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In this paper are reviewed the current status of nuclear fuel management and reactor operational aid tools. In addition, we
indicate deficiencies in current capabilities and what future research is judged warranted. For the nuclear fuel management
review the focus is on light water reactors and the utilization of stochastic optimization methods applied to the lattice, fuel
bundle, core loading pattern, and for BWRs the control rod pattern/core flow design decision making problems. Significant
progress in addressing separately each of these design problems on a single cycle basis is noted; however, the outstanding
challenge of addressing the integrated design problem over multiple cycles under conditions of uncertainty remains to be
addressed. For the reactor operational aid tools review the focus is on core simulators, used to both process core instrumentation
signals and as an operator aid to predict future core behaviors under various operational strategies. After briefly reviewing
the current status of capabilities, a more in depth review of adaptive core simulation capabilities, where core simulator input
data are adjusted within their known uncertainties to improved agreement between prediction and measurement, is presented.
This is done in support of the belief that further development of adaptive core simulation capabilities is required to further

significantly advance the utility of core simulators in support of reactor operational aid tools.

1. INTRODUCTION

Nuclear fuel management and reactor operational aid
tools today largely build upon the software capabilities
developed to complete core design analysis. This has been
made possible by both advances in computational efficiency
due to methods, e.g. nodal methods, and computer hardware,
e.g. higher performing CPUs. The advantages of building
upon the core design analysis software capabilities are
that the effort to establish the models needed to complete
nuclear fuel management and for reactor operational aid
tools is minimized, and once established one need not
spend time reconciling differences between different models.
So much of the discussion presented in the companion
paper entitled “Current Research Activities on Diffusion
and Transport Calculation Methodologies” authored by
Professor Nam-Zin Cho serves as a basis for this paper.
In this paper the focus will be on light water reactor (LWR)
cores of the pressurized water reactor (PWR) and boiling
water reactor (BWR) types, but much of what will be
written is also applicable to other core types. We will
first discuss the current status of nuclear fuel management
and then follow with a discussion of reactor operator aid
tools.
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2. NUCLEAR FUEL MANAGEMENT

Nuclear fuel management [1] involves making the
following decisions: the quantity and attributes of the
fresh fuel assemblies that will be purchased, the partially
burnt fuel assemblies that will be reinserted, the locations
of both the fresh and partially burnt fuel assemblies within
the core, i.e. core loading pattern (LP), and for a boiling
water reactors the control rod program/core flow (CRP/CF)
strategy. These decisions need to be made for each reload
cycle. Since fuel assemblies are irradiated several core
cycles, the nuclear fuel management decisions made for
the current cycle will impact those made in subsequent
cycles. The objective of nuclear fuel management is to
minimize the nuclear fuel cycle cost while satisfying the
cycle energy requirement. This must be done such that
all safety and operational constraints are satisfied with
sufficient margin. To get a grasp of the magnitude of the
decision space, consider the following decisions that
need to be made each reload cycle: fresh fuel lattice
designs (pin-by-pin radial position fuel enrichment and
burnable poison loading), fresh fuel bundle designs (axial
span of different lattice designs), number of fresh fuel
bundle designs of each type, partially burnt fuel assemblies
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to be reinserted, location of fresh and partially burnt fuel
assemblies within the core, and for BWRs the CRP/CF
strategy as a function of cycle exposure. Constraining
these decisions are various operational and safety limits
as now indicated: reactivity limits (coolant/moderator
density reactivity coefficient, shutdown margin, ejected
or dropped rod worth, hot excess reactivity), thermal
margins (total and radial power peaking factors, MFLCPR,
MAPRAT, MFLPD), and mechanical/material limits
(pin, assembly and region average discharge burnups,
vessel fluence, excore detector count rate, and restrictions
on fuel assembly placement {control cell core}). In the
past and to this day, the ingenuity of the reload core
design engineer has been used to make these decisions,
finding feasible and near optimum core designs. To assist
the reload core design engineer various computer aides
have been developed, such as computer code linkage
buffer codes, automated design calculational sequences
(determination of moderator temperature coefficient
versus moderator temperature, cycle burnup and soluble
boron concentration), graphical interfaces to setup input
(core loading pattern) and interpret output, and the
application of mathematical optimization capabilities [2].
It is this last item, the application of mathematical
optimization capabilities that this paper will focus on.
From the above discussion, we see that the nuclear
fuel management decision making problem is highly
constrained and has a decision space that is very large
(can approach 10™). Further complicating the application
of mathematical optimization capabilities are that to
evaluate the objective functions and core response
constraints requires considerable computational effort
(solution of the few-group neutron diffusion equation as
a function of rodded configuration over the cycle); that
the problem is nonlinear; that there is a lack of derivative
information with respect to objective function and constraint
values dependencies on decision variables; that the feasible
space is disjointed; that both continuous and integer
decision variables enter; and that multi-cycles should be
evaluated, since decisions made for the current cycle
impact subsequent cycle decisions, and since to evaluate
fuel cycle costs, fuel must be tracked from initial fabrication
to final disposition. Two prominent mathematical optimi-
zation methodologies have evolved that appear to have
various degrees of applicability to the nuclear fuel mana-
gement decision making problem. More classical mathe-
matical optimization methods, such as linear, quadratic
and dynamic programming, so far have met with limited
success with a few exceptions [3], since they are likely
not appropriate due to the attributes noted above. Stochastic
methods, such as Simulated Annealing (SA) and Genetic
Algorithm (GA), are well suited but carry a heavy
computational burden due to the large number of potential
sets of decision variable values that must be considered.
Pseudo-heuristic methods, with the Tabu Search method
[4-6] appearing to be the most popular for nuclear fuel
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management decision making, have the advantage of
reduced search length but perhaps at the price of a reduced
capability of coming close to finding the true optimum. In
this paper we will concentrate on stochastic optimization
methods for two reasons. Firstly, these methods appear to
be more developed and utilized in practice. Secondly, the
authors can draw upon their own experiences in developing
such methods.

Stochastic optimization methods as noted above
suffer from requiring a large number of combinations of
decision variables, i.e. histories, to be evaluated. Constraints
are addressed as either being hard, i.e. any violation results
in rejection of the associated history case, or soft, imple-
mented via penalty functions that allow constraint violations
to be accepted early in the search. The advantage of
utilizing soft constraints is that it facilitates moving
across the infeasible decision space to locate disjointed
feasible decision subspaces in search of the vicinity of
the global optimum. Since the family of feasible near-
optimum solutions is determined using stochastic methods,
the reload core design engineer is presented with a number
of possible decision variable sets that can be further
examined factoring in constraints and objectives not
addressed in the mathematical optimization since they
may be difficult to express in a quantitative manner. To
be discussed later, stochastic optimization methods are
also well suited for multi-objective optimization. An
example of where this would prove useful is in
determining the trade-off surface of feed enrichment to
satisfy the stated cycle energy requirement versus radial
power peaking factor. The decision maker is now
provided with quantitative information that can be used
to determine the cost of introducing design margin.

Likely the most developed of the stochastic optimi-
zation methods is SA [7,8]. Casually, it appears to be a
very simple method to implement; however, the reality is
that to obtain both a robust, i.e. consistently locate the
family of near-optimum decisions, and efficient, i.e.
minimizes number of histories that must be examined to
locate the family of near-optimum decisions, some
thought must be given. SA is based upon the analogy of a
solid slowly cooling to its lowest energy state, i.e. anne-
aling. Given a minimization objective, let F denote the
value of the objective function for the currently accepted
decision variables, and F* denote the value of the
objective function after some perturbations are made to the
currently accepted decision variables. Whether the
perturbed decision variables are accepted, implying they
now become the currently accepted decision variables, is
determined by the following rules.

If F<F orif F>F and random[0,1]< e_(F _F% then
F=F otherwise F=F (1)

So if the perturbed decision variables produce a
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lower objective function value, then they become the
currently accepted decision variables. However, if the
perturbed decision variable produce a higher objective
function value, they only become the currently accepted
decision variables if a random number between zero and
one exceeds the expression noted in Eq. (1); otherwise,
the currently accepted decision variables are unaltered.
The conditional acceptance of inferior solutions allows
the search algorithm to escape local minimums, and as
we shall see when utilizing penalty functions, traverse
the infeasible decision space. The parameter T plays the
analog of material temperature in annealing. At high
temperatures, many inferior solutions are accepted,
allowing the search space to be extensively transversed
in search of the vicinity of the global minimum. As
temperature decreases, the probability of acceptance of
inferior solutions decreases, since if the cooling schedule
is done appropriately one should now be within the
vicinity of the family of global optimum solutions. What
the initial temperature should be and how fast cooling
should occur determine the robustness and efficiency of
the SA implementation. Fortunately, both of these attributes
can be determined based upon the specific behavior of
the optimization problem that is being solved as the
search progresses [9]. Another item that must be addressed
is at what temperature cooling should be ended and the
optimization search terminated. This can be triggered by
a combination of lower temperature limit, maximum
number of histories, and lack of improvement in the
objective function value.

Another item that enters is how perturbations for a
history are going to be made. One could randomly
perturb a single decision variable, several decision
variables, or all the decision variables. The nature of SA
is such that it is better to creep towards the vicinity of the
global optimum decisions, implying only a few decision
variables should be perturbed for each history case. If
many are simultaneously perturbed and the feasible
decision space is small versus the total decision space,
and disjointed, it will prove difficult to locate and once
located, stay within the feasible decision space. One now
is left with deciding whether unitary, binary, tertiary, or
higher number of decision variables should be perturbed
each history. This can be decided randomly based upon a
probability of the order of the perturbation, this
probability distribution determined by trial-and-error
hence application specific, e.g. LP optimization.

So far we have not discussed how constraints are to
be imposed during the search process for the family of
near-optimum decisions. As mentioned earlier, they may
be imposed as either hard or soft constraints. Hard
constraints normally apply to those that can be directly
imposed on decision variables, thereby reducing the
decision space and hence computational effort to solve
the optimization problem. A PWR example of this is to
not allow discrete burnable poison rods to be inserted in
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fuel assemblies under control rod locations. By contrast,
soft constraints normally apply to constraints that require
the response of the system being optimized, e.g. lattice or
core, to be evaluated to determine whether a constraint
violation has occurred. A BWR example is any of the
thermal margins or cold shutdown margin. Since the
constraints can result in a disjointed feasible space and
since as noted above SA normally only perturbs a limited
number of decision variables each history, one needs to
transverse the infeasible decision space to locate the
islands of feasible decision space within the total
decision space. To accomplish this when soft penalty
functions are utilized, they are added to the true objective
function to obtain the augmented objective function as
now indicated,

~ N
F=F+) (DO, @)
n=1

where @, denotes the penalty function for constraint n,
which has zero value when no constraint violation occurs
and increases when a constraint violation does occur as
the magnitude of the violation increases in accordance
with the mathematical definition of the penalty function
[10]. There are a number of penalty functions from which to
select that will impact the robustness and efficiency of
SA. The “lambda” multipliers on the penalty functions
increase as the cooling temperature decreases. By the
appropriate relationship of cooling temperature and
“lambda” multiplier and cooling schedule, early in the
optimization search the entire decision space will be
searched until the feasible space about the global minimum
is determined, as which time the “lambda” multipliers
and temperature should be such that any history thereafter
that results in constraint violations has a low probability
of being accepted via Eq. (1). This results in restricting
the search to the feasible subspace containing the global
minimum. Fortunately, the rate that the “lambda”
multipliers should increase can be determined adaptively
based upon the behavior of the optimization search as it
proceeds.

Because of the stochastic nature of the SA search,
many near-optimum solutions are generated, providing
the designer the opportunity to review these solutions and
down select based upon additional criteria not captured in
the optimization. This implies that an archive of these
solutions should be constructed as the SA search proceeds.
A number of the SA solutions are very similar, since
recall SA perturbs only a few decision variables in moving
from one history to the next history. An example for an
LP optimization would be the sole difference being a
rotation of one fuel assembly (really a major axis crossing
of a shuffled fuel assembly). To introduce diversity in the
archived solutions, various metrics of diversity between
loading patterns have been defined and used to build a
diverse archive.

To illustrate the nature of SA, Figure 1 through

81



TURINSKY et al,, Evolution of Nuclear Fuel Management and Reactor Operational Aid Tools

0.05

0.04

0.0

Augmented Objective Function Value

st 1 1 A iacand
2000 3000 4000 5000 6000 7000 8000 9000
History

I
0 1000

Fig. 1. Augmented Objective Function Behavior per Accepted History
for BWR

0.998
0.996 ;5%
0.994
0.992 X

0.99

EOC Eigenvalue

0.988

0.986

0.984

0982 &

k

008 B ; : ; ; ; ; ; ‘

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
History

Fig. 2. End of Cycle ke VValues per Accepted History for BWR

Cycle Limiting MFLPD

0.9

. . . . . . L .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
History

Fig. 3. Cycle Limiting MFLPD Values per Accepted History for BWR

82

Figure 3 present an SA optimization to determine the LP
for a BWR with the objective of maximizing end-of-
cycle core reactivity, taken from the work of Karve,
Moore and Turinsky [11-13]. Figure 1 and Figure 2 show
the augmented and true objective functions, respectively,
for only those histories that result in acceptance. Note
how local minima are found and then escaped. Figure 3
shows the MFLPD constraint value as the optimization
search progresses. Near the end of the search, the
constraints are or are nearly satisfied, allowing the search
to concentrate of minimizing the real objectives value.
For each history, the two-group, three dimensional
neutron diffusion equation and associated two-phase
flow fluids equations, must be solved at discrete burnup
steps over the reload cycle, hence the computational
burden is very high. Application of approximate core
models, e.g. linearization via direct perturbations or
generalized perturbation theory determined sensitivity
coefficients, can minimize the computational burden but
perhaps misdirect the search because of first-order
accuracy in predicting the objective function and
constraints’ values. Alternatively, multi-processor
computers can be employed. Recognizing that the SA
algorithm is recursive, parallelization needs to be
introduced in both the neutron diffusion equation and
two-phase flow fluids equations solutions [14], or by
employing a derivative of the SA algorithm with parallel
constructs [15].

As noted earlier, real engineering problems generally
involve multiple objectives [16]. A simple way to address
multiple objectives is to assign weights to each objective
and sum the weighted objectives to obtain a single
objective function. Unfortunately, the near-optimum
solutions determined will be dependent upon the values
of the weights, which are not known. A much more
appealing approach would be to define the trade-off
surface of the decision variables. For example, if the
objectives of interest are the feed fuel enrichment
required to achieve a specified cycle energy requirement
and the radial peaking factor, a measure of thermal
margin, one would like to know for each value of the
radial peaking factor what is the lowest feed fuel
enrichment that can be utilized, where the decision being
optimized is the LP. One could do an SA optimization
minimizing the feed fuel enrichment and imposing radial
peaking factor as a constraint, repeating this optimization
for different values of the radial peaking factor constraint.
This would require considerable computational time.
Alternatively, one could seek a method that determines
the tradeoff surface in a single optimization run such that
the associated computational time is substantially reduced
from the single objective, multiple run approach just
noted. Multi-objective SA (MOSA) is one approach to
attempt to accomplish this. Park’s [17], refining the idea
of Engrand [18], defines a multi-objective function as
follows,
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F=Zw,.f,. ©)

where wi and fi denote for the i objective the weight and
objective function, respectively. The weights are
determined adaptively based upon the optimization
problem’s attributes as the search progresses. Using this
in Eq. (1), SA is employed. However to determine the
trade-off surface, which would be an N dimensional
surface for N objectives, one must do something else.
Otherwise, one would tend to not span the trade-off
surface. This something else is to introduce the concept
of a non-dominated solution, which is defined as follows,

A history Xis non-dominated by history Yif F,(X)>F,(Y) for Vi=1,N.
Figure 4 shows surfaces corresponding to non-

dominated solutions. Now in contrast to having a single
history that corresponds to the current history from

A solution X is nondominated by solution Y if:
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Fig. 4. Nondominated Solutions Identification for Two Objectives

which perturbations to the decisions variables are applied,
all non-dominated solutions at any point during the opti-
mization search can be considered for perturbation. Which
non-dominated solution is selected is done randomly. In this
manner the trade-off surface as depicted in Figure 4
moves from about the northeast to spanning the range
from the southeast to northwest, composed of the family
of near-optimum, non-dominated solutions that define
the trade-off surface. Since our experience with loading
pattern optimization is that MOSA is not able to span a
very wide search space, particularly, it is not able to
search across multiple feed fuel LPs, we will defer to
presenting computational results until we discuss multi-
objective GA (MOGA).
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GA is based upon the biological principle of evolution,
which originates by survival of the fittest [19]. In contrast
to SA which has one current history where a few decision
variables are perturbed, GA consists of a population of
solutions. The original population may be generated by
successively applying SA perturbations and accepting all
associated histories. Once a population is established,
breeding occurs within the population to determine the
next generation of population. Using LP as an example,
one defines a geno-type associated with characterizing an
LP. By breaking and linking two geno-types, the offspring
LP is generated. There are numerous ways of breaking
and linking the geno-types, so computational experime-
ntation is necessary to determine which approach is
appropriate for the application at hand. The process that
does this is referred to as the crossover operator. Clearly
the crossover operator has the potential to perturb many
more decision variables than the few perturbations that
are associated with SA, therefore, one’s expectation is
that GA will be more efficient, i.e. require fewer histories,
to span the decision space. By retaining genetic attributes
of the parents, which if they possess desirable attributes,
e.g. low objective function value in feasible decision
space, one expects the successive generations of offspring
to have improving attributes due to inheritance even
though the crossover operator can perturb many decision
variables simultaneously. The crossover operator also has
the potential of destroying the physical inventory, e.g. for
LP the same fuel assembly will appear in the geno-type
string of both parents, resulting in two of these assemblies
in the offspring even though there is only one such fuel
assembly. Ways to restore the physical inventory, a tie
breaker operator, then needs to be introduced [17]. How
the parents are selected is dependent on their fitness,
which could be determined by the modified objective
function value. To introduce population diversity, one
does not always wish to breed the most fit parents, so
inferior solutions retain the potential to breed but with
lower probability. Just as in the biological breeding
process, mutations are introduced into the geno-type to
introduce population diversity that did not exist in the
original population. The mutation operator can be
selected to be the SA perturbations operator if so desired.
Reviewing the above, we see that the developer of GA
must define the crossover operator, mutation operator, tie
breaker operator, frequency of crossover versus mutation,
parent fitness metric, selection process for parents, popu-
lation size, and generations to follow. When done correctly,
GA can prove more efficient and robust than SA in
determining the vicinity of the global, optimum solution.
There is some thought that a combination of GA to
determine this vicinity followed by SA to complete a
local decision space search to better determine the family
of near-optimum decision variables may be an effective
strategy, but limited computational experiments for fuel
management problems have been completed to confirm
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this. Note that GA is embarrassingly parallel in that
breeding can occur simultaneously, so it can be
implemented on multi-processor computers without
modifying the GA algorithm.

Just as there is a MOSA derivative for SA, there is a
MOGA derivative for GA. The manner of how MOGA
achieves multi-objective optimization follows the same
approach as MOSA except that the underlying optimi-
zation method is GA versus SA. Figure 5 presents
MOGA results generated by Keller [20] which shows the
feasible solutions found for the multi-objective of feed
fuel enrichment minimization while constrained to
satisfy the cycle energy requirement and radial peaking
factor minimization for a PWR with LP being the
decision variable. Note the dense number of near-
optimum solutions that lie on the tradeoff surface. The
saw-tooth nature of the surface is associated with
different fresh fuel location patterns, with the immediate
surrounding solutions being alterations of the burnt fuel
locations. The computational effort to complete this
MOGA evaluation was found to be approximately 50%
greater than a single GA evaluation, so clearly is
preferred over multiple GA evaluations for different
radial peaking factor constraints values.

So what can we do in practice today regarding
nuclear fuel management optimization using mathematical
optimization capabilities. We can optimize the fresh
fuel’s lattice designs [21-24], but unfortunately if this is
done in isolation of the core design it is hard to define
what the objective function and constraints to be imposed
should be. Given fresh fuel lattice designs, there is some
capability to determine the axial elevation spans that the
lattices should be assigned to [6]. Most recently, Kropaczek
and Jessee [25] have optimized BWR lattice and bundle
designs based upon a fixed inventory of fuel pin designs,
i.e. fuel enrichment and gadolinia loading as function of
elevation, for a fixed LP and CRP/CF. This work
quantified the benefits of increasing the number of

84

streams, i.e. different fresh bundle designs, while still
constraining the manufacturing to a limited number of
fuel pin designs. Regarding LP determination, we can
determine the optimum LP for either a single non-
equilibrium reload cycle [10,26-31] or the ideal equilibrium
cycle [32,33]. This includes placement of the burnable
poison in the fresh fuel assemblies. For a BWR, the LP
optimization can be done in coincidence with the
CRP/CF search [12,34]; however, the later tends to be
completed utilizing heuristic rules versus a mathematical
optimization approach. Fortunately, PWR LP objectives
and constraints generally are of a 0-D or 2-D radial
nature, so computational effort to complete the LP
optimization are acceptable if a high fidelity 2-D radial
model can be established, which the consistent collapse
methodology [35] has been shown capable of producing.
For the BWR LP problem [2,11-13], objectives and
constraints require 3-D modeling due to axial heteroge-
neities due to the fuel, voiding, and partial control rod
insertions. So one is left with the options of approxima-
ting the evaluation of the objective function and constraints
as a function of decision variables, e.g. surface response
model, accepting very long running optimizations, e.g.
several days on a single processor, high end PC, or
implementing on multi-processor computers.

So what remains to be done? Today we cannot solve
the coupled lattice, bundle, LP and for a BWR CRP/CF
decision making optimization problem. Once we achieve
this capability, we still have to address the multi-cycle
nature of the incore nuclear fuel management problem,
which today is ignored since we are limited to single-
stage, i.e. single cycle, successive optimization. Once the
multi-cycle nature of the optimization problem is
addressed, we still have to address the uncertainties that
enter the optimization, due to input date, e.g. cross
sections, modeling, economics data, e.g. ore price, plant
operations, e.g. actual versus planed cycle energy
productions, and future fuel design changes. Indeed, it
would be nice to know the overall core uncertainties as a
function of different sets of near-optimum decision
variables. Finally, given the increasing attention to closed
fuel cycles to minimize long-lived radioactive waste
streams and the associated issues of proliferation resistance,
our multi-objective needs to be expanded to include
metrics for these two attributes in addition to the
currently treated attributes related to economics, and
operating and safety margins. As one can see, those
involved with developing nuclear fuel management
optimization capability have much work remaining to be
completed.

3. REACTOR OPERATIONAL AID TOOLS

Reactor operational aid tools assist the reactor operator
and engineer in understanding the observed behavior of
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the core and what actions are required to obtain the
desired behavior of the reactor core. Today these tools
largely reside on computers versus the paper plots and
tables of the past. Obviously written procedures can be
considered the most basic and perhaps most important of
reactor operational aid tools. Acknowledging this, we
shall move on to consider other reactor operational aid
tools. With regard to understanding the observed behavior
of the core, it is important to recognize deviations from
expected behavior as predicted by core physics simulation
software. Zero power startup physics tests, special tests
during the cycle, and plant follow data via incore
instrumentation and core critical conditions all provide
valuable information to improve future prediction
capability either via improvements to input data and
models, or bias adjustments. To assist the operator in
deciding on what actions should be initiated to obtain a
desired response of the reactor core, pre-calculated core
attributes (e.g. reload core nuclear design report), and
off-line and on-line core simulations of future evolutions
can be utilized. In this section, we shall mainly
concentrate on the on-line core simulation capabilities
that are now or shortly are likely to be available, but first
we return to describing the tools that are used to interpret
and understand observed core behaviors.

Core follow has always been utilized to understand
observed core behaviors. The challenge is to utilize the
data obtained from core observables, e.g. incore detector
currents, and convert them to the attributes of interest,
e.g. power peaking factors. To do this, core simulator
predictions are utilized to complete the data processing
[36]. Needless to say, a valid concern is that since we are
using core simulator predictions in processing the data,
the results of which are used to verify the fidelity of the
core simulator, we may be masking inadequacies in the
fidelity of the core simulator. More direct observables,
such as gamma scans, can be used to overcome this but
at great cost. The change that has taken place from the
past is that these conversion factors are more-and-more
being calculated for the current core condition versus
pre-calculated based upon some assumed core condition.
On-line core follow via a core simulator allows this more
accurate approach to be taken [37,38].

Regarding startup physics testing that many times is
mandated by the licensing authority, the main goal in
recent times is to minimize the time to complete these
tests since they are normally on the critical path to
reactor escalation to power. Needless to say, the most
direct manner of reducing the startup physics test time is
to reduce the number of startup physics tests required.
This has been met with some success with licensing
bodies based upon the reasoning that the excellent
agreement between measured and predicted core
attributes as displayed from past startup physics tests
justifies not continuing to perform these tests. Comple-
menting this approach to reduce the time for startup
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physics tests are alternate test approaches. For PWRs, the
Dynamic Rod Worth Measurement [39] approach to
measuring rod worths has for certain utilities reduced the
associated measurement time versus the Rod Swap and
Born End Point measurement approaches. To support
Dynamic Rod Worth Measurement processing of data, in
addition to the common dependence on the inverse point
kinetic equations, 3-D steady-state and transient simulations
of the core and transport calculations of the excore
detectors’ responses are required to account for prompt
and delayed neutrons’ spatial redistribution during rod
insertion. Here again we see heavy reliance on simulation
models in reducing the experimental data so that it
provides useful information to validate these same
simulation models. Needless to say, the concern is
simulation modeling errors that enter processing of the
experimental data will result in masking the errors in
predicted versus measured rod reactivity worths, which
was a focus of the regulatory approval process.

Turning now to the topic of predicting what actions
are required to obtain the future desired behavior of the
reactor core, this is an area that has always been important
to BWRs and subsequently has gained in importance for
PWRs. The earlier importance to BWRs originates
because all possible core states over a cycle cannot be
easily bounded by pre-calculated assumed conditions.
This follows given the various CRP/CF pairings that are
possible and the poorer prediction accuracy of core
simulators for BWRs. By contrast for PWRs, with their
practice of operating at higher powers with control rods
nearly all the way out at their bite positions and the
higher fidelity of their associated core simulators, pre-
calculated bounding scenarios with reference to
operational freedom allowed by Technical Specifications
and operating procedures can be defined and evaluated
apriori. However, this is achieved by restrictions on the
operating freedom, e.g. Constant Axial Offset Control
limits. So today for both BWRs and PWRs, more
reliance on predictive tools to operate the reactor is
evolving.

To accurately predict the future, e.g. power maneuver,
one must be able to predict the past and current with
fidelity. How past and current predictions and measure-
ments are used to predict the future with greater fidelity
has been an area of sustained development, with some
very recent encouraging indications of substantial
improvement on the horizon. Future predictions can be
done on-line, i.e. core simulator integral to plant process
computer or other computer available to operators and
reactor engineers, or off-line, i.e. via design basis core
simulators available to reload core designers. Do note
that it is now common that the on-line and off-line core
simulators are one and the same, with the difference being
accessibility, ease of usage and integration into measured
plant data processing. It is fair to say that all BWRs and
increasingly more so for PWRs, that on-line core
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simulators are being utilized to do core follow and future
predictions. Various techniques have been employed to
improve the fidelity of future predictions by adjusting the
core simulator' s predictions to improve agreement with
past and current measurements. Most times this is done
by applying correction factors, e.g. biases, to the
predicted results, using techniques such as surface
response. The premise of this approach is that the past
trend or current values of the correction factors will
continue into the future. Occasionally the core simulator
model will be adjusted, such as via utilizing a Fourier
axial overtone expansion of Xe'* concentration to
improve agreement between predicted and measured
axial flux distribution or axial offset. For simple nodal
models whose nuclear data consists on node-wise ki and
migration areas, the values of these parameters have also
been adjusted to improve agreement between predicted
and measured incore detector signals. The hope is that by
adjusting the core simulator model a more robust
prediction capability of future core behavior can be
achieved versus employing a correction factor approach.
Mathematically, when we use past and current data to
improve the fidelity of future predictions, we can think of
this as solving an inverse problem. Thanks to advances in
medical imaging and geophysics exploration, improve-
ments have been made in solving the inverse problem via
the application of mathematical inverse theory [40-44].
We will now choose to concentrate our discussion on the
application of inverse theory to the core simulation
problem by briefly reviewing recent work by Abdel-
Khalik and Turinsky [45-47] on using inverse theory to
build an adaptive core simulator. We start with the
premise that the lack of fidelity originates due to the
input data, including correlations describing physical
phenomena incorporated within computer software, and
not due to models. Their related work on evaluating the
uncertainties of key core attributes, e.g. power distribution
and core reactivity, due to uncertainties in the evaluated
nuclear data file give some credence to this assumption
since the predicted uncertainties of key core observables
are found to be of the same order of magnitude as the
observed differences between measured and predicted
values [48]. What we wish to do is adapt the input data to
improve agreement between measured and predicted core
attributes, e.g. incore detector readings and core reactivity.
We wish to do this in such a manner that the adjustments
to the input data are restricted to be within the known or
expert judgment of the input data uncertainties. We also
need to recognize the uncertainties of the measured
observables values due to noise and drift. If all these
factors are correctly addressed, the adapted core simulator
will likely be robust, i.e. able to predict with fidelity
future core conditions that differ from past and current
conditions. Mathematical regularization methods used in
inverse theory capture the manners of adaptation noted
above by minimizing the differences between experime-

86

ntally measured and predicted core observables, e.g. incore
detector readings, by adjustment of the parameters chara-
cterizing the input data constrained to be within their know
uncertainties. Expressed mathematically, the predicted
core observablesjuf’are given in terms of parameters p, by

d’ =0(p,) (4)

The adapted core observables are then determined solving
the following minimization problem

-0.5
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P

where d* denotes the measured values and the quantity
e denotes the range of adjustment allowed. This
constrained minimization problem can be recast into an
unconstrained minimization problem as

2

] (6)
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where the value of « is selected to assure the e constraint
noted in Eq. (5) is satisfied. In practice, the value of « is
selected to be close to the knee of the characteristic L
curve [49] obtained when plotting the first term of Eq.
(6), the misfit term, versus the term multiplied by «? in
Eq. (6), the regularization term. The twg covariance
matrices appearing in Eq. (6), ¢ and C, denote the
covariance matrices of the measured core observables
and input core parameters, respectively.

Now let us consider what is involved to obtain the
predicted core parameters and covariance matrix of the
input core parameters. The predicted core parameters can
be such quantities as incore detector signals and core
reactivity, e.g. critical state. Current practice starts with
an evaluated nuclear data file, e.g. ENDF/B. A processor
code, e.g. NJOY and AMPX, reads this data file and
generates the many-group cross section library. This
library serves as the input to lattice physics codes, e.g.
CASMO and HELIOS, which determines the few-group,
spatially homogenized nodal cross-section set. This set is
then characterized in some fashion to allow interpolation
to local core conditions, e.g. burnup, fuel temperature
and coolant density, the coefficients involved in this
characterization being the input core parameters mentioned
above. Finally, the core parameters are used by the core
simulator to predict the core observables, in addition to
the core attributes not measurable but of interest, e.g.
power distribution, control rod worths and reactivity
coefficients. The above computational steps are complex,
computationally intensive, and involve nonlinear operators.
A similar set of linked computational steps, minus the
core simulator step, is required to evaluate the core
parameters’ covariance matrix, starting with the covari-

2
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ance information provided in the evaluated nuclear data
file.

Our interest is in adjusting the input core parameters
via the solution of the constrained, minimization
problem. To do this, the problem is linearized, that is, we
wish to determine the sensitivity of the core observables
to the core parameters, mathematical represented in
terms of the Jacobian matrix given by

—  30(p)
A0 =22WP) @
o |

Po

allowing us to predict the core observables to first-order
accuracy using

d=d, +AOAp ®)

where Ap = p— p, Substituting Eqg. (8) into Eq. (6) permits
us to solve for the adapted core parameters by taking the
derivative of the resulting equation with respect to core
parameters and setting the result equal to zero, which
produces the modified normal equation

— 7=\ — —p\! - —7/=m\" _
p:ﬁo{Ao (c ) AO+ az(C j } {AO (C j Ad}
C)
where Ad=d"—d" denotes the difference between measured
and calculated core observables. Since Eq. (8) is only
first-order accurate, one can reevaluate the Jacobian
matrix about p, the adapted core parameter values, and
repeat the process utilizing a slightly modified version of
Eq. (9). This relinearization process can iteratively
continue until convergence in the core parameter values
is reached.

To evaluate the left hand side of Eq. (9) requires us to
determine the sensitivities and core parameters’ covariance
matrix, and to evaluate the action of an inverse matrix
operation. Given that there are typically about 10° incore
detector readings over the course of a reload cycle, and
that a design quality core simulator may have 10° core
parameters input, this implies a total of 10" sensitivity
coefficients must be evaluated and stored, both not
realistic to consider achieving. Likewise, the core para-
meters covariance matrix would have 10* entries, also
not realistic to evaluate and store. To overcome this
problem an Efficient Subspace Method (ESM) [47] has
been developed to reduce the sizes of the Jacobian and
covariance matrices.

Figure 6 through Figure 10 present adaptation results
for a BWR reload core. In this case, since this research
topic is still early in development, what is being adapted
is one core simulator to another core simulator, these two
core simulators differing substantially in their prediction
of core attribute values. The core observables being fitted
to are core reactivity and spatial nodal powers as a function
of cycle exposure. Note that similar results are obtained
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when incore detector readings are used in place of spatial
nodal powers, even though there are many less incore
locations than spatial nodes. The core parameters being
adapted are the fitting coefficients to the few-group,
homogenized cross sections mentioned above. The notation
DC and AC refer to pre and post adaptation predictions,
respectively. Figure 6 shows the core reactivity prediction
difference. Likewise, Figure 7 through Figure 10 show
similar results now for various characterizations of the
core power distribution. Given that modeling differences
between the two computer codes are not addressed in the
adaptation, and that the core parameters are constrained
to be adapted within their known uncertainties, the improve-
ment in agreement post adaptation is very encouraging.
Needless to say, adapting one core simulator to
another core simulator may have some practical applica-
bility if multiple core simulators are utilized, e.g. design
core, plant on-line core monitoring, and incore nuclear
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fuel management core simulators, but this is not adapting
to experimentally measured core observables. Measured
core observables involve detectors that have noise, drift
and may fail. Simulations have been completed to show
that Gaussian noise can be treated [50,51], but the issues
of detector drift and failure have not been addressed in
this work to date. Plant operating data also involves
uncertainties in reactor state, e.g. power level, control rod
positions and assumed equilibrium, steady state conditions,
and fuel fabrication uncertainties. In addition, nonlinear
feedbacks such as due to thermal-hydraulics exist,
implying that their associated core parameters, e.g. void-
quality correlation, need to be considered for adaptation.
Finally, adaptation implies a change in neutron interaction
rates, which in turn implies a change in isotopic depletion,
which in turn implies that the beginning of cycle isotopic
number densities for the shuffled fuel should be altered
consistent with the adaptation. This nonlinear, multi-
cycle feedback effect was not treated in the results
presented above. What one concludes from this discussion
is that early results from research on developing an
adaptive core simulator are promising, but that there
remains much more work to complete to address the
challenges just noted.

4. SUMMARY

Significant advances have been made in addressing
the incore nuclear fuel management optimization problem.
These advances evolved to a level starting about one
decade ago where automated tools utilizing mathematical
optimization methods have been of benefit to the reload
core design engineer. However, much work remains to
be completed to integrate the lattice design/bundle
design/core LP (with CRP/CF for BWR) optimization
problem, and the true multi-cycle nature of nuclear fuel
management.

For on-line operator aides, the utilization of the same
core simulators for this application and those used in the
reload design process has improved fidelity in interpreting
measured core observables and reduced engineering
effort. Preliminary results on developing an adaptive core
simulator which improves fidelity and is robust are
encouraging. However to achieve the state of practical
application, which nuclear fuel management optimization
now enjoys, will require substantial additional research
and development to overcome the challenges noted
above.
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