
1. Introduction

Detailed 3-Dimensional (3D) core power

distribution monitoring in operating power

reactors is a prerequisite to ensure that various

safety limits imposed on the fuel pellets and fuel

Estimation of the Nuclear Power Peaking Factor
Using In-core Sensor Signals

Man Gyun Na, Dong Won Jung, and Sun Ho Shin
Chosun University

375 Seosuk-dong, Dong-gu, Gwangju 501-759, Korea

magyna@chosun.ac.kr

Kibog Lee
Korea Atomic Energy Research Institute

150 Deokjin-dong, Yuseong-gu, Daejeon, Korea, 305-353 

kblee@kaeri.re.kr

Yoon Joon Lee
Cheju National University

1 Ara-il-dong, Jeju-do, 690-756, Korea

yjlee@cheju.ac.kr

(Received April 9, 2004)

Abstract

The local power density should be estimated accurately to prevent fuel rod melting. The local

power density at the hottest part of a hot fuel rod, which is described by the power peaking

factor, is more important information than the local power density at any other position in a

reactor core. Therefore, in this work, the power peaking factor, which is defined as the highest

local power density to the average power density in a reactor core, is estimated by fuzzy neural

networks using numerous measured signals of the reactor coolant system. The fuzzy neural

networks are trained using a training data set and are verified with another test data set. They

are then applied to the first fuel cycle of Yonggwang nuclear power plant unit 3. The

estimation accuracy of the power peaking factor is 0.45% based on the relative 2σerror by

using the fuzzy neural networks without the in-core neutron flux sensors signals input. A value

of 0.23% is obtained with the in-core neutron flux sensors signals, which is sufficiently accurate

for use in local power density monitoring. 
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clad barriers such as the local power density (LPD)

and the departure from nucleate boiling ratio

(DNBR) are not violated during reactor operation.

The ratio of the expected DNB heat flux to the

actual fuel rod heat flux at a particular time during

an incident is called the DNBR. Most commercial

power reactors have some types of fixed or

movable in-core detectors and ex-core detectors.

These are equipped with an on-line or off-line core

power or flux distribution monitoring program to

estimate the 3D power distribution by combined

use of the detector signals and pre-calculated

monitoring constants supplied at the core design

stage. For example, Yonggwang PWR nuclear

power plant unit 3 (YGN-3) [1] has self-powered

rhodium fixed in-core neutron detectors installed

at 45 fuel assembly (FA) locations on five axial

levels. The CECOR code [2] and Core Operation

Limit Supervisory System (COLSS) [3] of

Combustion Engineering (CE) convert the rhodium

detector signals to detector box powers using pre-

determined constants. They then determine the

uninstrumented FA powers using pre-calculated

coupling coefficients (CC) defined as the inverse

ratio of the power of a given FA to the average

power of the four surrounding FAs at each

detector level. The detailed FA axial power

distribution is also determined by fitting the five

detector box powers along each FA by a five-

mode Fourier series. 

The CANDU-type Wolsung nuclear power plant

unit 1[4] has fixed in-core vanadium detectors

installed at 102 core locations. The CANDU on-

line flux mapping system [5] converts the 102

vanadium detector signals to thermal fluxes at the

detector locations and then maps out the 3D flux

distribution by least-squares fitting of the measured

thermal fluxes to a linear expansion of pre-

calculated flux modes. These methods using the

pre-calculated coupling coefficients or weighting

constants run fast but they are inaccurate,

especially for an unsymmetrical axial power

distribution. The inaccuracy arises because they

are unable to take into account the core operation

history and transient situations caused by operator

action such as control rod insertion/withdrawal

and boration/dilution or xenon transient. 

Regarding the protection and monitoring systems

of the Korea Standard Nuclear Power Plant

(KSNP), the calculation of LPD and DNBR

constitutes two major functions of Core Protection

Calculator (CPC) and COLSS, which each play a

role in protection and monitoring systems. COLSS

monitors the operating limits of a reactor core

including LPD and DNBR and provides related

information to operators. COLSS is a program

that runs in the Plant Monitoring System (PMS)

computer, which helps plant operators to monitor

the Limiting Conditions for Operation (LCOs)

specified in the technical specifications. However,

COLSS carries out only a monitoring function

related to the operating limit of a core and does

not provide nuclear reactor protection functions.

On the other hand, CPC, which provides nuclear

reactor protection functions, calculates faster than

COLSS but generates more conservative values.

Therefore, CPC provides lower DNBR and higher

LPD values than COLSS. COLSS periodically

adjusts CPC based on operating variables that are

accurately calculated by COLSS, including power

level, reactor coolant system flow, etc. 

LPD should be estimated accurately to prevent

fuel rods from melting. LPD at the hottest part of

a hot fuel rod, which can be explained by the

power peaking factor (Fq), is more important than

the local power density at any other position in a

reactor core. DNBR studies have been extensively

performed [6-12]. Meanwhile, very little LPD

research has been conducted using artificial

intelligence methods that have been extensively

used in a variety of engineering problems. 

Therefore, the objective of this work is to predict
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the power peaking factor in a reactor core using

the measured signals (in particular, including in-

core neutron sensor signals) of the reactor coolant

system by applying fuzzy neural networks

according to the operating conditions. Neural

networks have been extensively and successfully

applied to a variety of engineering problems. The

fuzzy neural networks should be optimized to

achieve good monitoring performance of the local

power density.

The output and input data employed are the

power peaking factor value in the reactor core and

numerous operating condit ions, which are

characterized by reactor power, core inlet

temperature, pressurizer pressure, coolant flowrate

of a reactor core, axial shape index, in-core

neutron sensor signals, and a variety of control rod

positions. The Fq value in the reactor core is

predicted by the developed fuzzy neural networks

using these various operating condition data as the

inputs to the fuzzy neural networks. The proposed

power peaking factor estimation algorithm is

verified by using the nuclear and thermal data

acquired from numerical simulations of YGN-3.

2.  Fuzzy Neural Networks

In this work, neural networks, which are most

popular for function approximation, are combined

with fuzzy logic to predict the power peaking

factor for various operating conditions. A system

that consists of a fuzzy inference system

implemented in the framework of a neural

network is generally called an adaptive network-

based fuzzy inference system (ANFIS) or a fuzzy

neural network [13]. The training of the fuzzy

neural network is accomplished by a hybrid

method combined with a back-propagation

algorithm and a least-squares algorithm. Also, a

first-order Sugeno-Takagi type [14] fuzzy inference

system is used where the i-th rule can be described

as follows:

(1)

where xj is the input variables to the fuzzy neural

network (j=1, 2, ..., m; m = number of input

variables), Aij the membership functions for the

antecedent of the i-th rule and j-th input (i = 1, 2,

..., n; n = the number of rules), and  y i the output

of the i-th rule.

In Eq. (1), the if part is fuzzy linguistic, while the

then part is crisp. Usually                is a

polynomial in the input variables, but it can be any

function as long as it can appropriately describe

the output of the fuzzy inference system within the

fuzzy region specified by the antecedent of the

rule. In this work, a symmetric Gaussian

membership function is used. The output of an

arbitrary i-th rule, f
i
, consists of the first-order

polynomial of inputs, as given in Eq. (2). 

(2)

where

qij= the weighting value of the j-th input on the i-th

rule output,

ri = the bias of the i-th output.

The output of a fuzzy inference system with n

rules is a weighted sum  of all the fuzzy rule

outputs. The estimated signal from the fuzzy

inference system is given by:

(3)

where

＾



The back-propagation algorithm is a general

method for recursively training fuzzy neural

networks. It uses a gradient descent method. The

gradient descent method tunes the antecedent

parameters (the center position and sharpness of

membership functions) so that the predefined

objective functions E is minimized. In order to

train an antecedent parameter aij, the following

iterative calculation is used:                                    

(4)

where                           , i = 1, 2,..., n,  j = 1, 2,

..., m, t=0,1,2,..., and ηa is a learning rate for a

parameter a. The gradient descent method is very

stable when the learning rate is small but

susceptible to local minimum.

If we fix the antecedent parameters of the fuzzy

inference system by the back-propagation

algorithm, the resulting fuzzy neural network is

equivalent to a series of expansions of some basis

functions. This basis function expansion is linear in

its adjustable parameters, as shown in Eq. (3);
y=wTq, since wT has been determined by the back-

propagation  algorithm. Therefore, we can use the

least-squares method to determine the remaining

parameters (consequent parameters qij and ri ). If a

total number of N input-output training data are

given, from Eq. (3) the consequent parameters are

chosen to minimize the following cost function:

(5)

where

y is the output data vector, q is the parameter

vector, and the matrix W consists of the input data

and the membership function values. The equation

for minimizing the cost function is as follows:

y = Wq . (6)

A series of the output of the fuzzy neural network

is represented by the N×(m+1)n-dimensional

matrix W and the (m+1)n - dimensional parameter

vector q. The parameter vector q in Eq. (6) is solved

by using the pseudo-inverse of the matrix W.

3.  Application to Power Peaking Factor
Estimation

The proposed algorithm was applied to the first

fuel cycle of the Yonggwang unit 3 PWR plant.

The used data were obtained by running the

MASTER [15] code based on some assumptions.

The MASTER (Multipurpose Analyzer for Static

and Transient Effects of Reactor) reactor analysis

code developed by KAERI (Korea Atomic Energy

Research Institute) is a nuclear analysis and design

code that can simulate the PWR and BWR core in

1-, 2-, and 3-dimensional geometry. The

MASTER code was designed to have a variety of

capabilities such as static core design, transient

core analysis, and operation support. 
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The data obtained from simulations of the

MASTER code comprise a total of 21875 input-

output data pairs(x1, x2, ..., x23 , yr). The data

are divided into both training data sets and test

data sets. These data sets are then divided into

two kinds of data with positive axial shape index

(ASI) and negative ASI. The training data set

comprise one-third of the acquired input-output

data pairs and the test data set comprises two-

thirds of the total data. x1 through x23 represent

the reactor power, core inlet temperature, coolant

pressure, mass flowrate, axial shape index, 12 in-

core neutron sensor signals, R1, R2, R3, R4, R5,

and P control rod positions, and yr is the power

peaking factor (Fq) in the reactor core. R1 through

R5 and P are the names of the control rod groups.

The used in-core detector signals are located on

the central part of the core (a total of 12 in-core

sensor signals including instrument locations

indicated as instrument numbers 16, 20, 23, and

26 at 3 axial levels in Fig. 1). 

The ranges of the input and output signals used

for training in this work are described in Table 1.

The fuzzy neural networks are trained for two

kinds of data sets, the positive (relatively high

power at the top part of the reactor core) ASI

cases and the negative ASI cases. This results in

smaller errors compared with using only one

summed data set.

The selected number of rules of fuzzy neural

networks is 6 for both the positive ASI cases and

the negative ASI cases in order to prevent

underfitt ing and overfitt ing problems. The

antecedent parameters such as membership

function parameters are optimized by the back-

propagation method and the consequent

parameters qij and r are optimized by the least-

squares method.

Fig. 1. Fixed Rhodium In-core Detector Location of YGN-3
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(a) Actual Fq Histogram

(b) Error histogram Between Actual Fq and
Estimated Fq (without SPND Signals)

(c) Error Histogram Between Actual Fq and
Estimated Fq (with SPND Signals)

Fig. 3. Estimation Performance of Fuzzy Neural 
Networks for Test Data with Negative ASI

(b) Error Histogram Between Actual Fq and 
Estimated Fq (without SPND Signals)

(c) Error Histogram Between Actual Fq and Fq

Estimated  (with SPND Signals)
Fig. 2. Estimation Performance of Fuzzy Neural

Networks for Test Data with Positive ASI

(a) Actual Fq Histogram
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Figure 2 shows the power peaking factors for

~8500 test cases and their estimation error

histogram (without and with in-core detector

signals) for test data with positive ASI. If the in-

core neutron flux sensor signals are not used, the

relative 2-sigma error is 0.37% and its maximum

error is 2.51% (see Table 2). If the in-core neutron

flux sensor signals are used, the relative 2-sigma

error is 0.21% and its maximum error is 1.08%.

Figure 3 shows the power peaking factors and

Input signals Nominal values Ranges

Reactor power (%) 100% 80 ~ 103

Inlet temperature(℃) 295.8 290.5~ 301.7

Pressure (bar) 155.17 131.0 ~ 160.0

Mass flowrate (kg/m2-sec) 3565.0 2994.6 ~ 4135.4

Axial shape index - 0.597 ~ -0.534

Simulated in-core detector signals
(12 different positions) - 7.4 ~ 322.0

R1 control rod positions (cm) - 0 ~ 381

R2 control rod positions (cm) - 0 ~ 381

R3 control rod positions (cm) - 0 ~ 381

R4 control rod positions (cm) - 0 ~ 381

R5 control rod positions (cm) - 0 ~ 381

R12 control rod positions (cm) - 0 ~ 381

P control rod positions (cm) - 0 ~ 381

Output signal Nominal value Range

Fq - 1.930 ~ 4.066

Table 1. Input and Output Single Ranges

1.354 0.370 2.510 0.371

2.109 0.508 4.089 0.522

2.109 0.444 4.089 0.453

1.043 0.202 1.081 0.205

1.032 0.245 1.647 0.261

1.043 0.225 1.647 0.235

Table 2. Power Peaking Factors Calculated by the Fuzzy-Neural Networks

Without
in-core 
sensor 
signals

Relative 
maximum
error(%)

Relative 
maximum
error(%)

Relative 2σ
error(%)

Relative 2σ
error(%)

Positive axial
shape index

Positive axial
shape index

Negative axial
shape index

Negative axial
shape index

Total

Total

With
in-core 
sensor 
signals

Training data Test data
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their estimation error histogram (without and with

in-core detector signals) for test data with negative

ASI. If the in-core neutron flux sensor signals are

not used, the relative 2-sigma error is 0.52% and

its maximum error is 4.09%. If the in-core neutron

flux sensor signals are used, the relative 2-sigma

error is 0.52% and its maximum error is 1.65%. 

If we consider the relative 2-sigma error together

for both test data sets with positive and negative

ASIs (see Figure 4 and Table 2), the relative 2-

sigma error is 0.45% without the in-core sensor

signals and 0.23% with the in-core sensor signals.

It is known that the use of self-powered neutron

detector (SPND) signals reduces the estimation

error by more than two times compared to not

using the SPND signals.

Table 3 shows other test results to compare the

Fq values with current COLSS methodology. The

Fig  values calculated by the COLSS method are

obtained by multiplying the core average axial

power PID(z) to the Fxy values of the

corresponding regions and by then selecting the

maximum values of the multiplication (refer to Fig.

5). Here, z denotes the axial position of the

reactor core and  Fxy  is a plane-wise (radial

direction) peaking factor. In the COLSS method,

the Fxy values are prepared and provided at the

design stage according to a variety of control rod

configurations. For example, for the control rod

configurations of Fig. 5, each Fxy for 3 different

regions is selected by a table lookup scheme from

the Fxy values prepared at the design stage.

However, in the MASTER code, the plane-wise

Fxy values at the real core state are used to

calculate the Fq value. Therefore, if the fuzzy

neural networks of the proposed method

accurately est imate the target  values, the

proposed method always provides a lesser or equal

Fq value relative to that of the COLSS method,

and the COLSS method is always equally or

excessively conservative relative to the proposed

method.

Also, the rightmost values are the power peaking

factors calculated under the assumption that all 12

in-core sensor signals are over-measured by 5%

more than the actual values, which is a very severe

0.081 80 1.968 1.967 1.969 2.133 2.064

0.094 90 1.959 1.956 1.958 2.135 2.063

0.069 100 1.952 1.952 1.951 2.137 2.069

0.073 103 1.949 1.949 1.949 2.138 2.072

-0.525 80 2.778 2.773 2.776 3.000 2.886

-0.504 90 2.718 2.724 2.718 2.961 2.830

-0.483 100 2.663 2.667 2.664 2.918 2.777

-0.520 103 2.646 2.649 2.649 2.905 2.762 

Table 3. Comparison of the Power Peaking Factors

ASI
value

Power
MASTER
(target)

Proposed
Algorithm

(without SPND)

Proposed
Algorithm

(with SPND)
COLSS

Proposed
Algorithm

(with SPND)1)

1) Values calculated under the assumption that all 12 in-core sensor signals are over-measured 5% more 

largely than actual values 



assumption. Even the power peaking factors for

these severe cases are lower than those of

COLSS. Thus, the proposed method secures a

larger operation margin than the current COLSS

method.

It is important to verify the fuzzy neural networks

for test data that has not been used in the training

stage. It is known that the 2-sigma error calculated

by the fuzzy neural networks for the test data is

similar to the relative 2-sigma error for the training

data (see Table 2). Therefore, if the fuzzy neural

networks are first trained using data for a variety

of operating conditions, they can accurately

estimate power peaking factors for any other

operating conditions. 

4.  Conclusions

In this work, fuzzy neural networks have been

developed and applied to the estimation of the

power peaking factor in the reactor core. The

fuzzy neural networks are trained by using the data

set prepared for training (training data) and

verified by using another data set different

(independent) from the training data. In addition,

two fuzzy neural networks are trained for two

428 J. Korean Nuclear Society, Volume 36,  No. 5, October 2004

Fig. 5. The Pseudo Hot Pin Axial Power
Distribution of COLSS

(a) Actual Fq Histogram

(b) Error Histogram Between Actual Fq and
Estimated Fq (without SPND Signals)

(c) Error Histogram Between Actual Fq and 
Estimated Fq (with SPND Signals)

Fig. 4. Estimation Performance of Fuzzy Neural
Networks for All Test Data (Includin
Positiveand Negative ASI Data)



kinds of data sets, divided into both positive ASI

and negative ASI, respectively. The developed

fuzzy neural networks were applied to the first fuel

cycle of the Yonggwang unit 3 PWR plant. The

relative 2-sigma error of the estimated power

peaking factor is 0.2349% when in-core neutron

flux detector signals are used and 0.4527% when

they are not used. The use of SPND signals as

input signals to the fuzzy neural networks reduces

the estimation error by about two times compared

to when the SPND signals are not employed. In

summary, the fuzzy neural network is sufficiently

accurate to be used in power peaking factor

monitoring.
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