
127NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.2, APRIL 2005

COMPUTATIONAL INTELLIGENCE IN NUCLEAR
ENGINEERING
ROBERT E. UHRIG and  J. WESLEY HINES
Department of Nuclear Engineering, 
University of Tennessee, Knoxville, TN, USA 
E-mail : ruhrig@utk.edu, jhines2@utk.edu  

Received February 2, 2005

1. INTRODUCTION

The overall performance of America’s fleet of 103
nuclear power plants has improved dramatically in the
past decade through the use of increased and more
effective training and a significant increase in the use of
on-line maintenance. As a result, the availability of
plants is asymptotically approaching the theoretical
maximum in which the refueling activities define the
length of the outage. Yet, there are major issues that
should be of concern to the nuclear industry and the
Nuclear Regulatory Commission (NRC) that bear directly
on the continued safe and efficient operation of these
plants. Most of these concerns arise from a combination
of “stresses” on the reactor core being introduced by
three trends: 1) longer fuel cycles, 2) increases in thermal
power, and 3) proposed increases in the maximum
allowable burnup in the fuel. There are also concerns
about unforeseen issues that may arise as plants continue
to operate for up to 60 years. The first line of defense
against such problems is continuous, on-line surveillance
and, when possible, concurrent diagnosis of problems
when they occur.  

The role of Computational Intelligence (CI) in the
nuclear power industry is in constant transition due to

plant operating objectives, future needs, and regulatory
requirements. For example, as plants move towards
longer plant licenses, improved maintenance practices
become vital.  Past practices of corrective maintenance is
not practical with one-day outages costing up to a million
dollars. Current periodic or predictive maintenance
practices may not be optimal when precursors to degra-
dation or failure may be inferred. Many top performing
plants are moving towards condition-based maintenance
practices when technology permits. This allows a plant to
optimize their maintenance by performing maintenance
only when the condition requires it. These techniques
require robust and reliable estimates of the plant condition,
that in many cases requires the use of CI to process the
plant data to infer condition.

Many of the techniques developed over the past thirty
years such as reactor noise analysis are now reaching
maturity and paying dividends. Other techniques, such as
on-line sensor calibration monitoring, are nearing the
maturity in their development; however, just beginning
implementation. Still others, such as on-line efficiency
optimization and on-line transient identification, still
have not yet proven their worth. And lastly, several new
techniques, such as autonomous control and multi-intelligent
agents are still in their formative years.  

Approaches to several recent issues in the operation of nuclear power plants using computational intelligence are
discussed. These issues include 1) noise analysis techniques, 2) on-line monitoring and sensor validation, 3) regularization of
ill-posed surveillance and diagnostic measurements, 4) transient identification, 5) artificial intelligence-based core
monitoring and diagnostic system, 6) continuous efficiency improvement of nuclear power plants, and 7) autonomous
anticipatory control and intelligent-agents. Several changes to the focus of Computational Intelligence in Nuclear
Engineering have occurred in the past few years. With earlier activities focusing on the development of condition monitoring
and diagnostic techniques for current nuclear power plants, recent activities have focused on the implementation of those
methods and the development of methods for next generation plants and space reactors. These advanced techniques are
expected to become increasingly important as current generation nuclear power plants have their licenses extended to 60
years and next generation reactors are being designed to operate for extended fuel cycles (up to 25 years), with less operator
oversight, and especially for nuclear plants operating in severe environments such as space or ice-bound locations.
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2. APPLICATIONS OF REACTOR NOISE ANALYSIS

Applications of reactor noise analysis to determining
the state of a system have been ongoing for the past forty
years and are well documented. The first two conferences
on nuclear reactor noise analysis with proceedings,
organized by the University of Florida in 1963 and 1966
were international in scope [1, 2]. Two pioneering books
of that era clearly established the practicality and
usefulness of reactor noise technology [3, 4]. The first of
eight SMORN (Specialist Meeting on Reactor Noise)
Symposia, organized by OECD/NEA, occurred in 1974.
Additionally 29 IMORN (Informal Meeting on Reactor
Noise) meetings were hosted between 1969 and 2004.   

The analysis of random signals has been used for
vibration monitoring of key structural components, noise
monitoring of process noise measurements, metal to
metal impact and loose parts monitoring, acoustic leak
monitoring, main reactor coolant pump shaft vibration
monitoring, turbine condition monitoring, valve and
pump condition monitoring, and even sensor and instru-
mentation degradation monitoring [5]. An example of a
critical save involves the detection of an 80% through
crack of a German PWR reactor coolant pump shaft
using eddy current sensors. The 5 MW pump problem
was detected before it became apparent by traditional
means, and it was replaced before damage to the plant
could occur [6]. 

Another application of reactor noise analysis has
dealt with the monitoring of loose parts of internal
components of the reactor primary system. These
techniques, which were first investigated in the 1960’s,
have advanced significantly over the past decade.
Currently, every German Nuclear Power Plant has a
Loose Parts Monitoring System (LPMS) and almost
every peak in the power spectral densities have been
correlated with a specific component. Through the
collection, storage, and trending of this data over many
years, diagnosis of impact related abnormalities can be
performed as never before. These advanced data collection
and processing algorithms, combined with a comprehensive
signature database that contains trend information from a
multitude of German plants, can now identify the type,
location, and cause of the abnormal patterns [7]. Both
German and French nuclear power plants routinely
transfer plant vibration data to a central laboratory where
it is scanned, analyzed, and filed with notification to
plant personnel if anomalies appear.

3. IMPLEMENTATION OF ON-LINE MONITORING
AND SENSOR CALIBRATION VERIFICATION 

On-Line Monitoring of Nuclear Power Plants has
been an active area of research for the past twenty years.
Monitoring activities from many research laboratories

and universities have included core monitoring, transient
identification, alarm management, general equipment
monitoring, and on-line sensor calibration verification.
Beginning in the late 1980s and continuing through the
1990’s the Department of Energy initiated and coordinated
original research in the area of sensor calibration
monitoring. Argonne National Laboratory led the
activities with the development of the System State
Analyzer [8], which was the predecessor of the Multivariate
State Estimation Technique (MSET) [9]. During the
same era, the University of Tennessee developed an
Autoassociative Neural Network (AANN) based
technique [10, 11] and later improved the system [12]. In
the 1990’s several other modeling techniques were
studied including Probabilistic Neural Networks and later
Non-Linear Partial Least Squares (NLPLS) [13]. At
about the same time, the Halden Research Project
developed PEANO, which is a sensor monitoring product
that combines locally trained AANNs and Fuzzy Logic [14].

The Electric Power Research Institute (EPRI)
conducted and managed research in this area beginning
in the 1990’s, developed the Instrument Calibration and
Monitoring Program (ICMP) for monitoring redundant
sensors [15], and explored modeling techniques for non-
redundant sensors. EPRI submitted Topical Report TR-
104965, On-Line Monitoring of Instrument Channel
Performance, to the NRC [16]. In 2000, the U.S. Office
of Nuclear Reactor Regulation Application issued a
safety evaluation (SE) [17], which accepted on-line
monitoring for calibration extension if several
requirements, i.e., quantitative evaluation of the errors
involved, were met. 

Research then shifted to making the techniques more
accurate through the use of regularization techniques for
MSET [18], and Neural Networks [19], and general
modeling [20, 21]. In 2000, EPRI formed the Instrument
Monitoring and Calibration (IMC) Users Group to
demonstrate On-Line Monitoring (OLM) technology in
operating nuclear power plants for a variety of systems
and applications. Systems were pilot tested at several
Nuclear Plants.

The most recent research is focused on preparing
these techniques for NRC approval for monitoring safety
critical instruments and thus reducing the manual
calibration frequencies. The NRC SER listed 14 require-
ments including an Uncertainty Analysis of the predi-
ctions and V&V (verification and validation) of the
system. The V&V was funded by the Department of
Energy NEPO program and conducted by Argonne
National Laboratory (ANL). The V&V results are described
in Chapter 8 of EPRI’s Implementation of On-Line
Monitoring for Technical Specification Instruments [22].  

3.1 Uncertainty Analysis 
Both ANL and the University of Tennessee developed

uncertainty analysis methods for the empirical models of
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interest. ANL focused their uncertainty analysis methods
on Monte Carlo Techniques using Latin Hypercube
Sampling and Wavelet denoising [23]. These techniques
provide an uncertainty measure for a particular model
that uses a specific training set. The technique is limited
in that it provides a value for only a small operating
region; however, the NRC SER allows for monitoring
data at a single point and refers to this as single point
monitoring. A statistical analysis was performed on
drifting sensors quantifying the probability that a specific
drift type could be detected at a single monitoring point.
Performing single point monitoring, usually at the 100%
power condition, is permissible if an additional uncertainty
penalty is taken. If single point monitoring is implemented,
then the Monte Carlo method is expected to give valid
uncertainty estimates.  

The Monte Carlo Technique has some assumptions
that should be considered. The first of these is that a
noise free estimate of each of the process signals can be
determined. Sometimes this is referred to as the “True
Signal.” Two techniques have been developed to meet
this need. The Reactor Parameter Signal Simulator
(RPSS) was developed by ANL in the early 90’s [24].
This technique uses Fourier Transformations and was
originally developed to whiten data residuals that were
evaluated by Sequential Probability Ratio Test (SPRT)
based detection algorithms [25]. A wavelet-based
denoising method, the Stochastic Parameter Simulation
System (SPSS), was developed by Miron [26, 27] and is
an integral tool for Argonne’s current uncertainty
analysis method. This method decomposes a process
signal into its deterministic and stochastic components,
and then reconstructs a new, simulated signal that
possesses exactly the same statistical noise characteri-
stics as the actual signal. This is necessary in the Monte
Carlo analysis, which repeatedly constructs and tests
models using process data with different noise instantia-
tions to determine average uncertainty values. SPSS is
also used as a filtering device. For filtering, it isolates the
principal serially-correlated, deterministic components
from the analyzed signal so that the remaining stochastic
signal can be analyzed with signal validation tools. 

The University of Tennessee took a more general
approach in assessing the predictive uncertainty. These
techniques provide a prediction interval for each prediction
being made [28]. This technique is more general in that it
dynamically estimates the predictive uncertainty at each
operating point. Additionally, the use of Monte Carlo
techniques have proven that the prediction intervals are
accurate and depend on several items such as the noise in
the predictor and response variables, the model complexity,
and the training data coverage [29].

3.2 Equipment Monitoring
The most recent work in this area focuses on the

application of sensor monitoring techniques for equipment

condition monitoring (ECM) [30]. These MSET-based
techniques have been applied to the Palo Verde Nuclear
power plants by SmartSignal Inc. [31]. In an EPRI
funded cost benefit analysis, it was shown that the use of
the systems for ECM could accelerate the payback and
should be an area of research focus and application [32].

One of the major roadblocks to the implementation of
OLM techniques for ECM is that all possible faults
cannot be simulated or even pre-enumerated. There are
no available data to train models to recognize the sensor
patterns for a wide range of failures. Two categories of
solution implementations exist. In the first implementation,
the OLM system would only be used to detect the failure
with human experts performing the diagnostics. A
second method builds a database of past failures. When a
fault is detected and properly diagnosed, the fault signature
is stored in a database along with the diagnosis. When a
future fault occurs, it’s signature is compared to those in
the fault signature database and the operator will be
informed of any prior faults that created a similar signature.
Over time, the fault database will grow and recall a
greater percentage of faults. Currently this technique is
being implemented fleet-wide in fossil power plants,
resulting in a faster growing fault signature database.

3.3  OLM Future
Although nuclear plants in the U.S. have not adopted

OLM for calibration extension, AMS has applied the
techniques to Sizewell B in Great Britain [33] and
Electricity de France (EdF) also uses OLM techniques
for calibration monitoring. At the time of this writing,
one U.S. Nuclear Power Utility has made it known that
they will submit a license amendment to the NRC early
in 2005. This will be the first of its kind and may prompt
others to follow suit.

4. REGULARIZATION OF ILL-POSED SURVEILLANCE
AND DIAGNOSTIC MEASUREMENTS

Many predictive empirical modeling techniques have
an inherent weakness in that they may give unstable or
inconsistent results when the predictor data are highly
correlated or the approach is under-constrained or “ill-
posed.” [21] This section presents an example ill-posed
diagnostic problem and a regularization method used to
obtain accurate and consistent prediction results. The
example is the inferential sensing of feedwater flow in a
nuclear power plant using a neural network model and
ridge regression. Recently, the focus of the work on on-
line surveillance systems has been on optimizing the
predictive models to assure their accuracy and repeatability
using several different regularization techniques [34, 21]. 

For decades mathematicians have known that many
very important practical problems are underdetermined
because the data does not provide enough information to
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determine a single unique solution [21]. Examples of
underdetermined problems are spectrum analysis, image
reconstruction, deconvolution, interpolation and
extrapolation from numerical data, and neural network
training-just to name a few. Such underdetermined
problems have a special name: ill-posed problems or
incorrectly posed problems in a sense that it is incorrect
to ask a person to solve a problem that does not have a
unique solution. An important sub-class of ill-posed
problems is inverse problems that deal with the inversion
of cause-effect relations. While inverse and ill-posed
problems are not synonymous, most problems we deal
with in surveillance and diagnostics are both inverse and
ill-posed. In machine and plant diagnostics and surveillance,
truly well-posed problems are practically unknown. In
spite of this, the implications and significance of inverse
and ill-posed problems are not fully understood or
appreciated by the vast majority of technical personnel.

In many empirical surveillance and diagnostic
problems, the relationships in historical plant data are
modeled for use in present and future predictions. For
example, the inferential measurement of feedwater flow
is based on its correlation with other plant parameters.
The problem with using highly correlated parameters as
predictors is that they are not only highly correlated with
feedwater flow, but they are also correlated with each
other. If this degree of correlation is quite high, the data
matrix becomes ill-conditioned and the problem of drift
detection becomes ill-posed in the sense that the solution
does not meet all of the following conditions: 1) the
solution for the problem exists, 2) the solution is unique,
and 3) the solution is stable under small perturbations
[35]. If any of these conditions are not met, the problem
is ill-posed and special procedures must be used to
provide a solution, if one exists. 

Inferential sensing is the prediction of a sensor value
through the use of correlated plant variables. Most
calibration monitoring systems produce an inferred value
and compare it to the measured sensor value to determine
the sensor status. There are a number of techniques that
have been proposed for on-line inferential sensing during
recent years. Most notable are AANN [20], MSET  [18,
36], and NLPLS which inherently contains regularization
[13]. All of these methods use related sensors as inputs to
estimate models (sets of weights) that are subsequently
used to infer the sensor’s value based on the input values.
Necessary features of all on-line sensor validation
systems is that they accurately infer the sensor’s value
and should also be robust to moderate changes in input
values such as those caused by noise.

We can illustrate the ill-posed nature of this problem
with an inferential measurement of feedwater flow in a
nuclear power plant under the condition of fouling of the
venturi meter that is typically used as a standard flow
measuring device. Venturi meters are susceptible to
measurement drift due to corrosion products building up

near the meter's throat orifice. This increases the
measured pressure drop across the meters, which results
in an over-estimation of the flow rate. Consequently, the
reactors’ thermal power is also overestimated. Since the
thermal power is the limiting quantity in the license of a
nuclear power in the United States, this fouling effectively
derates the power plant. A well-posed or regularized
evaluation inferred from a model based on correlated
data will give a unique prediction of flow rate. 

Regularization involves augmenting the data by some
additional information and has been implemented by a
number of methods and under different names to solve
the problem of learning from data. Normally, regularization
methods implement a prior belief that the relationships
should be smooth, which results in lower variance
results. Methods of stable numerical matrix inversion
such as Tikhonov regularization [37], truncated singular
value decomposition (SVD) [34], and ridge regression
are applicable to most ill-posed engineering problems.
One of these solutions to an ill-posed problem is “ridge
regression” [34] where instead of minimization of a
“self-evident” least squares functional in fitting data to a
model, a “non-self-evident” cost function consisting of
two terms: a least squares function and a norm or semi-
norm of the vector of regression coefficients, is minimized.  

Application of regularization as shown in Gribok
[38] leads to stable and reasonable solutions. The
unregularized and regularized solutions to the feedwater
flow problem are shown in the figures 1 and 2
respectively. These plots show the PDF (probability
density function) of “bootstrap” estimations of feedwater
flow based on 100 individual calculations. Figure 1
presents the PDF of 100 estimates of true values of
feedwater flow rate that are based on ordinary least-
square solution. These estimates are extremely inconsistent
with many peak values of low probability. Application of
regularization dramatically reduce that variance as shown
in Figure 2 which provides a single peak value with a
high probability and is consistent and reasonable from an
engineering view point. While the regularized value of
flowrate indicated by Figure 2 is consistent, it may still
be subject to a small bias with respect to the true value.

5. TRANSIENT IDENTIFICATION IN NUCLEAR
POWER PLANTS

Nuclear power plants are highly complex systems
that are operated and monitored by humans. When faced
with an unplanned transient, such as an accident scenario,
equipment failure or an external disturbance to the
system, the operator has to carry out diagnostic and
corrective actions. Anomalous operating conditions must
be diagnosed and identified through the process’
instrument readings. The sheer number of instruments
can make the diagnosis process fairly difficult. Hence,
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depending on the severity of accident, instruments’
readings might not give a clear indication of an anomaly
at its incipient stage. The operator’s response may be too
late to mitigate or minimize the negative consequences of
such anomalies. The objective of transient identification
is to develop an instrumentation system that is based on
artificial intelligence technologies to assist the operator
in identifying transients at the earliest stages of their
developments. Early detection may help in minimizing or
even mitigating the negative consequences of such
transients. It is equally important to identify the type of
transient correctly. Misidentification of transients might
result in incorrect action by the operator or an automated
safety system.

When a nuclear power plant is operating normally,
the readings of the instruments in a typical control room
form a pattern (or unique set) of readings that represents
a normal state of the plant or system. When a disturbance
occurs, the instrument readings undergo a transition to a
different pattern, representing a different state that may
be normal or abnormal, depending upon the nature of the
disturbance. The fact that the pattern of instrument
readings undergoes a transition to a different state may
be sufficient to provide a basis for identifying the
transient or the change of state of the system. In imple-
menting such a transient diagnosis system in a nuclear
power plant, a set (perhaps 5 to 20) of output variables
from the plant are sampled simultaneously, normalized to
expected maximum values, preprocessed if appropriate,
and transmitted to the input layer of a neural network.
The unique relationship between these variables
represents the condition of the plant at that particular
instant as presented by the output of the neural network.
When the system is operating at a steady state or
changing slowly, the pattern of variables at each
sampling instant remains the same or changes slightly,
and the output of the neural network remains the same.
However, at a time t after a transient begins, the sampled
values form a different pattern (i.e., the relationship
between the variables changes and continues to change
as the transient progresses). When successive sets of
sampled values are fed to a trained neural network, each
set indicates that the same transient is underway if the
pattern is adequately developed. Indeed, there is a whole
group of patterns associated with each unique transient
that must be calculated or obtained from a simulator so
that they can be included in the training set of the neural
network.  

There are two different methods used to identify
transients in nuclear power plants. The first involves
recording and observing the overall behavior of a small
number, perhaps 5 to 8, of variables over the lifetime of a
transient. The transients used for training the neural
network have to be generated in a simulator or calculated
using conventional reactor physics software. In this
method, no effort is made to identify the transient until it
is virtually complete. Then all of the traces of these
variables vs. time are sampled (perhaps a total of 20 to
50 simultaneously sampled sets per variable over the
lifetime of the transient to give the overall shape of each
variable), and all sampled values for all variables are
inputs to the neural network. This is the method originally
used at the University of Tennessee to identify transients
in a steam generator [39]. The main disadvantage of this
method is that the transient, and hence the fault, can be
identified only after the transient is complete and the
plant is probably shut down.

The other approach, also developed at the University
of Tennessee, [40, 41] is to use a larger number of
variables (typically 15 to 20) and instantaneously
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examine the relationship between these variables at a
series of small time intervals. Each variable is sampled at
discrete intervals (typically several sample sets per
second), and each of these sets of simultaneously sampled
values is entered sequentially into a trained neural network.
The data from the nuclear power plant are being treated
as if each set of input samples is independent, which
represents at least a quasi-equilibrium condition. If the
transient is too fast to be treated as being in quasi-
equilibrium, then it will be necessary to use recurrent
neural networks (which have feedback connections) or to
simultaneously introduce several successive sets of
samples as inputs to the neural network. This results in
more complex, larger neural networks, which are harder
to train. The advantage of this method is that identification
of the transient takes place very early in the transient at a
time when it may still be possible for an operator (or an
automatic system) to take mitigating action (e.g., power
reduction), if appropriate. Experience indicates that
transient identification in nuclear power plants typically
occurs within the first few sets of samples after the initiation
of the transient. The main problem is identifying the
beginning and the length of the transient. A summary of
the early work on transient identification is given by Uhrig
and Tsoukalas [42].

Transient detection can be considered to be a pattern
recognition problem. When a transient occurs, starting
from steady state operation, instrument readings develop
a time dependent pattern. These patterns are unique with
respect to the type of accident, severity of accident, and
initial conditions. For example, the system’s response to
a main steam line break will differ from its response to a
control rod ejection accident. Therefore, by properly
selecting the variables used by the pattern recognition
system, the relevant features will be extracted from the
measurements. The choice of inputs for each transient is
usually made from simulator studies. Signal responses to
various transients on a simulator fall in three categories:
none, minor, and significant. To robustly identify the
transients, only input signals that produce significant
responses during the transient to be monitored are
selected as inputs to the neural network.

Nuclear Regulatory Commission (NRC) regulations
list thirty-six different transient scenarios that licensed
reactor operators are required to be able to identify. A
pattern recognition system utilizing neural networks can
be used for transient detection because plants’ sensors
develop unique dynamic patterns for each given transient.
A set of simple neural networks, one for each transient
being evaluated, can be used to identify individual
transients almost instantly. The use of this approach is
often chosen because it is possible to expand the number
of transients identified without adversely affecting the
existing system by adding an additional trained neural
network for each new transient to be identified. Training
the network to give a “1” for the specific transient and a

“0” for all other transients works very well and all
transients investigated can be rapidly identified.
Additionally, a different neural network can be used to
measure the magnitude of that transient using training
data with several degrees of magnitude of the individual
transients. For large transients, the results were quite
satisfactory, but for small transients, the presence of
feedback in the plant tended to degrade the results.
When transients are of very minor severity, then the
control systems and water make-up systems tend to
minimize the evidence of such transients. Hence, it is
difficult, if not impossible to detect minor transients. 

Standard pattern recognition techniques will classify
any pattern to fit the closest matching pattern. However,
since the neural network cannot be trained on all possible
transients, it is important that it does not classify transients
on which it has not been trained. To overcome this
problem, Bartal, Lin and Uhrig [43] used probabilistic
neural networks. These networks have a parameter that
will classify a pattern depending on its probability of
matching a specific pattern. Hence, when a pattern has
low probability of being any of the “learned” patterns, it
will be classified as “Don’t Know”. To minimize the
pitfall of false identification of transients on which the
network has not been trained, a network is trained to
identify each individual transient; each network has only
one transient associated with it. Each network is not only
trained to identify each transient, but it is also trained to
reject the other transients as being that specific transient.
In other words, the neural network that is trained to
identify loss of coolant accidents can also be trained to
classify the other transients as “No Transient” to minimize
misidentification of transients.

Faults can be inserted in the simulator at any level of
severity, from 0% to 100%. For some transients (e.g.,
control rod ejection accidents), there is no variation in
the severity. The event either takes place or it does not.
As for the other transients, the percentage represents the
fraction of flow relative to a guillotine break that would
have 100% severity. Since these events can take place at
any severity level, the neural networks can be trained to
detect these transients at a number of different severity
levels. The objective is to make the detection networks
insensitive to the severity level of the transient while
retaining the ability to assess the severity with another
neural network.

The data from the reactor may be noisy and even
contaminated by spikes and false readings. Hence, the
data has to be filtered and processed before being input
to the network. Even after the signals are processed,
some noise will still be present. To make the network
robust to noise in the test data, the training data must also
be contaminated by noise. Noise of the order of +/- 1%
should be added to all training and testing data. The
added noise proved to be essential for having a noise
insensitive network. For example, when the network was
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trained on noise free data and then tested on noisy data,
the results are very unstable. However, when the network
was trained and tested on noisy data, the output is consistent
and stable [44].

More recent work on transient identification at the
OECD Halden Reactor Project by Roverso [45] utilized
wavelets to examine signal fluctuations caused by
transients. This approach overcomes two problems,
namely the requirement for a trigger signal to indicate the
beginning of a transient and the requirement for each
transient to be of a fixed predefined length. These
restrictions were due to the necessity of compressing the
transients to make them treatable (i.e., so that the neural
network would learn the transients). This approach
involved the use of wavelet features extracted from a
sliding window on the multivariate transient signals and
utilized recurrent neural networks to deal with the transient
aspects of the signals.

The choice of the window size can be used to strike a
balance between a high level of transient compression
(which greatly improves the performance of the recurrent
neural network), and a resolution still sufficient to
discriminate among the event classes.  Successful tests of
this system were obtained using data from one of
Electricite de France’s PWR 900 MW nuclear power
plants. In these tests, it was possible to discriminate
among seven different transient classes [45]. A series of
controlled tests were conducted using an artificially
generated multivariate time-series to demonstrate the
ability of the system to base its classification decision on
a range of discriminating features, from low frequency to
high frequency features, and from early to late developing
features.

All of the above work was performed using the Halden
ALADDIN system, a multi-purpose data acquisition and
information processing system using various artificial
intelligence technologies (e.g., neural networks, fuzzy
logic, wavelets, etc.) to perform alarm structuring/
suppression in a nuclear power plant alarm system. Their
most recent work combines recurrent neural networks
ensembles, wavelet on-line preprocessing, and autonomous
recursive task decomposition to improve the practical
application and scalability of ALADDIN to real processes
and machinery [46]. One method consists in basing the
alarm structuring/suppression on a fast recognition of the
event generating the alarms. This allows a subset of
sufficient magnitude to effectively handle the current fault
and notifying the operator, minimizing the operator’s
workload in a potentially stressful situation. The scope of
application of a system like ALADDIN goes beyond
alarm handling to include diagnostic tasks in general.

6. ARTIFICIAL INTELLIGENCE-BASED CORE
MONITORING AND DIAGNOSTIC SYSTEM 

Of special concern recently for the operators of nuclear

power plants is the detection and identification in a
timely manner of serious problems developing in the
reactor core in fuel associated with a combination of long
fuel cycles using fuel with high boron content, high
burnup, and significant power upgrades. The average
discharge burnup in PWRs has increased from 36,000 to
almost 50,000 MWD/MTU (megawatt-days per metric
ton uranium) since 1983 with many fuel assemblies
having significantly higher discharge burnups. The
current limit on burnup is 62,000 MWD/MTU with some
utilities seeking a 75,000 MWD/MTU limit. Failure of
control rods to insert completely are increasingly common
as indicated by incidents at Wolf Creek, South Texas,
TMI-1 and Crystal River-3 where control rods in fuel
with an average burnup of 45,000 to 50,000 MWD/
MTU) failed to insert completely upon shutdown due to
deformed fuel and channels. Power uprates inevitably
decrease safety margins and challenge the integrity of the
fuel. When combined with changes in fuel design for
long (24 month) fuel cycles that have been introduced,
unexpected changes in the boron chemistry, and the
continued pressure to increase fuel burnup limits, the
state of nuclear fuel technology appears to be approaching
unexplored areas where unforeseen events are increasingly
common. 

The combination of longer fuel cycles and high
burnup can lead to unanticipated operational difficulties
such as the “axial offset” anomaly at Callaway. Again,
the first line of defense against such problems is an
advanced surveillance and diagnostic system. Indeed, it
was a core protection calculator (CPC) at Arkansas
Nuclear One-2 that diagnosed a non-normal flux shape
and initiated a shutdown. Unfortunately, only about half
of the ABB/CE plants and none of other vendors’ plants
have CPCs. The CPC technology, which monitors
DNBR and linear power per unit length of the fuel
elements, is almost three decades old. Given recent
advances in computers and the use of advanced artificial
intelligence technologies, there are valid reasons to
expect that a core monitoring system coupled with the
advanced “smart” diagnostic systems being proposed
here can automatically detect and characterize for the
operator any unforeseen events arising out of the extended
operation of today’s and tomorrow’s reactors.

The core monitoring and diagnostic module described
here is only one example of a modern system. It uses flux
measurements from the commercial in-core flux measuring
instrumentation system installed permanently in the
reactor core. For purposes of this discussion, the three-
dimensional array of core detectors in the Crystal River-3
Nuclear Power Plant will be utilized as being the standard
reference flux measuring system. It can also be used with
Halden’s SCORPIO system and others. The reference
system has a horizontal array of 52 self-powered
rhodium neutron flux detectors located at each of seven
levels. This arrangement gives two-dimensional horizontal
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neutron flux maps of the core at seven levels. Readings
from the Crystal River-3 detectors are averaged over six
minutes, thereby setting the basic time interval at six (or
some multiple of six) minutes. The system also has a
background detector which provides the background to
be subtracted from all readings. Depletion of the rhodium
as a function of integrated neutron irradiation over time
is taken into account.

The six core regions between the seven levels of
detector can be modeled individually. The 52 signals
from each pair of adjacent levels (or mathematical
transforms of these signals) then become the input and
desired output to the six neural network “modeling”
modules. After each neural network is properly trained,
the magnitude and location of differences between the
actual flux measurements and the neural network
predictions for flux values in the core region defined by
the two adjacent detector arrays indicate whether a
change in the neutron flux pattern has or has not taken
place in that region. Once an anomaly has been detected,
the flux changes over time in sub-regions of the six core
regions can be monitored and compared by algorithms
and three-dimensional visualization methods to diagnose
anomalies.

The neural network model module could utilize the
“multi detector” technique developed by UT under EPRI
sponsorship for monitoring the operability of check valves
[47]. This technique effectively crosscorrelates out the
influence of global driving functions such as power level
and fluctuations, boron concentration in PWRs, and others.
It uses a neural network that has three layers with the
same number of neurons in the input and output layers
and a smaller number of neurons with non-linear activation
functions in the middle layer. It is trained using the signals
from a given level in the core as the input and the signals
from the next higher level as the desired output. The
output layer has linear activation functions that allow the
use of regression and SVD to almost instantaneously
recalibrate the network to compensate for system changes.
After the neural network has been trained, it is connected
in a monitoring mode where the actual flux measurements
at the upper lever of the core region is compared with the
flux values predicted by the neural network. The
differences, if any, indicate that changes have taken place,
and the magnitude and nature of these changes can be
used to infer the existence and nature of the anomalies.

7. CONTINUOUS EFFICIENCY IMPROVEMENT OF
NUCLEAR POWER PLANTS

There has been significant research in the area of
thermodynamic optimization and efficiency improvement
over several decades. Most of the commercial techniques
have been based on first principal models and resulted in
products such as PEPSE® (Performance Evaluation of

Power System Efficiencies), which is the industry
standard heat balance computer program. The objective
of these programs is to monitor the thermodynamic
performance of a plant, to help diagnose operating
problems, and predict the effects of changes in equipment
and operating parameters. PEPSE is not a performance
optimization product, it is a performance monitoring
product that can be used to identify deficiencies.  

True performance optimization products have not
been used in the Nuclear Power Industry even though
they have shown promise in fossil power and chemical
industries. Products from such vendors as Vali and
SimSci Essor have had successful applications in reducing
NOx emissions from fossil power plants and optimizing
petro-chemical processes; however, these products have
not been used for thermodynamic efficiency improvement.
The reason for that may be the limited number of controllable
variables in the secondary side of a nuclear power plant
and the expense in developing first principle models for
an entire rankine cycle.

The University of Tennessee performed some of the
seminal research in empirical performance modeling and
optimization for nuclear power plants [48]. Initial work
was performed for TVA in which Sequoyah Nuclear
Power Plant (NPP) Unit #1 was modeled. Estimated heat
rates were within 0.1% of the calculated values. When
the trained model was used on Unit #2 (nominally, an
identical unit), heat rates were within 0.5%. This validates
that the NPP heat rate can be modeled from plant data. A
sensitivity analysis was used to determine how to change
the most important variables to improve plant performance
but changes were not implemented on the plant because
most involved changes in hardware.

More recent work [49] verified the ability of feed
forward neural networks to model plant heat rates using
hourly measurements, but the modeling of the sensitivity
of heat rate with respect to input variables required very
frequent inputs (i.e., time sample intervals of about one-
tenth of the system time constant, typically one or two
minute sample intervals) and feedback within the neural
networks. Subsequent research gave UT researchers
valuable experience in applying regularization techniques
to get repeatable, robust, reliable results from empirical
modeling techniques [21, 50]. With the application of
these techniques, on-line empirical performance optimization
will be possible.

Recently completed results show that online empirical
modeling techniques may be used to monitor and optimize
thermodynamic efficiency, which could save power
plants hundreds of thousands, even millions, of dollars a
year. As shown in Figure 3, the optimization method
makes use of an empirical inferential MSET model that
has training vectors covering the different operating
conditions. The inferential model is used to predict the
thermodynamic efficiency for different conditions. The
non-linear optimization function is used to perform a
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constrained optimization of the inferential model. The
model has inputs of state variables (SV) and controllable
variables (CV). Early experiments selected the controllable
variables to be the bypass flow rate to the feedwater
heater and the reheat flow. Eight state variables such as
secondary side temperatures, flow rates, and pressures
are chosen to represent the plant condition. The inferential
model determines the optimal change in the controllable
variables at the current state through the use of response
surface optimization techniques [51]. These changes are
then made to the plant and a new operating condition
exists. The procedure is repeated periodically to assure
that the efficiency remains near its maximum.

Early simulation results show that the method can
find the optimal operating condition and can even search
outside the trained space. Simulations show that simply
optimizing the bypass flow rate for 15 degree F changes
in cooling water temperature can save a plant $200,000 a
year. The data-based method has several advantages over
model based methods including correct adaptation to the
actual system, reduced engineering development time
and cost, and robust and reliable optimization techniques [52].

Researchers at the Halden Reactor Project have
developed an on-line Thermal Performance Monitoring
and Optimization (TEMPO) system. This system uses data
reconciliation based on first principal models. Rather
than only performing optimization, TEMPO also has the
ability to monitor the plant and detect sensor and equipment
degradation and faults [53, 54]. It is implemented as an
object oriented process modeling tool. Data reconciliation
techniques have also been investigated at utilities, such
as Electricity de France, solely to detect sensor degrada-
tions [55]. 

8.  AUTONOMOUS ANTICIPATORY CONTROL AND
INTELLIGENT AGENTS

The Department of Energy has stimulated the
development of several “Generation-IV” nuclear power
reactor concepts (generally described as reactor concepts
that will emerge twenty to thirty years in the future) that
are rejuvenating the interest in advanced concepts in
nuclear power plants. Generally, these plants have safety
characteristics (e.g., core damage frequencies) that are
one to two orders of magnitude smaller than the current
Generation-II and -III nuclear power plants, and their
construction and operating costs are projected to be
significantly less than current plants. Many of these
concepts (but not all) are modular plants with many
prefabricated major components.  

To achieve the expected lower operation costs, most
of the Generation-IV concepts utilize semi-autonomous
operation1 in which a few (perhaps two to four) operators
monitor and manage up to a dozen modular plants.
Many such plants anticipate operation for periods of five
to eight years without shutdown. While the robust design
of these plants contributes to efficient operation and
effective safety under normal conditions, they are not
immune to normal wear and fatigue concerns due to
operation as well as the occurrence of failure modes that
were not anticipated during the design. This latter concern
is particularly true of “first of a kind” plants like the
Generation-IV plants. The normal “first line of defense”
against normal and unexpected deterioration is continual
surveillance and predictive diagnostics. Semi-autonomous
operation imposes a higher level of safety assurance on
the plant designers and operators. To assure that this
challenge is met, special “multi-agents” may carry out
safety and performance assurance activities in Generation-
IV plants  [56].

Such an approach exploits a simple but powerful
idea: In order to regulate themselves in a semi-autonomous
manner and be protected from potential anomalies,
Generation-IV plants should act proactively, that is,
effect control in anticipation of (not just in response to)
possible contingencies. Preliminary work suggests that
the proposed approach may 

1. Address “wear and fatigue” problems emerging during
long-term operation, 

2. Effectively deal with unanticipated design basis events,
3. Monitor deterioration of plant and component

performance,
4. Reduce maintenance costs (by reducing/eliminating

excessive control actions), and
5. Determine when the plants need to shutdown for safety

135NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.2, APRIL 2005

UHRIG et al.,  Computational Intelligence In Nuclear Engineering
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1 Semi-autonomous operation can be defined as autonomous operation in
which operators can intervene under certain conditions and in which
operator action may be required to proceed to a different state of operation.



and other reasons.

Conceptually, each Generation IV plant is surrounded by
a set of controllers that can be considered the normal
monitoring and control blanket. In addition, a multi-
intelligent agent system envelops the plant with two
additional anticipatory control blankets, one pertaining
to problems emerging due to “wear and fatigue”
phenomena and the other pertaining to unanticipated
events [57].

An “agent” (sometimes called an “intelligent agent”)
is defined by the Object Management Group [58] as “a
person, a machine, a piece of software, or a variety of
other things, i.e., one who acts.” While the application of
individual agents is possible, their greatest potential is
realized when multiple-agents work together to achieve a
common goal. These collectives are known as multi-
agent systems. A requirement that is essential for multi-
agents to cooperate is that they share a common “view”
of their world and be able to communicate in a common
“language” or ontology. An agent is characterized by
knowledge (i.e., beliefs, goals, plans, assumptions, etc.),
and it interacts with other agents using an agent
communication language. An agent can also possess
additional characteristics, such as being autonomous,
interactive, adaptive, proactive, cooperative, competitive,
etc. For purposes of carrying out the safety and perfo-
rmance assurance activities on Generation-IV nuclear
power plants, available agents will be utilized and
additional specialized agents that utilize legacy (existing)
software to perform specific monitoring and safety
assurance functions can be developed.

Long-term semi-autonomous operation imposes
special requirements on the control of nuclear power
plants; namely, the ability to respond to fluctuating loads
and to adapt to a variety of operating conditions without
any intervention by a human being for weeks, months
and perhaps years. The management system of the plant
must be able to anticipate the consequences of the
various future states of operation (e.g., increasing and
decreasing power, operational transients, design basis
transients, etc.), and be prepared to respond to anticipated
conditions while the characteristic parameters of the
reactor vary over their entire range of operation. The
ability to anticipate the consequences of the various
operating conditions is not possible in current reactor
design. Such a control technology offers unique advantages
that support automated operation by anticipating events
and trends and taking preventative action.   

Nuclear power plants are by their design well suited
for the application of multi-agents to carry out the safety
assurance function as they are well instrumented for
purpose of defining the plant’s safety status. In modern
nuclear power plants, information is collected and
processed by a central plant computer. Each of the
monitoring and control subsystems can be “agentized;”
i.e., legacy (existing) code can be encapsulated in an

agent “wrapper,” enabling critical information to be
autonomously distributed to any agent that needs it to
perform its prescribed task.   

While there is general agreement on the concepts
expressed above, there is little agreement on how multi-
intelligent agents should be implemented.  One approach
that seems attractive is to use existing intelligent
controllers (IC) that contain both a perception module
that performs sensor data fusion, fuzzy inferencing,
information integration, and interpretation, and a response
module that performs operational assessment, mission
management and control, planning (and replanning), and
plan execution [59]. Such systems are very robust with
respect to unforeseen situations and recovering from
failures under autonomous operation, yet they will accept
human interaction and collaboration. They use low-
bandwidth (simple, high level) communications and
utilize self reorganization in reaction to recognized
partial or complete failure of a component or in response
to unforeseen environmental changes. They do not
depend upon data-based models, so the issue of ill-posed
problems does not arise. They can generate confidence
factors on their conclusions that can be very helpful. An
architecture for such a multi-IC system has been developed
by the Applied Research Laboratory[59]. In summary, the
IC would appear to be an ideal basic system around
which to build an agent-based system to manage large
complex systems such as a semi-autonomous nuclear
power plant or a reactor in an orbiting space station.

9.  CONCLUSION

The role of computational intelligence in nuclear
engineering has been illustrated through the discussion of
several current approaches to surveillance and diagnostics
in nuclear power plants. However, this list of applications
and researchers is a small fraction of the research currently
underway throughout the world. The development and
use of such techniques is critically important to the safe,
efficient and reliable operation of future nuclear power
plants, particularly those Generation IV plants that are
expected to operate semi-autonomously for long periods
of time. 
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