration of »*U decreases.
More specifically, Fig. 6, with the presence of
matrix diffusion as parameter, shows how extreme
cases of existence and non-existence of matrix
diffusion can result for the transport of nuclides. It
turns out that even when there is matrix diffusion
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Fig. 9. Breakthroughs as a Function of Time at x
= 6.775m in the Fracture, Showing
Comparison of the Cases of Matrix
Diffusion and Retardation Available or Not

available during transport along the fracture, if
there is no retardation, no remarkable change of
the concentration breakthrough are not found.
This kind of phenomenon also seems to be true
for the other case that retardation is considered, as
seen in Fig. 7 that shows the same thing as in Fig.
6 only with presence of retardation.

All shapes of breakthrough curves do not greatly
matter matrix diffusion effect for both cases.
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However, in contrast, for all cases retardation is
considered, curves considering matrix diffusion
show about a half order of magnitude of lower
concentrations than those considering no matrix
diffusion.

In Fig. 8, which combines Fig. 6 and Fig. 7
together for the comparison purpose, retardation
effects are so remarkable that it shows for the case
of retardation throughout the media the peak
concentration of the retarded nuclides are delayed
very much and even duration of the peak narrows
down.

One can also see that, in the case of presence of
retardation, parent nuclide, **U shows its peak
earlier than the other two daughter nuclides due to
its relatively smaller retardation coefficient.

Through the study several effects on
consideration of matrix diffusion in the host rock
and retardation in all media are investigated.
Among them, in Fig. 9, which takes 35cm of
buffer thickness, several normalized concentrations
in the fracture at the distance of x = 6.775m are
shown.

First of all, the importance of retardation can be
revealed when comparing all results with those in
which retardation is assumed absent. In absence of
matrix diffusion the breakthrough are not greatly
changed from the results with matrix diffusion,
which is the similar behavior as seen in Fig. 6 for
the case of no buffer.

Fig. 10 shows the breakthrough curves
comparing the results in the presence of buffer
with those in the absence of buffer. Both cases are
assumed that both matrix diffusion and the
retardation throughout all media take place
together. It is easily seen that such phenomena
decrease about four orders of magnitude of peak
values of parent nuclide concentration as well as
daughters’. This means, as a summary, to make
such reduction more effective, one can only

expect to increase the buffer thickness with large

3
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Fig. 10. Breakthroughs as a Function of Time at
x = 6.775m in the Fracture, Showing
Comparison Between Each Case of
Buffer Considered or Not

retardation coefficient in the buffer, although any
in-depth sensitivity studies are not made for the
study for the time being. However, matrix
diffusion are not greatly and relatively expected to
reduce the peak concentration for any case of
retardation is available or not, even though the
case with the same retardation coefficient values
for the same nuclides are taken for the buffer, the
rock matrix, and the fracture in case retardation
should be considered. What else to be discussed is
about these figures for the case of consideration of
buffer is very similar to plots for the case of no
buffer.

2.3. Some 3-Dimensional Plots Showing
Nuclide Behavior in the Barriers

The volume or face plots of concentrations of
parent nuclide (**U} in the media around the
quartile section of a canister, normalized to its
initial concentration at the inlet boundary surface
of the canister where €, is to be decayed time-
dependently according to Bateman equation (Egs.

{4) and (6) in Table 4), as a function of distances in
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Table 3. Parameters Used

Parameter Value

2b 120pum

O 0.1

oy 1.0

6, 0.4

0L 0.76 m

v 0.75 m/yr

(6D = (6D, = D* 8.64 x 10 m?/yr

DL o - V+ D*

Xe¢ 50cm

Xb 85cm
buffer thickness (= x; - x.) 35cm

L 16.85m

L 12cm

L - 85cm

the x-, y- and z-directions at time equal to 8 x 103
years are shown in Figs. 11 and 12. Instead of
plots for the whole family of decay chain of #‘U
—2°Th—%*Ra, only parent cases are introduced
since it is emphasized that the solution and
associated computer code, B3R developed
through this study are not limited by the specific
number of members in the chain and that decay
chain was not dealt with for the time being
especially for the illustrative purpose avoiding
complexity in plots.

Fig. 11 shows the isopleths in case there are
matrix diffusions both from the buffer and the
fracture without any retardation through whole
media are considered. On the other hand, Fig. 12
shows each case when retardation and matrix
diffusion are involved.

Table 4. Initial and Boundary Conditions

Plots for **U for the case retardations are
considered for all media (Fig. 12a) show rather
slow concentration isopleths, compared to the
baseline case (Fig. 11). For the case there is no
transverse matrix diffusion through the fracture
wall, Fig. 12b shows their dominant concentration
isopleths along the fracture {around y = 0).

By investigating further more for Fig, 11 and
Figs, 12(a) and 12(b), one can easily see the
retardation effect from Fig. 12(a), compared to
Fig. 11. Also, very naturally, it is shown that U
in Fig. 11 travels relatively faster than %*U in Fig.
12(b). This is because the nuclides entering the
fracture are taken away by advection and
dispersion due to groundwater flow takes place
only in the fracture although there is no loss term
due to matrix diffusion into the matrix from the
fracture unlike the case depicted in Fig. 11. For all
cases nuclides are supplied from the buffer into the
rock as well as through the inlet of the fracture.

In summary, with the advection-dispersion
parameters chosen, these calculations visualizes
the isopleths that #*U travels physically well
around the canister, buffer and other surrounding
media.

2.4. Concluding Remarks

For more effective calculation, varying temporal
steps according to the calculation time can be used
through out the computation. After some
numerical experiments through a series of the

1.C. cix, v, z;t = 0),

1=1,2,3 5)

B.C. (@ inlet)

cilx=x. cost, 0<y<y;, 0<z<xt) = G,

1=1,23, .. (6a)

ac -
vefx=x. cosdp, 0<y<y;, 0<z<xy;t) -D= — = ¢,

=

I=1,2,3, .. (6b)
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Fig. 11. Volume Plot (a) and Face Plot (b) for ***U
at Time of 8 x10° Years

previous works associated with the control volume
discretization, optimum temporal sizes as well as
sufficient number of iterations for Gauss-Seidel
Scheme have been obtained, even though the
results are not shown again in this paper. Among
these values some acceptable time steps are
chosen.

To deal with interface diffusion coefficients, Dy .

()

Fig. 12. Face Plots for **U at Time of 8 x10°
Years: (a) Retardation Considered; (b)
No Matrix Diffusion Available

» Db _p, and Dy s when the diffusion coefficients or
dispersion coefficients are different in adjacent
control volumes as in such cases as the fracture
wall interfaced with the matrix and the buffer
interfaced with rock, the analogy to a series of
resistors can be utilized in the same way as
discussed by Patankar (1980). Some more detailed
discussions are to be found in Appendix II.
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The same values of retardation factors for each
medium of the buffer, the matrix and the fracture
are used for simplicity, which does not seem to
affect any illustrative purpose addressed by this
study.

A three-dimensional model utilizing a control
volume method and a computer code, B3R have
been introduced for multi-member chain decay and
transport through a fractured porous rock matrix.

For demonstration, transport behavior of nuclide
having decay chains and its effect in the presence
of buffer and rock matrix diffusion, considering in-
growth due to daughter nucides’ decay was
investigated to show the importance of such
barriers in view of HLW repository safety. Also to
show three-dimensional visual transport behavior,
some volume plots of parent nuclide, #*U were
introduced.

The model, which is an extension of previous
work by Lee and Kang (1999a; 1999b) who
developed the two-dimensional model for decay
chain transport in a composite media of the buffer
and the fractured porous medium is based on a
physically exact formulation utilizing a control
volume method and then the differential governing
equation is directly integrated over each control
volume. This kind of work believes to be very
useful especially when a visualization is needed in
order to represent the nuclide behavior around the
canister and there needs a graphical represen-
tation of the nuclide behavior around the deep
geological repository to investigate transport
phenomena through the geologic media involved
in the safety assessment of such repository and
case studies to see what happens when varying
properties of such barriers as the buffer and the
rock matrix are applied to as well.

As noted before the main application of B3R is
visualization of nuclide behavior in a fractured
medium. Besides, as another important purpose of
model development, currently KAERI (Korea

Atomic Energy Research Institute) uses the
MASCOT-K, developed in cooperation with AEA
Technology, U.K. which is a one-dimensional PSA
code to assess the overall safety of a potential
repository in Korea. However, even though it is
handy and versatile to accommodate many
barriers into one overall model, it still has some
restriction. One of the examples is simplification
on the near field transport phenomena between
buffer and a fracture surrounded by a porous
medium. The current model in the MASCOT-K
does not consider the following mechanisms:

(1) It does not estimate effects of any multi-
dimensional transport inclusive of a finite
volume of a fracture. In the MASCOT-K a
fracture is infinitely wide.

(2) It does not consider any nuclide transfer from a
buffer to an open fracture through surrounding
host rock. If a fracture opening is very tight,
then the transport from a buffer to a surroun-
ding rock matrix cannot be underestimated any
more, and

(3} It assumes parallel fractures only and cannot
deal with any asymmetric fractures.

Probably, the current MASCOT-K approach
might be conservative by simplifying these
complicated issues. However, still, it may be
worthwhile to understand detailed transport
phenomena to support the validity of simplified
MASCOT-K approaches. In addition, as currently
planned, when KAERI actively develop the muiti-
dimensional PSA code to both calculate
groundwater flow and nuclide transport, it need
some comparable codes for code verification
purpose and etc.

Using various computational results from B3R,
real transport phenomena in a fracture are
expected to be visualized not only for scientific
communities but also for general public who still
have negative feelings on the safety of a
radioactive waste repository.
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3. Appendix 1
3.1. Three-Dimensional Discretization
Equation

Designate the grid point in a control volume as
P, with neighbors E and W in the x-direction, S
and N in the y-direction, and B and F in the
z-direction as shown in Fig. 4.

The control volume around P shown shaded in
Figs. 4 and 5 has a volume of Ax xAy xAz in a
three-dimensional domain.

In order to avoid unrealistic results, it is
convenient to consider the total flux due to
advection plus dispersion in the fracture, utilizing
an available analytical solution for the steady-state
advection-dispersion equation, as introduced by
Patankar (1980). This is called the “exponential
scheme”.

The governing equation for a steady state one-
dimensional case in which the advection and
dispersion terms are dealt with could be generally
represented as

Ldo_dfp de\_dI o
de dy| “dx) dx (A1)

which has an exact solution for a domain 0 <x <
(6x) ., (see Fig. 4(a}) subject to ¢(0)=c, and
clx=(8x)u)=c, as

_ _ exp(vx/DL)—l
C(X)— Cy + (CP Cyw )X {WF—I} (AZ)

which leads to the flux through the face e of the
control volume having a grid point P

V(CE ~¢p ) (A3)

= b &), (D, ) -1

Similarly, for the flux through the face w,

J, =vc—DL?
x

— e £= vies ~cw)
J, =vc D"ax VCP+exp[v(ﬁx)w/(D,_)w]—l' (A4)

Since the solution is obtained by marching forward
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in time, the discretization equations are derived by
integrating Egs. (1) and (2) over the control volume
for node P and over the time interval Af, which
are represented as Eq. (A5) and (A6), respectively:

({5 enen s
1+02 ph P! ] F) ‘
QNIRRT SR

o o
e 9 219 ], 9 ¢
-l I:I’J:(ax{(eb‘“}f}+ay{(°"5')¥}

:z {(GD"A’)%CL}-O-A‘ lec‘_‘ }trdydzdt

where J denotes the total flux, expressed as, J =
ve, - D 2¢L ”C' which was discussed already.

By performing integration for a control volume,
above Eq. (A5} can be evaluated as

Y A feh el
+

AXA}‘AZR Crm C +l C»AIAI AIAIAXD [ICN lcr ICP ICI
1{(1 P) () }- (8)’),, (sy)l

+Aityda(1, -, )-

MN 1A el
“iCr 1% il

(52) (82),

= bRy o AxyAzAt.

ArAxAyD, |4

Similarly, from Eq. (A6), difference equations can
be obtained:

i L
AeyRe - bt} AlAyAzR,(D'['t’ (&i‘c’ WL (&)'f" ]
febt nN L ] Nl G
+ MR’ 0" iEh i€ b il } AIAxAyR'GD' 1 % i€ % '
i { o &) | &) G

+hy ORY, 7 Ardyhadr.

Appendix II
Interface Diffusion Coefficients

As illustrated in Figs. 3 and 4, grid points are
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always placed at the center of the controt volumes.
Therefore, when the control volume sizes are not
uniform, their faces not lie midway between
adjacent grid points. In these circumstances, Eq.
(A9) can be used as the effective diffusion
coefficient through the interface of the fracture

and the matrix.

b - [ 1-(8y),. /), , (), 1), )_l (A9)

r D, ©,0;)

where the distances are defined in Figs. 4 and
5(b).

In the same way, the effective diffusion
coefficients through the interface of the buffer and
the matrix (D,_,, D,_) and the buffer and the
fracture (D,_;, D;_) can be obtained.

The interface diffusion coefficients, D;_, and D,
should be the values replaced by (D,) in Eq. (1)
and (6,0 in Eq. (2), respectively. Similarly, D, ,
and D, replaced by (6,D% and (6,D%) in Eq. (2),
and D;_, and D,_, replaced by (D;) in Eq. (1) and
6:D%) inEq. (2).
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