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Abstract

In this study, an effective method to estimate the fundamental frequencies of co-axial

cylinders immersed in fluid is proposed. The proposed method makes use of the equivalent

mass or density that is derived from the added mass matrix caused by the fluid-structure

interaction (FSI) phenomenon. The equivalent mass is defined from the added mass matrix

based on a 2-D potential flow theory. The theory on two co-axial cylinders is extended to the

case of three cylinders. To prove the validity of the proposed method, the eigenvalue analyses

upon coaxial cylinders coupled with fluid gaps are performed using the equivalent mass. The

analyses results upon various fluid gap conditions reveal that the present method could provide

accurate frequencies and be suitable for expecting the fundamental frequencies of fluid coupled

cylinders in beam mode vibration.

Key Words : fluid-structure interaction, added mass, equivalent mass, fluid element, beam
mode vibration, cylindrical shell, ANSYS

1. Introduction

When a structure vibrates in contact with fluid,
the fluid shall be displaced to accommodate the
motion. Then fluid pressures are generated as a
result. Fluid forces on the structure occur due to
the integrated effect of these pressures. The force
is usually proportional to the relative accelerations
of the structure, and gives rise to a hydrodynamic
coupling, fluid structure interaction (FSI). Many
authors have treated the hydrodynamic coupling
as an inertia term, and formulated as an added

mass or virtual mass upon a structure {1]. There
are number of structures contacting with the
coolant in a nuclear power plant such as fuels,
internal structures, spent fuel storages, vessels, and
so forth. In case of the reactor vessel and internal
structures, authors idealize the case as two co-axial
cylinders with a fluid gap.

Chen and Jung [2}{3] provided the natural
frequencies and corresponding added masses of two
co-axial cylinders by solving the motion of fluid and
structure simultaneously. Au-Yang{4]{5] suggested a

theoretical and experimental investigation of co-
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axial cylinders with different lengths. Au-Yang also
proposed a procedure to evaluate the added mass
matrix of fluid-coupled cylinders, and performed
dynamic analysis upon nuclear components. Fritz[6]
published a theoretical investigation of two co-axial
cylinders based on the two dimensional flow theory.
Kim[7] discussed the validity of finite element
analysis by comparing the experimental results over
a reactor internal model. Perov{8] investigated the
vibration mode of the reactor vessel and the
internals of a WWER-1000 type reactor with finite
element (F.E.) technique.

There are two ways to simulate FSI. One is to
adopt the inertia concept, and the other is to insist
on a strict structural-fluid formulation. The former
derives a mass matrix to accommodate the effect
of hydrodynamic coupling of fluid and structure,
and the later directly solves the coupled equation
of motion using a numerical method. Since there
are merits and limitations to both, a preferable
method depends upon the goal of analysis. By
replacing the fluid elements with mass matrices or
equivalent elements, the added mass method can
provide a rather simple model and minimize the
degree of freedom. In the modeling process, mass
matrices replace fluid elements between structures
and connect two structural nodes. Although this
process seems to be quite a simple one, a lot of
effort to connect all structural nodes with the
corresponding mass matrices is required. In case
of complex structures, the connection of structural
nodes with mass matrix often leads to quite a
tedious job. Then, needs for more effective
methods to minimize the modeling effort or
straightforward means are raised.

In this study, an effective method replacing the
added matrix with the equivalent amount of mass is
proposed. The proposed method simulates the
mass matrix in terms of an equivalent amount of
mass over a structure. To prove the validity of
proposed method, a series of eigenvalue analyses to

estimate the fundamental frequencies of cylinders
immersed in fluid in the beam mode vibration is
performed. In addition, the theory to define the
added mass of three co-axial cylinders is proposed.

2. Derivation of the Added Mass for Co-
axial Cylinders

2.1 Added Mass of Two Co-axial Cylinders

To define the added mass matrix of two co-axial
cylinders, the theory of potential flow is referred(6].
Consider two long concentric cylinders separated by
a fluid annulus as shown Fig. 1. The inner radius a
is surrounded by an outer concentric cylinder of
inner radius b. The length of the annulus is L,
where L is assumed to be much greater than b. The
outer cylinder is assumed to have a velocity of X,
and inner cylinder x,. The relative displacement
X, - X, is assumed to be small compared to b - a.
A velocity potential ¢ may be defined:

o¢ 104
v =-22 -__2%
g or Y (1

,where, V, is radial velocity of fluid, and V, is
tangential fluid velocity. The fluid is considered

Outer Cylinder

Fig. 1. Two-cylinder Motion with a Fluid Couple
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frictionless and to be at stationary when the
cylinder is at rest. Under these conditions, the fluid
is irrotational and ¢ will be single-valued. The
boundary conditions are:

_6_¢.sz .cosf@ at r=a (2)
or

9 i cos0 at r=b (3)
or

The continuity equation is given by equation (4),
and a form of solution could be assumed:

_a_(,ﬁﬁ)+l§2i‘1=o @)
o\ or) ro&
¢=f(r)-cos@ (5)

From equation (4) and (5), the governing equation
could be a form of differential equation.

P erf - f=0 {6)
,where, the prime denotes differential with respect

to r. The solution of equation {6) with the
boundary condition of equations (2) and (3) is as

follows.
v, =(£2—A)-cose )
.
v, =(§2—+A)-sim9 (8)
r
ba* . . xa’ —x,b’
where, B=os—s(%-%,), 4="0—1

By applying lLagrange's equation of motion, the
fluid reaction forces on the cylinder could be

depicted as equation (9).

d (o1, o,
Fp=-e| =L |+ 9
d dt(é)&,] ox, ©

.where, x; indicate the generalized coordinate of
motion and Ty is the kinetic energy of the fluid. If
the motion of cylinders assumed to be small
compared to the thickness of fluid gaps, it is
reasonable to neglect the last term in equation (9).
Then, the kinetic energy of fluid could be
expressed as equation {(11).

d(oT
F,=——|—L 10
4 dt[ax,] (10)

T, =ff”%p-r-L-dr-da(V,uV;) (11)

By substituting the equations (7) and (8) for
velocity terms in equation (11), following two
equations of motion could be derived from
equation (10). The forces on the left side indicate
reaction forces on the inner and outer cylinder.

F/l _ M, M,|[%
Ffz T M, M, {xz} (12

¥ +ad’ b +a’
2
,where, M, =nrpLa (77_2———_(12—), My= ”prz(bz 20

M, = M, =-2zpLa’ [bzliaz ) >
and p is the density of fluid. Since the equation
{12} indicates an external load on cylinders, the
integrated equation of motion on cylinders could
be expressed in term of structural motions,
equation (13).

B HE
my, my, M, M, )% Ky ky 1%, 0

,where, m; and k; denote the mass and stiffness of
cylinders. In equation (13), the effect of the fluid
gap is considered as added mass in the equation of
motion for cylinders. The added mass matrix
consists of diagonal and off-diagonal terms with

symmetric element. Although this formulation
does not consider the longitudinal mode of the
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cylinders, it provides effective solutions over
various structures in beam mode vibration.

2.2. Added Mass of Three Co-axial Cylinders

The case of three concentric cylinders with two
fluid gaps in-between could be considered as a
starting point of the general theory on the multi-
cylinders immersed in fluid, but studies on the
subject are rare. Consider three concentric
cylinders with two fluid gaps as shown in Fig. 2.
The reaction forces of fluid on each cylinder could
be expressed by superposing the equation (12)
over two cylinders in reciprocal combination. The
boundary conditions for fluid velocity are
expressed in equation (14). The boundary
condition for the cylinder b is defined at the middle
plane for simplicity but the actual dimension
includes the thickness of the cylinder.

0 .
—ﬂ=xI cosb, atr=a, —%=izcost9,at r=»>b

or or (14)
——aﬁ:fczcosﬁ,alr:b, —?j—z-zfc}cosg,a! r=c

or or

Since equation (12) provides the reaction
forces developed between adjacent cylinders,
the corresponding forces for each pair of

Fig. 2. Three-cylinder Motion with Fluid Couples

cylinders could be expressed as following
equations (15} through (17). Then, equation
{15) only indicates mutual influence of the inner
and outer cylinder without consideration of the
middle cylinder.

F/l _ ~1"111 M, | [%
{Fﬂ}‘ AT 1o
F/?} My, Mon',}

=- 16
{FJS My My || % (16)
Ffl}_ —Mn Mlz]{xx}
{FIZ _M2| Mzz 552 (17)

The total forces on each cylinder could be
defined by summing the reaction forces in
equations (15) through (17). By arranging the
summed reaction forces with respect to the
generalized coordinate, the equation of motion
could be expressed as follows.

<u-b> <wu-e> <u-b> <g-c>
MM, M, M, b4
<u-b> <u-b> <h-¢> b~ .
M, My ™"+ My, My % (18)

<a-c> <b-e> <a-c> <b-e> || ¥
My, My, My + My, 5

S
"
)

where, F, is the resulting force on each cylinder,
and My is the added mass resulting from each
fluid gap. M™” could be calculated from the
equation (12) by replacing the indices with a, b
and c.

2.3. Definition of the Equivalent Mass
2.3.1. Case of Two Cylinders

From the equation (12), two equations defining
the forces on cylinders could be derived:

—F=(M, %+ M,)X,), —F;,=(M,%+My%,) (19)

Previous studies suggest that the lowest
frequencies of the inner cylinder in beam mode
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could be found by considering the outer cylinder to
be static, X,=0. And the frequencies relevant to
the outer cylinder come out when two cylinders
vibrate in the same phase, %; = 'x,. The
equation (19) results in the equation (20) after
substituting the terms defined in the equation {12)

and considering the direction of motion.

. b +ad ),
=F, =M, Z”pLaz[bz_azjxl

—Fp, =(Myx, + M,,%,)

b P+
=npl| -2a*| — +5° =
P ( a (b'—az) (b“—azj]x'

= npLb’%,

From equation (20}, one can determine the
amount of added mass to estimate the lowest
frequency of each cylinder in beam mode
vibration. Equation (20) also means that the
amount of added mass is highly affected by the
distance between cylinders, or the fluid gap size. A
dimensionless parameter, C,, indicating the
distance between two cylinders, is then introduced
as follows.

C, = [M] (21)

b -d?

For example, a large value of C,, denotes that
the size of fluid gap is very small.

2.3.2. Case of Three Cylinders

In case of three cylinders, the same idea used for
two cylinders is adopted. Since the assumption on
the direction of motion controls the amount of
added mass, several sets of assumed motion for
cylinders are prepared to trace the exact solution.

2.3.2.1. Case of Inner Cylinder

To determine the added mass of inner cylinder,

total three cases are considered. The first case
considers the outer cylinder to be static, and the
middle cylinder is considered to vibrate in out-of-
phase with respect to the inner cylinder. From the
equation (18), the resulting reaction force on the
inner cylinder shall be as follows.

Case 1; 5(’3 = O, 3(“1=— 5(‘2,

<a-b> <a—e> Y o <a—b> .
—E,=<Mn + M, )XI_MIZ X,

(22)

bZ 2 2+ 2 2
:ﬂasz( Z+a’ +c—ziz])‘c‘]+27rb2Lpb2L_l_a2 %,

b*'—a’ ¢ -a

In the next place, the motion of all cylinders is
considered and assumed to be in out-of-phase.
Then, this case tends to provide more amount of
mass than any other case, and the resulting

equation is as follows.

Case 2; 3(.3 #=O, )‘C.l=_3(.2, ).(.3="'361

<a-b> <a-c> Y .. -b> .0 —C> e
_Fuz(Mu +M,, )xl—Mlzu >x|_M13w %

1

(23)
s b +ad F+d). ba’ clat ).
=rq Lp(———l72 . +——C2 e ]x, +27er(b2 o +C2 —

The last case considers diagonal terms only as
shown in equation (24) for the purpose of

providing less conservative value.

Case 3; Consider only diagonal terms

_1‘-; - (M”<a—b> +M”<a—c>)‘.x;'
(24)

rd’L b +a® F+a).
it WS

2.3.2.2. Case of the Middle Cylinder

At first, the motion of inner cylinder is
assumed to be in in-phase with respect to the
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middle cylinder, and the motion of the outer
cylinder is assumed to be in out-of-phase. Next,
the outer cylinder is considered to be static but
other conditions are maintained. Finally the
diagonal terms are summed to provide a minimal

case.
Case 1; ').(3 + 0, .).(1 = ').('2, .J'('3 = - .).('2

- <a=b> .. <a-b> <h-c>\ 20 <b-e> oo
-F =M, xz"'(Mzz +My )xz_Mzs X,

2;2

a’b 2

b +a
¥, +mb’L
T_ g sz_az

%, (25)

=-2zL
P

222

2 2
c +b° . 4 .
3 -—b2 X, +271'mex2

+ab’Lp
c

Case 2; .)2'3= O, ')&1 = .X.z

_ <a=h> .. <a-h> <hb~c>Y .
-k =M, xz"’(Mzz +My, )xz

(26)
ab 2, b +ad c+b
= —Zﬁmexz +7h Lp;i_—azxz + ﬂszp T X,
Case 3; Consider only diagonal terms
—F;' — (M22<u—h> + M22<b—c>)x2
(27)
b +a +bh
=nb'Lp R +7b’Lp T

2.3.2.3. Case of Outer Cylinder

The direction of motion for all cylinders is
assumed to be in the same direction in accordance
to the case of two cylinders. The resulting
equation (28) indicates that the effect of fluid for
this case is double of total mass of the fluid inside
the outer cylinder. The second case only considers
the diagonal terms to provide a guide for the first
case.

Case 1; X;= X2=X%3

_ <G=> - <b-c> .o <t b m
-F =M, TR My, x3+(M33 THM D)xs
2 2 22 1,2 2,
ca ch c+a” o+
=1lp 2| =5 |-l 75 +c! 71773 bv X
¢ -a c-b c'-a ¢ -b)|

- -0 (28)
:7[Lp C CZ_az +c2_—b2 X3

=2xLpc’s,

Case 2; Consider only diagonal terms

<g-c¢> <b-c>\ ..
-F, =(M33 +M;, )x,

N c+b).
X.
2 "

(29)

S +d
=rzlpc | 5
¢ —a

3. Eigenvalue Analyses

Dynamic analyses to find the natural frequencies
of cylinders coupled with the fluid gaps are
performed over the various fluid gap sizes. First,
the full analysis model which consists of structural

Shell Element

Fluid Element

Fig. 3. Typical Full F.E. Model for Three Cylinders
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Table 1. Examples of C,, Value Used for Eigenvalue

Analyses
b c Cm (a-b) |Cm (bc) | Cm (a-c)
0.15 0.20 6.29 8.78 2.26
0.15 0.25 6.29 2.95 1.63
0.20 0.25 2.26 11.27 1.63
0.20 0.30 2.26 3.64 1.40
0.50 0.55 1.12 26.26 1.10

*) Radius of inner cylinder(a) = 0.1m
Thickness of cylinder({t) = 0.03m
Length of cylinder (L}= 1.0m / 2.0 m

and fluid elements is built using the commercial
program ANSYS[9] to constitute reference
values. Since many authors provide the validity of
ANSYS through numerous studies, the results of
the program is believed to be close to the exact
solution. The cylinders are modeled with shell
elements at the middle plane. Fig. 3 shows a

Table 2. Comparison of Frequencies (a/L=0

.1)

typical finite element model for three cylinders
with two fluid gaps. One of the ends of the
cylinder is fully fixed to provide a cantilever
condition and the property of water is adopted
for analyses. The elastic modulus of the cylinders
is 195.0E9Pa with density of 7800kg/m’, and
the bulk modulus of 2.07E9Pa [9] is used for the
water. The radius of the inner cylinder remains
constant to determine the values of C,,, and
Table 1 lists the example value of C,, for three
cylinders used for analyses. The added mass
defined through equations {19) to (27) is
transformed into structural density by dividing the
mass with the volume of each cylinder, and the
eigenvalue analyses over various sizes of fluid gaps
are then performed.

3.1. Results of Two Cylinders

Table 2 and 3 list the fundamental frequencies

c Full F.E. Model Equivalent Model Difference (%)
1% Mode 2™ Mode 1"Mode | 2" Mode 1% Mode 2" Mode
12.02 97.6 222.3 89.2 222.1 9.4% 0.1%
6.29 120.0 230.8 112.0 232.2 7.1% 0.6%
2.26 156.3 273.6 146.0 272.8 7.1% 0.3%
1.39 166.7 3295 158.4 315.8 5.2% 4.3%
1.20 167.4 3524 1616 328.8 3.6% 7.2%
1.12 166.3 357.4 162.9 327.3 2.1% 9.2%

Table 3. Comparison of Frequencies (a/L=0

.05)

c Full F.E. Model Equivalent Model Difference (%)

" PMode | 2%Mode | 1"Mode | 2“Mode | 1"Mode | 2" Mode
12.02 23.9 508 233 60.4 2.6% 1.0%
6.29 29.4 62.6 293 63.8 0.3% 1.9%
2.26 393 78.1 38.2 795 2.9% 1.8%
1.39 42.7 105.2 414 103.1 3.1% 2.0%
1.20 43.4 124.4 422 118.4 2.8% 5.1%
1.12 43.7 137.2 426 127.7 2.6% 7.4%
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of two cylinders from both full F.E. analyses and
analyses with the equivalent mass. In the tables,
the 1% mode means the frequencies for the inner
cylinder and the 2™ refers the frequencies of the
outer cylinder. The general trend shows that the
proposed method well pursuits the beam mode
frequencies of two cylinders within a 10% of
deviation. There is not any prominent trend in
deviation from the exact value, but the longer
cylinder shows less difference in general.

3.2. Results of Three Cylinders

Fig. 4 through 6 compares the results of each
equation with those of full F.E. analyses. Since the
equations {21) through (27) provide different
amount of the added mass for each cylinder, the
validity of each equation is reviewed to develop
comprehensive equations. For example, in case of
inner cylinder, the equation (22} in Fig. 4 is
selected as a representative equation. The
equations (25) and (28) are also selected as
representative equations after reviewing the
coverage of each equation over the F.E. results.
Although the representative equations are believed
to follow the general trend of F.E. analysis resuits,
much deviation still exist in certain ranges of
geometry. The main reason for these deviations

120
5 e
100l XX - M- — e “ﬂ/"‘-—-ﬂm‘
an=0.1 e
—~ 8ol P e e
i .3 5. . A N
8 ok —e—Full F.E. Model
e -o - Eq'n (22)
s ~oEdn (23)
—— Eq'n (24
g 4o} a/L=0.05 X Ean i)
u
HHX— e o e e e
20} N e =
i L 1 4
00 2 4 6 8

Cm(b/c) (a=0.1, b=0.15)

resides in the assumption that the motion of each
cylinder resembles that of a rigid body with same
magnitude. Therefore, the amount of the added
mass does not match the exact value in certain
region and the representative equations return less
or more conservative results. Then, modification
of representative equation to catch up with the full
F.E. solution is needed.

Case 1; Inner cylinder

The sensitivity of equation (22} is found to be
affected by the second term, the interaction of the
inner and middle cylinder, as shown in Fig. 4. As
the radius of the middle cylinder becomes large,
the equation agrees with the finite element results.
In addition, any severe transients in frequencies
are not monitored according to the variation of
fluid gap size between the middle and outer
cylinder. Thus, it is believed that the gap between
the inner and middle cylinder have major influence
upon the case. The modification is done by
introducing a gap parameter Cy,.

b +a® F+d a
2 2
m, =ra Lp(b2 7 +C2 — +27b Lp— — C,
(30)
C <a-b> _1 . b2 + az
<u-b>
’Where’ C/u == <u-b and Cm = ) 7
Cn b -a
160
-—— e g
or a/l=0.1
120p TR T T Ty
- Py S Y
N
Tx 100}
g sol —e— Full F.E. Model
g o Eqn (22
s —o-Eqn (23
g r _ %~ Eq'n (24)
L a/L=0.05
Bl o e— iy
20} '
4] 2 A 1 ('l 1
0 5 10 15 20 25 3

Cmibic) (a=0.1, b=0.50)

Fig. 4. Typical Results for Inner Cylinder
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250
[ ¢ ar=04 e Full F.E. Model
o x-- Eq'n (25)
L ~ o Eqg'n (26)
200r o9 - - Eqn (27)
B
N X T
I ..
Lsop N
kY [
2 100 all.=0.05 _
('] b
s <. \v
&’:R\ y
s0f ~
L S A\;
R 71\ ;
[
0 1 L A 1 1
0 5 10 15 20 25 30

Cm(b/c) (a=0.1, b=0.50)

Fig.5. Typical Results for Middle Cylinder

2000 - o— Full F.E. Model
] . - %— Eq'n (25)
. —o- Eq'n (26)
< w— Eq'n (27)
150} o oo
' ¥
¥ - -
g all=0.1 T T
g 100 ‘ N
e
A a/L.=0.05
50k %}g—jt—»,.
0 L y ' l
5 5 4 ) 8 10
Cm(blC) (a:O.‘]' b=0.15)
350
X
300+ x X.
M;:’t; _— e S
250} a/lL=0.1 Ty
- =
I
7 2oof.
2 —e— F.E. Mode!
§ 1ok —&— Eq'n (28)
% alL=0.05 —x— Eq'n (29)
X
w1000 &%
. S8 . n
50f
ot L y : :
; 5 ) 6 8 10

Cm(b/c) (a=0.1, b=0.15)

Fig. 6. Typical Results for OQuter Cylinder

Case 2; Middle cylinder

The equation (25) is mainly affected by the gap
between the middle and outer cylinder as shown in
Fig. 5. Since the motion of the middle cylinder is
sensitive due to the presence of inner and outer
cylinder, the estimated frequencies are rather far
from the finite element analysis results. Fig. 5 also
reveals that the equation (25) tends to provide
more conservatism than the equation (27). Then,
the last term of the equation (25), interaction of
middle and outer cylinder, shall be adjusted to

reduce the conservatism.

350
—
- - *
s00f o T -
9 )(‘
X an=0.1 o A
250F & a—-- [,
F LA
& 200f &
o
S
c
g 150f a/l=0.05
g [mcw—— .
@ 100f o e
t +—F.E. Model
sof & Eqn(28)
-x-- EQ'n (29)
oL " . . . L
0 5 10 15 20 25 20
Cm(bic) (a=0.1, b=0.50)
272 2
a 2 b +a
my =-2xLlp—5—+7b Lpb2 5
-a
Cz + bz Clbl (3 1)
+7b’L 2rlp———C
’Dcz_bl pcz_bz »
Cm™™ -1 bees _ €D
whete, Cj,==——— and C," =Z—.
Cm PRI

Case 3; Outer cylinder

Fig. 6 shows that the equation (28) is less
affected by the gap between the middle and outer
cylinder. The equation provides more conservatism
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when the distance of inner and middle cylinder is
large. Then, a coefficient to account for the
interaction between the inner and middle cylinder
is introduced.

m, =(1+C )rLpc’

b +a?
b -a’

~b>
C 77 -1
W —_m
’ here, Cfc - <a=b>

n

-5
and C,“" =

3.3. Results of the Modified Equations

Fig. 7 through 15 compares the results of
modified equations with initial ones. Each figure

120

-
1004
a/L=0.1 A=22.9%
o %} 888—%§ —————R
T
2 ol —a— Full F.E. Model
S —o— Modified (30)
2 & - Equation (22)
g awf
= a/L=0.05 .
20| gee—g -Q
A=183%
O 1 1 1 1
) 2 4 6 8 10
Cm (b/c) (@=0.1, b=0.15)
Fig. 7. Results of Inner Cylinder
140
1 1
120} U:B:U A=H.S’/o°
AN, N A . A
W0r  a=0.1
N
£ o
@ —a— Full F.E. Model
g 60| —o— Modified (30)
g A Equation(22)
g o] an=0.0s5
S-S . =1
204 2=6.5%
0 i 1 i i

o
NE

4 8 8 10 12
Cm (b/c) (a=0.1, b=0.20)

Fig. 8. Results of Inner Cylinder

shows that the modified equations are much closer
to the F.E. results than the initial ones. The
maximum deviation is found to be less than 30%
throughout the whole cases, and the cases with
smaller fluid gap show larger deviation in general.
In case of inner cylinder, Fig. 7 through 9 shows
that the modified equation well traces the full F.E.
results except the case when the gap of all
cylinders is small, Fig. 7 and 8. However, this
tendency disappears as the gap between the inner
and middle cylinder increases, Fig. 9, nevertheless
the gap between the middle and outer cylinder
decreases. This is because the reaction forces on

160
s wt |e=a ]
] a=3.4%
Ma A . A
120f
all=0.1
¥ oot
= —a&— Full F.E. Model
8 ol —o—~Modified (30)
§ 4 Equation (22)
g
a/L=0.05
[
o}
BR8] S
20f 4=05%
o 1 L e i 1
0 5 10 15 20 25 30
Cm (bic) (a=0.1, b=0.50)
Fig. 9. Results of Inner Cylinder
200
180} 5\\\' —a— Full F.E. Model
160 °\o —O— Modified (31)
3 Aa % 4 Equation (25)

140

-

n

o
T

Frequencies(Hz)
g 8

s 8

204

(-]
(X33
»
®
®

10
Cm (blc) (a=0.1, b=0.15)

Fig. 10. Results of Middle Cylinder
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the inner cylinder lessen due to the interaction of
middle and outer cylinder when the gaps between
all cylinders are small. Whereas, the reaction
forces on the middle cylinder might increase, and
Fig. 10 shows the lower frequencies at the
corresponding region.

In case of the middle cylinder, the modified
equation shows 30% of the maximum deviation.
However, the modified equation follows the
general trend of F.E. as a whole. In Fig. 12, it is
found that the results depend upon the length of
cylinder. Because the ratio of the diameter of
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outer cylinder to the length is greater than 1.0 for
this case, the current equations shows a limitation
over this region.

In case of the outer cylinder, less than 11% of
deviations are monitored. Fig. 13 through 15
shows rather higher frequencies as the gap
between the middle and outer cylinder is small.
This trend vanishes when the length of each
cylinder increases. The appearance of higher
frequencies comes from the assumption that all
cylinders vibrate in the same phase. As the gap
between the middle and outer cylinder decreases,
the out-of phase vibration might occur. Then, the
same phenomenon as mentioned for the inner
cylinder is expectable, but the strength of such a
reverse effect is found to be less severe.

4. Conclusions

This study proposes an effective method to
replace the added mass matrix due to FSI with the
equivalent mass or density in carrying out the
eigenvalue analyses for cylinders immersed in
fluid. First, the equivalent mass for two cylinders
having a fluid gap is introduced, and the theory is
extended to three cylinders coupled with two fluid
gaps. Since the current method only refers the
magnitude of the added mass for eigenvalue
analyses, the analysis procedure is highly
simplified. In general, the proposed method
shows less than 10% of deviation from the full
F.E. results, and maximum of 30% deviation is
found at specific region due to complicated
interaction. When the gap between adjacent
cylinders is small, the F.E. results show that the
motion of a cylinder could be blocked by the
other cylinder due to mutual interaction. Such
blocking phenomenon results in rather higher
frequencies and is found to decrease as the length
of the cylinder increases. Since the current

method is devoted to estimation of the beam
mode frequencies of cylinders without hydraulic
coupling term, direct application to the dynamic
response analysis shall be limited.
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