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Abstract

Check valve failure is one of the worst problems in nuclear power plants. Recently, many

researches have been based on new technology using accelerometers and ultrasonic and

magnetic flux detection have been carried out. Here, we have suggested a method that uses

acoustic emission sensors for detecting the failures of check valves through measuring and

analyzing backward leakage flow, a system that works without disassembling the check valve.

For validating the suggested acoustic emission sensor methodology, we designed a hydraulic

test loop with a check valve. We have assumed in this study that check valve failure is caused by

disk wear or by the insertion of a foreign object. In addition, we have developed diagnostic

algorithms by using a neural network model to identify the type and size of the failure in the

check valve. Our results show that the proposed diagnostic algorithm with acoustic emission

sensors is a good solution for identifying check valve failure without necessitating any

disassembly work.
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1. Introduction

The failure of check valves to operéte correctly
in nuclear power plant safety systems could cause
severe consequences because an unintended
reverse flow through the failed check valves
impacts the related hydraulic systems. Most
conventional methods for examining the
conditions of check valves are based on the
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movement of the disk under various conditions, as
well as on detailed knowledge about the valve and
an understanding of the potential modes of failure
[1-4]. Often, it is necessary to open and close the
check valve or to disassemble it entirely to
examine its internal structure. Generally, such a
test must be carried out while the plant is shut-
down for refueling or maintenance.

Recently, many researches have been carried



Development of a Diagnostic Algorithm with Acoustic Emission --- S. H. Seong, et al 541

out in order to find ways to overcome the
disadvantages of conventional valve check
systems. These studies have been based on new
technology using accelerometers, ultrasonic,
magnetic flux, and so on [5-9]. Duke Power
Company developed a method based on
accelerometers that can detect pressure waves of
flowing liquids [5]. This method utilizes acoustic
measurements to determine when the valve
reaches a fully open or fully closed position and
can detect the failures of check valves, such as
hinge pin or stud pin wear, using low frequency
sound waves. Ultrasonic measurements, on the
other hand, use high frequency sound waves [9].
The signals reflected through the check valve are
dependent on the disk position, and the time
record of the disk position can be used to identify
the backstop and open/closed positions. Similar
to these ultrasonic measurements, the magnetic
flux method uses the Hall-effect to identify the
disk motion [5,8,9]. Both the ultrasonic and
magnetic flux methods have similar features and
are able to detect disk motion and thus identify
hinge or stud pin wear. In this study, we have
suggested a method that uses acoustic emission
sensors in order to detect the failures of check
valves by measuring and analyzing the sound
wave originating from the backward leakage flow
through the failed section of the check valve. The
acoustic emission sensor and the accelerometers
detect sound waves originating from the flows
through pipes in similar ways. However, the
acoustic emission sensors can generally measure
a wider-ranged sound wave than the widely used
accelerometers. Also, a method using acoustic
emission sensors has a simple architecture
because the sensor does not require the source
signal and the dedicated system that are required
by methods that use ultrasonic sensors and

magnetic sensors. Therefore, we have chosen

acoustic emission sensors in our detecting device
for failures of the check valve, for example, disk
wear and foreign object insertion. For validating
the suggested acoustic emission sensor
methodology, we designed a hydraulic test loop
that includes the typical four inches swing typed
check valve widely used in the industry: [4]. The
test loop was designed to identify-the mechanical
failures of the check valve for a case in which the
reverse backward leakage flows are induced
through a failed section in a check valve with
various failures. The causes of failure in swing
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styped check valves are hinge pin wear, back stop

fail, disk wear, foreign object insertion, and so on.
The failures of hinge pin and back stop -have
already been studied adequately [3,9]. Therefore,
in this research, we have focused on disk wear
(DW) during operation and the insertion of a
foreign objec_t (FO) during installation or
maintenance.

We have experimented on the usefulness of the
suggested technology through a hydraulic test loop
composed of check valves that were artificially
failed through disk wear of various sizes or foreign
objects at various pressures and at room
temperature. When failures due to foreign objects
or disk wear occur, the disk cannot close fully,
which causes backward leakage flows. Since
backward flows produce a sound wave, the
acoustic emission sensor is able to detect the wave
and identify the characteristic response frequencies
of the failed check valve through an analogy of
test results. In addition, we have developed a
diagnosis algorithm that uses neural network
models to identify the type and size of the failure
in the check valve [9]. Our results show that a
diagnostic algorithm with acoustic emission
sensors and a neural model is a good solution for
identifying the failures of the check valves without
any disassembly work.
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2. Check Valve Test Configuration

For validating the suggested methodology, we
designed a hydraulic test loop that included the
typical four inches swing check valve through
modifying the direct vessel injection test loop at
KAERI. The test loop is designed to examine the
mechanical failures of a check valve for a case in
which reverse backward leakage flow is induced
through a failed section in the check valve due to
disk wear or the insertion of a foreign object. The
pressure waves from the reverse flow in the failed
check valve are detected by the attached acoustic
emission sensors. The configuration of check
valves for failure testing, including the location of
the acoustic emission sensor, is shown in Figure 1.
For detecting failure signals, four acoustic emission
sensors are attached to both bottom sides of the
check valve housing. The four acoustic emission
sensors are categorized into two types according
to their characteristic frequency sensitivities and
covered frequency range. One type is a narrow
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range sensor that is highly sensitive to a frequency
of about 150 kHz and covers a range of 50 kHz
to 200kHz. The other type is a wide range sensor
that covers a range of 100 kHz up to 500 kHz
and is less sensitive to a particular frequency.
Since the response frequency of the failed check
valves was unknown, we used both types of
acoustic emission sensors in order to obtain
adequate information regarding the check valve
failures. The sensor positions were determined by
the analogy of the propagation of the backward
leakage flow in the failed section of the target
check valve. In Figure 1, AE1 and AE2 represent
the wide range sensor (WD) while AE3 and AE4
are the narrow range sensor (R15).

3. Check Valve Test and Results

We have tested the usefulness of the suggested
method through a hydraulic test loop comprising
various disk wear (DW) sizes or a check valve with
a foreign object inserted at various pressures and

4

B rs

120mm _ }

L 210mm [
e .
ACOUSTIC EMISSION
SENSOR

Fig. 1. Typical Check Valve Diagram Including the Sensor
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Fig. 2. Frequency Spectrum in Disk Wear 2mm Test at 3 Bar
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Fig. 3. Frequency Spectrum in Foreign Object 1mm Test at 9 Bar
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Fig. 4. Frequency Spectrum from AE1 Sensor

at room temperature. We have detected and
analyzed a total of 20 test matrixes as follows. We
defined the test of a good healthy check valve as a
normal condition and used a weld rod as the
foreign object (FO).

1. Pressure (3bar) : DW[1,2,3]lmm FO[1.0,
1.2]Jmm and normal

2. Pressure (6bar) : DW[1,2,3]mm FOI[1.0,
1.2Jmm and normal

3. Pressure (9bar) : DW[1,2,3]mm FOI[1.0,
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1.2Jmm and normal

We performed the Fast Fourier Transform (FFT)
with a Hanning window to identify the
characteristic frequencies in the measured data at
various experimental conditions [10]. Some of the
representative experiment results are shown in the
frequency domain after the FFT analysis in the
following Figures form 2 to 4. For gathering the
background noise data, we tested a healthy check
valve that did not have any failures for normal
data. In the check valves with various sizes of disk
wear, the analysis result of the acoustic signal
sensors shows similar frequency characteristics at
each experimental condition. Figure 2 shows the
frequency spectrum of experiment results in which
there is 2 mm disk wear at a pressure of 3 bar.
Figure 2 (a) shows the frequencies spectrum as
detected by the wide range acoustic emission
sensor 3 (AE1), and Figure 2 (b) shows the result
from the narrow range acoustic emission sensor 3
(AE3). Since the signals acquired from AE1 and
AE3 are more sensitive than those from AE2 and
AE4, the data from AE1 and AE3 are analyzed
and represented in this paper. We represent the
relative amplitudes in all the Figures in order to
easily compare and analyze the test results. Figure
3 shows the frequency spectrum of experiment
results for a case of failure due to foreign object
insertion (1 mm weld rod). Figure 4 shows the
other representative frequency spectrum of test
results with the AE1 sensor. The results show that
the mechanically failed check valves have
frequencies higher than 50 kHz below the 9 bar in
our experiments (~several hundreds of kHz). In
Figures 2 and 3, the characteristic frequency
patterns are somewhat different according to the
type of sensors because the sensor characteristics
are different. That is to say, the acquired patterns
of a narrow range sensor are centered at 150 kHz
because the sensor has a highly sensitive
frequency at 150 kHz. However, a wide range

sensor can acquire wide frequency patterns
because it is less sensitive at center frequency.
After analyzing the frequency spectrum of all test
cases, we can conclude that the AE1 sensor has a
better capability than other sensors to analyze the
characteristic frequencies of various failure modes.
Therefore, we chose the AE1 sensor to detect
failures of the check valve.

From the analysis of the frequency spectrum, we
have concluded that the characteristic frequencies
from the AE1 sensor are independent of the size
of the failures but are dependent on failure types
such as disk wear or foreign object insertion. So,
the failure types can be identified by the analysis of
characteristic frequency analysis from the acquired
acoustic data. As shown in the Figures, the peak
frequency patterns in all DW failures are about
150 and 230 kHz, and all FO failures are 100 and
140 kHz.

4. Diagnostic Algorithm

Based on the experiment, we have developed a
diagnostic algorithm using neural networks in
order to identify the failures of check valves. We
have adopted back propagation neural networks
for the diagnostic algorithm, which is a widely
used and well-known model [9, 11]. As shown in
Figure 5, the diagnostic algorithm consists of a
two-layered hierarchical architecture that includes
three neural networks for monitoring the failures
of the check valve. In the Figure, the BPN means
the back propagation neural network model using
the unipolar sigmoidal function as a processing
element. The FAIL BPN is used to determine the
failure status of the check valves: normal, disk

wear (DW), or foreign object (FO). If the valve is

determined to be healthy, the diagnostic algorithm
is finished. If the valve is determined to have
failed, the FAIL BPN distinguishes between disk
wear failure and foreign object insertion failure.
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The FAIL BPN has an average amplitude after the
FFT analysis, loop pressure, and the two
characteristic frequencies that have the first and
second highest amplitude after the FFT act as
input nodes. Since the acoustic magnitude in the
failed case is larger than in normal cases where
no failure occurs, the amplitude and pressure are
selected as an input node[.4]. In addition, the two
characteristic frequencies are selected as an input
node in order to identify the failure type, as shown
in the previous section. The FAIL BPN has two
output nodes. The first of the two output nodes
can determine disk wear failure, and the second
can determine foreign object insertion failure. If
both output nodes have a value below the
threshold (0.5), the valve is determined to be
healthy, or to have not failed. The FAIL BPN has
a hidden layer that consists of 9 processing
elements.

If the FAIL BPN identifies a disk wear failure,
then the acquired data is sent to the DW BPN in
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order to estimate the failure size. The DW BPN
has an average amplitude after the FFT analysis,
acquired signal strength (detected energy
magnitude), RMS (root mean square) of the
acquired voltage input, and loop pressure. After
analyzing various acoustic parameters such as
RMS, amplitude, signal strength, duration, rise
time, counts, and so on, the four inputs mentioned
above are concluded to have a relation between
the magnitude of the failure and the size of the
disk wear. The output node determines the size of
the disk wear failure (Imm, 2mm, or 3mm). The
DW BPN has a hidden layer that consists of 9
processing elements. Finally, the FO BPN has the
same features and the same input as the DW
BPN, but the output, which is garnered in a similar
fashion, indicates the size of the foreign object.
Each BPN has learned 30 training cases. After
training, a total of 900 unlearned experimental
data are estimated as test cases in order to validate
the developed diagnostic algorithm. Figures 6 and
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Fig. 5. Hierarchical Diagnostic Algorithm Using Neural Networks
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7 show estimation results where the Y axis means
the failure size, the straight line means the actual
failure size, and the points mean the estimated
size. Firstly, the FAIL BPN is able to determine all
300 test cases as normal, disk failure, or foreign
object without error. The DW BPN can estimate
the disk wear size with an average error of 10%.
However, 10 test cases have a 50% error between
the estimated size and the actual size. For
example, the DW BPN estimated a disk wear size
of 1.bmm in a case where the actual disk wear
failure was 1mm, as shown in Figure 6 (a). The
FO BPN can estimate the foreign object size with
an average error of 15%. However, 50 test cases
have a 60% error between the estimated size and
the actual size. For example, the FO BPN
estimated the foreign object size at about 1.7mm
in a case where the foreign object was actually
1.2mm, as shown in Figure 7 (b). Repeated
experiments showed that the size of the foreign
object changed due to the pressure of the test
loop. So, the estimation error for foreign object
cases is higher than for disk wear cases. Although
some estimation error exists, we have concluded
that the estimated error could be tolerable in real
situations because the lowest FAIL BPN has the
ability to identify the status of a check valve as
being normal or suffering from disk wear failure or
foreign object failure. Finally, the developed
diagnostic algorithm has a good capability for
identifying the failures of check valves and
estimating the size of each failure mode.

5. Conclusions

In this study, we have found that the proposed
diagnostic algorithm can identify check valve
failures early. A wide range acoustic emission
sensor attached to the backward leakage side can

detect check valve failures without any disassembly
work. In addition, the developed diagnostic
algorithm with the neural network models can
estimate the size and type of the failure. Although
some diagnostic results were inaccurate in this
respect, the algorithm of the developed method is
able to detect the presence and type of failure, so
errors in estimating the size of the failure are not
considered critical.

To confirm our conclusions, future experiments
involving high pressure and high temperatures,
similar to physical conditions at a normal power
operation, will be conducted. After we gather and
analyze data pertaining to failure signals at the
operating conditions, we can further improve the
analysis techniques and diagnosis algorithm. The
developed diagnostic technology using the acoustic
emission sensor suggested in this research will be
a good solution for detecting and identifying failed
check valves without any disassembly work.
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