
POSSIBILITIES AND LIMITATIONS OF APPLYING
SOFTWARE RELIABILITY GROWTH MODELS TO SAFETY-
CRITICAL SOFTWARE

MAN CHEOL KIM*, SEUNG CHEOL JANG and JAEJOO HA
Korea Atomic Energy Research Institute
150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353 Korea
*Corresponding author. E-mail : charleskim@kaeri.re.kr

Received August 16, 2006
Accepted for Publication December 16, 2006

1. INTRODUCTION

As digital systems are gradually being introduced
into nuclear power plants (NPPs), the need to
quantitatively analyze the reliability of the digital
systems is also increasing. Kang and Sung [1] identified
(1) a piece of software’s reliability, (2) common-cause
failures (CCFs), and (3) fault coverage as the three most
critical factors during the reliability analysis of digital
systems. For a reliability estimation of the safety-critical
software (the software that is used in safety-critical
digital systems), the use of Bayesian Belief Networks
(BBNs) seems to be the most widely implemented [2-6].
The use of BBNs in a reliability estimation of safety-
critical software is basically a process of indirectly
assigning a reliability based on various observed
information and experts’ opinions. When software
testing results or software failure histories are available,
we can use a process of directly estimating the reliability
of a piece of software by using various software
reliability growth models, such as the Jelinski-Moranda
model [7] and the Goel-Okumoto’s non-homogeneous
Poisson process (NHPP) model [8]. Even though it is
generally known that the software reliability growth
models cannot be applied to safety-critical software due
to the extremely long time required for the reliability to
grow to acceptable levels [9], in this paper, we try to

explore the possibilities and corresponding limitations of
applying the software reliability growth models to safety-
critical software.

2. METHODS AND RESULTS

2.1 Required Software Reliability
We calculated the required reliability of safety-

critical software first. It is assumed that the unavailability
due to software failures must not exceed 10-4, which is
the same requirement that was used for proving the
unavailability requirement of the programmable logic
comparators (PDCs) of Wolsung NPP Unit 1. The testing
period is assumed to be one month, which is the same
assumption that was used in the unavailability analysis of
the digital plant protection system (DPPS) of Ulchin
NPPs Units 5 and 6. Based on the two values, the
required reliability of safety-critical software can be
calculated as follows:

It is generally known that software reliability growth models such as the Jelinski-Moranda model and the Goel-
Okumoto’s non-homogeneous Poisson process (NHPP) model cannot be applied to safety-critical software due to a lack of
software failure data. In this paper, by applying two of the most widely known software reliability growth models to sample
software failure data, we demonstrate the possibility of using the software reliability growth models to prove the high
reliability of safety-critical software. The high sensitivity of a piece of software’s reliability to software failure data, as well
as a lack of sufficient software failure data, is also identified as a possible limitation when applying the software reliability
growth models to safety-critical software.

KEYWORDS : Software Reliability, Safety-critical Software, Software Reliability Growth Model

145NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.39 NO.2 APRIL 2007

(1)

(2)

where,
U: required unavailability
: failure rate (of the software)

T: test period.

2.2 Selection of Sample Failure Data
To demonstrate the possibilities and limitations of

applying the software reliability growth models to safety-
critical software through a sample application, we
selected sample failure data. The criteria for selection of
the sample data is reasonability (the failure data can
reasonably represent the expected failures of safety-
critical software) and accessibility (other researchers can
easily obtain the sample failure data). The selected
sample failure data is that from Goel and Okumoto [8],
which is summarized in Table 1.

2.3 Selection of the Software Reliability Growth
Models
Musa [10] summarized various software reliability

growth models and categorized them into two groups: (1)
binomial-type models and (2) Poisson-type models. The
most basic and well-known models in the two groups are
the Jelinski-Moranda model [7] and the Goel-Okumoto’s
NHPP model [8]. For this reason, we decided to apply
these two representative models to the selected sample
failure data.

2.4 Analysis of the Sample Failure Data
After an analysis of the sample failure data, we found

that after 24 failures both software reliability growth
models produced software reliability results. Table 2
summarizes the analysis results of the sample failure data
with the two software reliability growth models. In Table
2, and a mean the estimated total number of inherent
software faults. The meanings of the other notations ,
, b, (t) can be found in [7,8].

Figure 1 shows the changes of the estimated total
number of inherent software faults, which is a part of a
software reliability result, calculated by the two software
reliability growth models, as software failures are observed
one by one. In Figure 1, the time-to-failure data (blue bar)
represents the time-to-failure of the observed software
failures. For example, the 24th failure was observed 91 days
after the occurrence, and a correct repair of the 23rd software
failure was implemented.

The number of previously observed failures is
represented by the pink line. Because the total number of
inherent software faults should not be less than the
number of previously observed failures, neither the green
line nor the blue line should be below the pink line. The
estimated total number of software inherent faults by the
Jelinski-Moranda model and the Goel-Okumoto’s NHPP
model are represented with a green line and a blue line,
respectively.

2.5 Possibilities of the Software Reliability Growth
Models
For the Jelinski-Moranda model, the estimated total

software faults () and the single hazard rate () after
34 failures (n) are calculated to be 34.003 and 4.845x10-3

146 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.39 NO.2 APRIL 2007

KIM et al., Possibilities and Limitations of Applying Software Reliability Growth Models to Safety-Critical Software

Failure Number Time-to-failure Cumulative time
xk (days) sk (days)

1 9 9

2 12 21

3 11 32

4 4 36

5 7 43

6 2 45

7 5 50

8 8 58

9 5 63

10 7 70

11 1 71

12 6 77

13 1 78

14 9 87

15 4 91

16 1 92

17 3 95

18 3 98

19 6 104

20 1 105

21 11 116

22 33 149

23 7 156

24 91 247

25 2 249

26 1 250

27 87 337

28 47 384

29 12 396

30 9 405

31 135 540

32 258 798

33 16 814

34 35 849

Table 1. Software Failure Data from Goel and Okumoto [8]

147NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.39 NO.2 APRIL 2007

KIM et al., Possibilities and Limitations of Applying Software Reliability Growth Models to Safety-Critical Software

23

Failure

Number

Table 2. Change of Estimation Parameters for the Sample Data Calculated with the Jelinski-Moranda Model and the Goel-
Okumoto’s NHPP Model

24

25

26

66.118

25.781

28.157

31.216

28.194

28.911

30.493

32.291

31.425

34.003

22 59.719

Goel-Okumoto’s NHPP ModelJelinski-Moranda Model

a b (t)

27

28

29

30

31

32

33

34

3.051E-03

2.715E-03

9.865E-03

8.256E-03

6.849E-03

8.355E-03

7.859E-03

6.905E-03

6.071E-03

6.481E-03

4.845E-03

4.795E-03

4.877E-03

7.319E-04

1.086E-03

1.489E-03

4.158E-04

2.982E-04

4.294E-04

5.794E-04

1.147E-04

6.056E-07

27.324

30.175

33.994

29.429

30.036

31.765

33.766

32.371

32.346

33.590

34.827

8.529E-03

7.081E-03

5.790E-03

7.402E-03

7.009E-03

6.165E-03

5.416E-03

5.856E-03

5.686E-03

4.965E-03

4.441E-03

2.835E-02

3.664E-02

4.628E-02

1.798E-02

1.427E-02

1.705E-02

2.040E-02

8.026E-03

1.969E-03

2.930E-03

3.565E-03

Fig. 1. Change of Estimated Total Number of Inherent Software Faults Calculated by the Jelinski-Moranda Model and
the Goel-Okumoto NHPP Model

month-1, respectively. Therefore, after 34 failures and a
correct repair of the software, the expected failure rate of
the software (34) becomes

When comparing Eq.(3) with Eq.(2), the two calculation
results are in the same order of a magnitude. This means
that there are some possibilities that the software reliability
growth models can be applied to prove the high reliability
of safety-critical software when almost all the inherent
software faults are identified and correctly repaired.

2.6 Limitations of the Software Reliability Growth
Models
However, there are several limitations when applying

the software reliability growth models to safety-critical
software. One of the most serious limitations is that the
expected total number of inherent software faults calculated
by the software reliability growth models is highly sensitive
to the time-to-failure data. As shown in Figure 1, after
long time-to-failures, such as shown in the case of the
24th, 27th, and 31st failures, drastic decreases in the estimated
total number of inherent software faults can be observed
for both of the software reliability growth models. For
the software reliability growth models to be successfully
applied to safety-critical software, the estimated total
number of inherent software faults (the blue line and green
line in Figure 1) should be almost constant as the software
failure number (x-axis) increases. The interpretation of
Figure 1 suggests that the estimated total number of inherent
software faults varies from 25.78 to 34.00 for the Jelinski
-Maranda model and from 27.32 to 34.83 for the Goel-
Okumoto’s NHPP model as the software failure numbers
change from 24 to 34. This sensitivity to the time-to-failure
data gives an impression that the resultant high software
reliability as shown in Eq.(3) could be a coincidence during
the calculation process. One of the other limitations is
that it seems that we need at least 20 failure data sets, but
we cannot be sure that the amount of failure data results
will be generated during the development and testing of
safety-critical software.

3. CONCLUSIONS

In this paper, we demonstrated that there are some
possibilities that software reliability growth models can

be applied to prove the high reliability of safety-critical
software at the point where all the inherent software faults
are identified and correctly repaired. However, we also
described the limitations of the possibilities caused by the
high sensitivity of the estimated total number of inherent
software faults to the time-to-failure data and the uncertainty
of the availability of sufficient software failure sets for
the safety-critical software to be applied to the software
reliability growth models.

ACKNOWLEDGEMENTS
This work was partially supported by Korean Nuclear

Mid- and Long-Term Research and Development Program
of the Korean Ministry of Science and Technology (MOST).

REFERENCES_______________________________
[1] H. G. Kang and T. Sung, “An Analysis of Safety-Critical

Digital Systems for Risk-Informed Design,” Reliability
Engineering and System Safety, 78, 3 (2002).

[2] N. Fenton, B. Littlewood, M. Neil, L. Stringini, A. Sutcliffe,
and D. Wright, “Assessing Dependability of Safety Critical
Systems using Diverse Evidence,” IEE Proceedings on
Software, 145, 1 (1998).

[3] N. E. Fenton and M. Neil, “A Critique of Software Defect
Prediction Models,” IEEE Transactions on Software
Engineering, 25, 5 (1999).

[4] N. E. Fenton and M. Neil, “Software Metrics: Successes,
Failures and New Directions,” The Journal of Systems and
Software, 47, 2-3 (1999).

[5] M. Bouissou, F. Martin, and A. Ourghanlian, “Assessment
of a Safety-Critical System Including Software: A Bayesian
Belief Network for Evidence Source,” Proceedings on
Annual Reliability and Maintanability Symposium, pp.142-
150, 1999.

[6] H. S. Eom, H. G. Kang, S. C. Jang, and J. J. Ha, “A Study
on the Quantitative Reliability Assessment Method for
Safety Critical Software Using Bayesian Belief Nets,”
KAERI/TR-2437/2003, Korea Atomic Energy Research
Institute (2003).

[7] Z. Jelinski, P. B. Moranda, “Software Reliability Research”
(W. Freiberger, Editor), Statistical Computer Performance
Evaluation, Academic, New York, p.465 (1972).

[8] A. L. Goel and K. Okumoto, “Time-Dependent Error-
Detection Rate Model for Software Reliability and Other
Performance Measures,” IEEE Transactions on Reliability,
R-28, 3 (1979).

[9] R.W. Butler and G.B. Finelli, “The Infeasibility of
Quantifying the Reliability of Life-Critical Real-Time
Software,” IEEE Transactions on Software Engineering, 19,
1 (1993)

[10] J. D. Musa, A. Iannino, and K. Okumoto, Software
Reliability – Measurement, Prediction, Application,
McGraw-Hill Book Company, Singapore (1987).

148 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.39 NO.2 APRIL 2007

KIM et al., Possibilities and Limitations of Applying Software Reliability Growth Models to Safety-Critical Software

(3)

