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1. INTRODUCTION

The optimization of predictive performance of empirical
modeling applied to condition monitoring is of primary
importance for early fault detection. One source of uncertainty
that is of particular interest comes from the collinearity of
the predictor variables, or predictor vectors, which causes
an ill-posed problem. Hadamard [1] defined a well-posed
problem as a problem that satisfies the three following
conditions:

The solution for the problem exists.
The solution is unique.
The solution is stable or smooth under small perturbations
of the data; i.e. small perturbations in the data should
produce small perturbations in the solution.

The input collinearity, which is found in data sets
with large mutual correlations, makes the solution non-
unique, causing the problem to be ill-posed and requiring
special considerations to ensure consistent, reliable
results.  

Previous work shows that kernel-based techniques,
such as kernel regression, local linear regression, and
local polynomial regression, can be properly regularized
through the selection of the optimal kernel width [2]. The
research presented herein investigates the effect of kernel
width selection and ridge regularization of the MSET
memory matrix as two methods to optimize inferential
MSET modeling predictive performance.

Early work has focused on the use of regularization
methods for producing reliable, consistent, low noise
empirical predictions for sensor calibration verification
using a variety of empirical models [3,4]. It applied
regularization methods such as ridge regression [5],
complexity regularization [6, 7], local regularization [8,
9] to models such as non-linear partial least squares [10],
neural networks [11] and linear regression. A survey of
these techniques applied to equipment monitoring is
available [12].  

This prior research provides a solid background in
regularization techniques, but did not apply them to the
MSET model, which is currently being used for on-line
monitoring at close to a dozen nuclear power plants. This
research presents the results of the application of
regularization methods to MSET, with the objective of
minimizing predictive error. Additionally, the selection
method and number of prototype vectors used in the
memory matrix is investigated.

2. INFERENTIAL MSET REGULARIZATION

Let us consider the following nonlinear model:

where X is a n x m data matrix of n observations of m
predictor variables;
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y = f (x) + (1)



y is a n x 1 vector of the response variable;
f (X) is a unknown nonlinear function representing

the true relationship between the response and
predictor variables;
is a n x 1 vector of the random errors distributed
according to the normal distribution ( ~N(0, 2I) ).

The objective is to estimate the unknown function  f (X)
from the given matrix of observations (X, y) and the given
assumption that the random errors come from a normal
distribution. 

The inferential MSET estimator [13] is one approach
to solve such a problem. The MSET algorithm was
originally developed by Jack Mott [14] and later refined
and applied to nuclear power plant surveillance by
researchers at Argonne National Laboratory [15]. Being
a “lazy” learning technique [16, 17], the inferential
MSET estimator represents the solution to the problem as
a weighted sum of given past observations. This model
belongs to a class of techniques called non-parametric
techniques. Equation 2 represents the inferential MSET
formula in the matrix form [2].

where XT
tr is the matrix of training data, which is commonly

called the memory matrix, Xnew is the query data vector,
1is a column of ones, and Ytr is the training response data.
The symbol stands for a non-linear similarity operator
termed a kernel function 

Kh(x, x').

A kernel function for x Rd has the following properties
[18]:

1.  K(x, x') takes on a maximum value where x=x'.
2.  |K(x, x')| decreases with |x-x'|.
3.  K(x, x') is a general function of 2d variables

The most common choice of kernel is the Gaussian
operator, 

where xi is the data point around which the kernel is placed,
x is the data point being compared to xi, and h is the
smoothing parameter or bandwidth. SmartSignal (SS)
Corporation licensed MSET from Argonne National
Laboratory and subsequently extended and modified the
basic MSET technology in developing their commercial
Equipment Condition Monitoring (SmartSignal eCM™)
software [19] which uses a proprietary kernel. Because the
SS similarity operator is proprietary, this paper will

employ the common Gaussian kernel. Many researchers
believe that the kernel choice does not have a major impact
on the algorithm performance [18]. 

The kernel bandwidth (h) is a user selectable parameter
in the MSET model and an inappropriate choice would
be a source of potential underperformance; therefore, it
should be optimized. In terms of kernel bandwidth, the
behavior of the MSET estimator is similar to the behavior
of the well-known kernel regression estimator (Equation
4). A narrow kernel bandwidth overfits the solution by
depending on only a few noisy training observations,
while a large kernel bandwidth over-smooths the predictions
by depending on too many.

The experiments performed in this research reveal
that the inferential MSET estimator is less sensitive to
the kernel bandwidth than the standard kernel regression
estimator. This is because the matrix of training data:
D = (X'tr Xtr), performs as a matrix of bandwidth correction
factors. The D matrix makes the Gaussian kernel
approximate a high-order kernel so that the smoothing
effects of the modified kernel become less aggressive. In
other words, applying the memory matrix as in Equation
2 changes the shape of the kernel and changes the
effective kernel bandwidth. The optimization of the
kernel bandwidth parameter will be discussed in more
detail in following sections.

As can be noted from Equation 2, if the memory
matrix is near singular, its inversion leads to an unstable
solution. In other words, inversion of an ill-conditioned
memory matrix presents a potential additional problem to
obtaining a stable solution. To address this issue, ridge
regularization of the memory matrix is applied to the
inferential MSET estimator.

2.1 Ridge Regularization of the Memory Matrix
One of the possible reasons for getting a high-

variance prediction may be the ill conditionality of the
memory matrix. When the memory matrix of observations,
X, has very similar prototype vectors, it becomes ill-
conditioned and the elements of the inverted memory
matrix become very large. When this happens, the MSET
estimator becomes an amplifier. If the given observations
are contaminated with random noise, obtaining a stable
prediction becomes difficult, since the dominant component
of the predicted output is the amplified noise. The ill-
conditioned memory matrix may cause the obtained
prediction to be excessively noisy as shown in Figure 1.
This figure presents an example using simulated data in
which the noise in the input variables get amplified and
the MSET prediction is extremely noisy.

Figure 2 shows how the ill-conditioned nature of the
memory matrix impacts the inferential MSET estimator

178 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.2, APRIL 2005

HINES et al.,  MSET Performance Optimization Through Regularization

(2)

(3)

(4)



predictive performance. Here, the figure of merit is the
leave-one-out cross-validation (LOO CV) error (the
upper plot). The lower plot represents the growth of the
condition number of the memory matrix as the kernel
width is increased.

In this example, increasing the kernel bandwidth
increases the memory matrix condition number. When
the condition numbers grows beyond 102 – 103 (100-1000),
the prediction degrades, as shown by an increase in
predictive error. This is a common problem and is well
discussed in terms of linear regression for which the most
common solution is ridge regression [5]. Decreasing the
condition number of the memory matrix greatly
improves the prediction stability. One possible approach

to improving the conditionality of the memory matrix is
to apply ridge regularization to the matrix when it is
inverted. The ridge regularized MSET estimator takes the
following form:

where is the ridge regularization parameter ( > 0). 
In general, finding the optimal value of is a one-

dimensional optimization problem, which can be solved
using a non-linear method such as conjugate gradient
descent. Our experiments show that setting equal to
one is a good default value for most models when the
data is standardized to have a variance of one, the kernel
width is set equal to one, and the entire data set is used as
the memory matrix.

2.2 MSET Gaussian Kernel Width Optimization
When using the Gaussian kernel similarity operator,

one can vary the bandwidth to obtain stable and
smoothed predictions. In the simplest case, there is one
common bandwidth parameter h, which is used for each
input variable. In this case, the bandwidth matrix is
represented as a diagonal matrix with only one single
value of h. To account for the different input variable’s
contributions, the bandwidth matrix may be diagonal
with the different bandwidth values for each input. In
such a case, the optimization problem becomes p-
dimensional, where p is the number of input variables.
The most complicated case is when the bandwidth matrix
is a full matrix. The optimization problem becomes p2-
dimensional and is very computationally burdensome
even if p is relatively small. 

This research considers the p-dimensional problem of
optimizing the Gaussian kernel. That is, the diagonal
bandwidth matrix consists of different values of h.

2.2.1 Experimental Methodology 
The ridge regularization method was applied to the

data set obtained from a nuclear power plant. The data
set is comprised of 136 critical process variables observed
each hour during an 11-month-period. Including the entire
data set, which contains 7955 observations, as the memory
matrix would create a significant computational burden;
therefore, a portion of the data was selected to represent
the entire data set. A one-month period of observations
was selected as the training data set and the subsequent
one-month period was selected to be the validation set.
The data sets were downsampled so that only 2-hour
observations were retained in the training and validation
data sets. Thus, 451 training vectors and 471 validation
observations were used for the numerical experiments. 

The response variable (predicted variable) was an
arbitrarily chosen variable. The selection of the best
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Fig. 1. An Ill-conditioned Memory Matrix Leads to a High
Variance Response. 

Fig. 2. LOO CV Error Versus the Kernel Bandwidth Parameter;
Condition Number of the Memory Matrix Versus

the Kernel Bandwidth Parameter.

(2)



predictor variables for the selected response variable was
performed using the LASSO regression based method
[20]. The following is an outline of the experimental
methodology.

1. A given data set is divided into 2 parts: training and
validation. The validation set is used to measure the
predictive performance by means of the mean prediction
error. 

2. The training data is standardized so that each input
has a mean of zero and variance of one. The same
standardization parameters (training set mean and
variance) are used to standardize the validation set.

3. Several prototype vectors are selected from the training
set so that they properly cover the training space.

4. The cost function minimum is obtained using a conjugate
gradient descent method for the two following cases. 
a). Both the kernel width vector and the ridge parameter

are optimized.
b). Only the kernel width vector is optimized. The ridge

parameter is selected to be constant and equal to one.

In non-linear optimization, the minimum point is not
guaranteed to be the global minimum, but will be an
improvement to the starting point of a kernel width of 1
and regularization parameter of 1. This starting point is a
good, and common, choice because the data is standardized
to have a variance of one.

When using the Gaussian kernel, the estimator hat
matrix can be obtained. This allows the use of a complexity
based cost function. Mallow’s CL [21] is chosen to be the
cost function because it takes complexity into consideration
and provides a more robust measure of future predictive
performance.

where Y is a vector of the training samples;  
Y is a vector of the estimates; 
n is the number of training samples;
H  is the hat matrix of the MSET estimator, which

depends on the bandwidth parameters h;
2 is the variance of random noise in the response

variable. 

The random noise variance cannot be obtained
precisely, but it can be estimated using the following:

2.2.2 Experimental Results
The experiments are conducted using both the nuclear

data set and a simulated data set consisting of partially
correlated data with both linear and non-linear associations.
The simulated data, which are corrupted by various levels
of Gaussian noise, is used as a more controllable data set
so that more conclusive results can be reported.  

One of the important choices made by MSET users is
the number of data observations selected for use in the
memory matrix. Usual statistical theory states that more
data means more information and results in better
predictive performance. However, currently, reduced
data memory matrices are employed to produce low
variance predictions. To explore the effects of the number
of prototype vectors in the memory matrix, a reduced
data set is compared to the full training data set. Table 1
summarizes the results obtained for the Gaussian kernel-
based MSET estimator. 

The predictions made using the larger training
prototypes set resulted in better predictive performance
when compared to that obtained using the reduced
number of prototype vectors. Since adding additional
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Table 1. The Mean Prediction Errors Provided by the Gaussian Kernel Based MSET Estimator with the Optimized Bandwidth Parameters
Using the Entire Training Vector Data Set and a Reduced Prototype Vector Set Equal to 4 Time the Number of Predictors. 

Gaussian Kernel-based MSET

Constant Ridge = 1                                       Ridge Parameter Is Optimized

MSE   Cond. #    MSE     Cond. # Optimal Ridge

0.0090 8.20 0.0084 42.5 0.138

0.0083 57.0 0.0045 4.66 9.74

0.3740 19 0.3340 1 2.07 104

0.313 474 0.312 1.1 1011

Reduced Memory Matrix Model
28 prototypes

Entire Dataset Based Model
451 prototypes

Reduced Memory Matrix Model
24 prototypes

Entire Dataset Based Model
584 prototypes

Nuclear Data

Simulated
Data

(7)



vectors can make the matrix more ill-conditioned, this
improvement takes place only if the memory matrix is
regularized using the ridge method. The use of very large
data sets without regularization produces high variance
predictions due to ill-conditioning caused by similar
vectors. It can be concluded that ridge regularization
produces a better mean prediction error than the mean
prediction error obtained by reducing the number of
training prototypes down to four times the number of
predictors.  

Since the optimization problem is non-linear and of
P-dimension, the optimization procedure may fall into a
local minima. This problem was shown to exist by
Buckner [9]. One possible solution to the problem of
local minima may be the use of several starting points for
the conjugate gradient descent optimization. However,
this will consume additional computational time and
cannot guarantee the avoidance of local minima. 

3. MEMORY MATRIX PROTOTYPE VARIABLE
SELECTION

In this section, we will discuss a technique that
makes use of a reduced size memory matrix, termed
“local MSET”. Kernel regression is termed a local
technique because only prototype vectors similar to the
query point are used in the locally weighted regression
equation. However, the standard implementation of the
MSET algorithm allows all of the prototype vectors to
have an effect on the prediction, so it is not a true local
technique. If one wishes MSET to be a true local technique,
then the memory matrix should only include prototype
vectors similar, or near, the query point.

One additional non-parametric modeling consideration
is that of boundary effects. A prediction obtained with a
kernel-based technique may be unduly biased near the
input space boundary. When queried near the boundary

of the training data range, kernel methods becomes less
accurate since fewer samples can be averaged at the
boundary. The weighted average value tends to be biased
towards the center of the training region. The boundary
effect impacts all kernel regression estimators including
the MSET estimator. 

One possible solution to reduce the biasing, is to use
a relatively small set of prototype vectors to obtain a
prediction at a query point. There are several methods to
select the similar prototype vectors. In the most common,
which is similar to the k-nearest neighbor classifier, the
prediction is constructed by considering some constant
number (k) of the prototype vectors that are most similar
to the point of interest. Another method is to choose a
region around the query point. In this case, a kernel
regression estimator is constructed by selecting a crisp
set of local prototypes as shown in Figure 3.

In the case of the MSET estimator, the idea of a local
prototype matrix may seem to be contrary to the currently
used method of selecting prototype vectors covering the
entire training sample range. The currently used technique
selects prototype vectors that are the most different from
each other and bound the entire range of data. The local
memory matrix selects prototype vectors from the entire
training set that lie close to the query point, and therefore
are most similar to each other. Because of the similarity
of the prototype vectors, the local memory matrix is
commonly ill-conditioned and ridge regularization must
be used to produce robust, low-variance predictions. 

3.1 Methodology
To determine how well the local method performs in

comparison to the standard “global” prototype selection,
prediction performance is quantified using the following
two selection methods:

1. The “global” method selects the set of prototype vectors
from the entire range of data; the selected set of prototypes
remains the same for each query point.

2. The local method selects a number of prototype vectors
nearest to the query point. A number of 15-20 vectors
is a good empirical number that provides a plausible
average value. 

To provide equal conditions for both test methods,
we use the same number of prototypes for both the methods.
In the global experiment, the number of prototype vectors
is set equal to four times the number of model predictors.
Therefore, the number of selected vectors used to build
the local memory matrix is also set equal to four times
the number of model predictors. To calculate the prediction
for each query point, one needs to select a new set of local
prototype vectors.

3.2 Experimental Results
Figure 4 presents the results of a comparison of the
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Fig. 3. The Gaussian Kernel Modified to Account for the Local Set of
the Prototype Vectors.



local memory matrix and standard global memory matrix
methods. Ridge regularization was applied to both the
“local” and “global” memory matrices. As can be seen, if
almost no regularization is used (ridge parameter = 10–4),
the local memory matrix has a smaller prediction error
and thus outperforms the global technique. In some cases,
such as that shown in the simulated data model of Figure
4, a properly regularized global technique will perform

better than a local method. However, a properly regularized
local model will usually perform best. These results are
consistent with results using data sets from a variety of
equipment condition monitoring applications including
data sets from automotives, airlines, and fossil power plants
[23].

In Section 2, it was stated that optimized ridge
regularization of a global memory matrix results in better
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Fig. 4. A Comparison Between the Local Method and a Reduced “global” Memory Matrix. The Left Plot is for
the Nuclear Data model. The Right Plot is for the Simulated Data Model.

Fig. 5. A Comparison of Various Local Memory Matrix Methods with the Global Memory Matrix Method
that Uses the Entire Training Set.



prediction performance than the common method of
reducing the number of prototype vectors. Figure 5 presents
a comparison between the local memory matrix method
and the global memory matrix method for different sized
prototype vector sets. The global memory matrix is
composed of 199 prototype vectors. As can be seen, the
local method performs better than the global technique,
except for the last case when the local method is limited
to 15 vectors and the global method is optimally regularized.

In Figure 5 we also see that when the number of
local prototype vectors is small, regularization is not as
important. In all cases without regularization, the local
method performs better because vectors dissimilar to the
query point are not allowed to adversely influence the
prediction.

Figure 6 summarizes the results of a comparison of
the MSET estimators employing all three memory matrix
methods. The three types are the “local” method, the
“global” method using a reduced matrix, and the “global”
method using all available training data. As can be seen,
the “local” memory matrix outperforms the global
techniques. The memory matrix using the entire range
of data without any regularization performs the worst.
However, if the full matrix is properly regularized, it
produces a predictive error comparable to the local
memory matrix based method.

These results make sense. From information theory
we know that the more information, the better. So it
would be expected that the entire set of observations
provides a good prediction. However, the similar vectors
cause the matrix to be ill-conditioned and thus cause poor
performance; regularization can reduce those effects. A
reduced memory matrix is not ill-conditioned because
the vectors are not similar and thus does not require
regularization. The local method does not contain as much
information as the matrix with the entire set of observations,

but it does contain the ones that are the most similar and
thus the ones that contain the predictive information.
Therefore, the local method contains the important
information and may, or may not, require regularization
depending on the specific data set. In the example above,
regularization was not needed.

4. CONCLUSIONS

MSET regularization can be performed through the
use of two different methods:

1. The use of the ridge regularization of the memory matrix. 
2. The optimization of the vector of kernel bandwidth

parameters. 

The elements of the inverted memory matrix can be
treated as correction factors for the kernel shape. Therefore,
the proper ridge regularization of the memory matrix
impacts the MSET predictive performance as much as
the use of optimal kernel bandwidth parameters. To find
the optimal ridge parameter one needs to solve a 1-
dimensional minimization problem, which is more usable
than the p-dimensional problem to be solved in the case
of kernel bandwidth parameter optimization. Additionally,
one can obtain a plausible prediction through the use of a
default ridge parameter value equal to 1 when the data is
standardized, the kernel width is set equal to one, and the
entire data set is used as the memory matrix. These
conclusions came from months of experimentation on
several diverse data sets in an attempt to develop a
methodology that is easy to integrate and generalize into
an automated monitoring system.

A second conclusion is that increasing the number of
training patterns hinders predictive performance unless
regularization is used. This may be stated differently. If
the number of prototype vectors is reduced, regularization
may not be necessary. However, predictive performance
can be optimized when more prototype vectors are used
in conjunction with optimal regularization techniques. In
most cases, the optimal technique uses a local memory
matrix and regularization is not necessary. This method
is less computationally intensive than using a large global
matrix with regularization, which would be the second
best method.

Regularization methods have been proven to improve
MSET predictive performance when applied in an optimal
manner. The results are general and applicable to a wide
range of applications including nuclear power plant sensors
and equipment condition monitoring.
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