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Abstract

Time-dependent neutron transport equation with delayed neutrons is analytic-

ally solved in the case of isotropic scattering with constant cross sections. The
equations in the two divided time regions are obtained from the original equation
by the asymptotic method. It is shown that the approximate solutions in each

time region are uniformly valid in time to the order of the inverse magnitude
of the velocity.
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1. Introduction

Time-dependent neutron transport equation
has been treated by various authors such as
Keepin?’, K. M. Case and P.F. Zweifel?>. In
recent years Hokee Minn solved the time-
energy dependent transport equation without
Hendry and Bell showed
the time-dependent neuton transport equation

delayed neutron®.

with delayed neutron could be solved numeri-
cally®.
If one considers a subcritical system that

is exposed to an instantaneous pulse of neut-
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rons, then physically it is clear that for a
short time the neutron population will consist
almost entirely of neutrons which either were
originally injected or one related to original
neutrons by prompt events such as fission
with the emission of prompt neutrons only.
This neutron population, which would result
in the absence of decay of delayed neutron
“prompt pulse”.
with
some prompt rate, -ay, after initial transients.

precursors, we may call the

The prompt pulse will rapidly decay,

We expect that for samples of physical inte-
rest, the prompt decay rate will be very large
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compared to precursor decay constants and
that, therefore, the prompt pulse will have
died out before many of the precursors(which
are formed in fissions during the prompt pulse)
have decayed. Therefore, if one is interested
only in the neutron population at late times,
it is unnecessary to know the time dependence
of the prompt pulse-only the gross production
In this
paper we divided the time region in two parts,

of precursors therein is obtained.

where one is the prompt neutron dominant part
and the other the delayed neutron dominant
part.

Next section Boltzmann transport equation
held in each time region will be obtained by
the asymptotic expansion. In section 3, we
shall seek the solution of the above equation.
In the final section, we will discuss the results
and offer several remarks.

2. Asymptoic Method

If we consider the case of isotropic scatte-
ring, and take the constant cross-sections,
the neutron distribution function ¥(x, g, ) and
precursor densities C(x, ¢) satisfy the following
equations!?:

1 ¥ x,pn,t) , o0(x,pt)
v ot T ox

= ) ! e, 03 4200, D, (D

+¥(x, g1, )

and

where ¢ is v-x, v and x are the unit vectors
of the neutron velocity and the space respe-
ctively, B represents the delayed neutron
fraction, 1 is the decay constant of delayed
neutrons and ¢ is the fission cross section.

We may write Egs. (1) and (2) as
and

(Zr+a)ocw n="Lxuxen, @
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where we have introduced the operators B
and K defined such that

¥ (x, . 1)

(BW)(X, #: t)‘:‘ﬂ ax +w<x: [“: t)

—fﬂz—i}gi}”(x, uDdy!
and
KX, 0= v, w1, Dap
We are primarily interested in fast systems
and the number max (%) is very small. De-
noting —i— by ¢ to keep track of the term,

Eq. (3) is written as

(E%+B)w(x,u,t)=20<x: 9 (8

in conjuction with Eq. (4).
The initial conditions will be written as

T(x, g, 00=0(x)0(pu—p,) (6
and
C(x,0)=0 ¢))

We intend to solve Egs. (4) and (5) by
perturbation theory. The idea of the method
is that following an initial transient, the time
rate of change of ¥ should be of the same
order as ¥, and the solution to Eq. (5) should
be well approximated by the solution to the
same equation in which the term is omitted.

There are two time ranges of interest: an
where the initial
conditions on ¥ and C must be satisfied: an

“inner” range of small t,

“outer” range where the prompt neutron pulse
has died away and the solution fed by delayed
neutron predominates.
Our approach will be to obtain solutions
asymptotically valid in each of the two regions.
First,
Since we wish to solve Eq. (5) subject to an

we examined the inner problem.

initial condition, it will be inappropriate to
neglect the derivative term. The contribution
of this term can be emphasized by “stretching”
the time coordinate. A suitable stretched time
will prove to be r={¢/e. Substituting this into
Eqs.(5) and (4), and denoting “inner” by a
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superscript I, we have

(2 4B Ca p)=1Cx ), (8
and
(-+aa)CiCa, )= “P-CKUIXx, 2. (9)
To solve these equations, we introduce the
expansions
Ti(x, p, 0)=U0x, pt, T)He¥ T +0(),
(10
and

Ci(x, )=C"(x, )+eCH+0(e2) (v
Substituting and equating equal powers of

¢, we obtain

(2t B)rorca, i )=1Co ), (12)

(Z+B)PICh =10, 0, (13)

M) _
€ 0, ap
and
20w e) _ B (Ko, ©)— 17, .
(15)

These are to be solved subject to exact
boundary conditions and the initial conditions

oI (x, pr, 0)=58(x) §(p—p.), (16)

v (x, g, 0)=0, an
and

C*(x,0)=0. 18
Eqs. (14) and (15) may be solved explicitly:

C(x, £)=0, (19)
and

Cue, = deBU D 20
Then Eqs. (12) and (13) become

(2 +B)ForCx, 1 =0, @D
and

(-2 +B)TirCe, 0

=28 ( ae kT x ), @)
which are subjected to Eqs. (16) and (17).
We now turn to the outer problem. No

stretching is needed here-the expansions

I (%, p, O=TH(x, 1, )
FWV(x, p, )0, (23D
and
CH(x, )=C (%, 1)+C1(x,t)+0() (24)
are substituted into Eqs. (5) and (4), and
equal powers of ¢ are equated, with the result
(BT x, p, 1)=2C"1(x, 1), (25)

011
(B Y x, )= 2C1 1 x, t)_w’

(26

and
(G +2)C4Ca =G CKw3#13Cx, 00,20

Eq. (27) has the solution
CH(x, t)=C1(x, 0dexp(—at)

+-2-{ ' exp—20—1 )

X(KTHH Y x,t! ddt’ . 23
The C''’(x,0) remains to be determined.
This is done by demanding that the inner
solution agree with the outer solution at r=1,.
Thus, from Eq. (16), we conclude that
C¥"1(x,0)=0 (29)
and Eq. (20) implies that

CUi(x, 0)=£2@571(Kw°'>(x, dde!. (30
[4]
Combining Eqs. (28) and (30) and substitu-

ting into Eq. (26), we obtain

(B X4, o, t)=1~62ﬁ-

x [SZldf/(wa X x, o exp(—it)

+g;exp[—2(t—t’ NCKTYT Y, ! )dt']
@BD
3. Normal Mode Expansion in Time
First let us find the inner solution. We will

introduce the method for solving the following
equation:®

BU(x, £)=0
or
o (x,
y———%—‘i)—wrcx, )

_ 6(1;13) sl_lw-(x,#/)dyl 32
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This approach is suggested by the usual
method of solving ordinary differential equa-
tions; 7. e. the solution is expanded in a series
of solutions of the homogeneous equation or
normal modes®.

We seek the solutions of Eq. (1). Transla-
tional invariance suggests that we look for
solutions of the form

U(x, w)=gu(pde . 33

Inserting that ansatz into the homogenous

equation, we find that

1= )= aGdar. @
v 2

Since this is a linear homogeneous equation

for ¢», the normalization is arbitrary. It is
convenient to choose
1
f LS =1, (35)

With the normalization Eq. (35), Eq. (34)

becomes
cy

= ()=—5 (36)
Eq. (36) appears to be rather simple, but the

essense of the method described here lies in
the fact that this equation is not as simple as
appears at first glance.
to write from Eq. (36)

Thus it is tempting

cy 1
¢v(,u)= 2 v—p °

However suppose we allow the possibility that
#=v. Then it is clear that we may add to
the right-hand side of Eq. (37) a term
2(w)oCu—p), (38
where 2 (v) is an arbitrary function, and the
result still be a solution of Eq. (86). That
this is true can be ascertained by substituting

3D

the complete result,
_cv 1 —
$(p) =5 g F2()8(p—), 39
directly into Eq. (36) and remembering that
by definition

x8(x)=0. (40)
Thus the final soultion to Eq. (36) becomes

G-, (D)

c

$(p)=—"5"P
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1
p— denote

where the symbol P to the factor

the Cauchy principal value.
Suppose that v does not lie on the real line

between —1 and +1. Then Eq. (41) becomes

simply

cy 1
¢v(ﬂ)=777 v—p s (42)
and the normalization condition, Eq.(35), gives
—q_ v (P _dr
A=1—7 s =0. (43)

We now must find the zeros of A(v). The
following easily verified properties of A(v)
will be helpful.

1D AG)=A(—v). Then if v, is a root of Eq.
(43), —v, is a root as well.

2) We note from Eq. (43) that if v, is a
solution of Eq- (43), then v,* is also a solution.

3) We can show that A(v) has only two
zeros in the complex plane cut from —1 to
+1. Then from (1) and (2) in the above, it
follows that the zeros of A(y) must lie on the
real or imaginary axes.

Having found the eigenvalues, we obtain the
eigenfunctions from Eq. (42). Denoting by
¢, the eigenfunctions associated with -y,
respectively, we have

$ou(p)=tc—5- QEE— (44)

These are the discrete modes of the trans-
port equation.

If v lies on the real line between —1 and
+1, then we must use Eq. (41). Applying
the normalization condition, we find that

i=1—5-pf A (45)
The functions ¢.(p) are orthogonal in the

following sense:

Silmﬁv(#)rﬁv’ (wdp=0 vxy'. (46)
For the discrete modes, we have

NnESI_I#%:z(#)dﬂ- D
For the continuum modes, we get

NGy= 2)+—55t . 48
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Now let us return to Eq. (21). We carry
out a Laplace transformation on Eq. (21) by
multiplying by e<!"9>dr and integrating over
t from 0 to . Eq. (21) reduced as follows,

agp‘SOI or 1—
by TSV, (x,;t)—:c—(z—ﬁ)—

(" worCx, wyaw +5C00u—p). (49

The solution of Eq. (49) is obtained by K. M.
Case as follows:

. ¢ (ﬂ) ¢ (ﬂ)
1\7s (v)

ralidd

rorca, =),

or

[¢ Wé W

0—»s O0—ss esx/v or
o

or
N )

& W) e G
N

0

—. I
e sx/voo \J

(500

Therefore,

(-
T =gy ..

(e £

0 of e s*/? dy ]
N

xXe -

XSC(I—ﬁ)[

or or
$,_ (e ¢ (0

/v ol
es‘ o

N'(s)
¢OI ¢ )¢01 G0
Ho 1%
o _otss oF ots s e—sx/voal]e—(l—s)fds
N
ot
GD

where af: = ¢:, Cud/N :): ® (62>
NOI(s) — c(l_ﬁz?s(vool)z

[ c(1—p) A | ]
25 ,°0E=1 .07
dA
—:f:v.,o’ o (53

and

N (=08, )+ {re(1—pw/25171.(50)

Carrying out a Laplace transformation on Eq.
(22) to find the solution of the equation, we
get the following equation:

oV, (x, 17
pi.a,(xx_ﬁ)__*_sw-s (%, 1)

c(1— 1 17
=_(__2_.B_)_5_1 y/’ Cx, ¢! ddy!
A 1 o1
(i WO R C
The solution of Eq. (55) may be obtained
from the following equation:

ayr (x, )
T

— c(1— 5)S w! (ﬂ Yy
+5(x—x’)5(y—;z”). (56)

+sW‘ (x )

Eq. (56) is equivalent to Eq. (49) if the
replacement x—x—=x’ and p,—p". Therefore

7.7 is obtained as follows;

17
¥ ()

WRCTNO
=(f

s(x—z/)sx/vdu]
’ N (v)

o ML
No_(s)

—xl)yvsv ol
es(zx)/vna

6 e (W
7 7
— ek e—’(’_’/)”/vaol] 1P
N +(s)

Therefore we obtained ¥, **(x, ) as follows;
W”(x )=Sl dﬂ”Sh dx’W'u(x )
] ? ,ll -1 e &s ’ ﬂ

X[— AcP

2(1—s) ¥ v w7 ap' ), (58)

and

1 1+|°'°
Ty, )= Suf S yfu(x pe dr. (59)

So the inner solution is completely obtained.
Finally we will solve the outer solution.
Combining Eqs.(28) and (29), we conclude
that Eq. (25) is homogeneous in ¥°!/;
Yo7 as r—r;, we have
wolI(x, pu, t)=0. (60)

since
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Differentiating the equation multiplied Eq.
(81) by €* and taking the Laplace transform,
we get

1117
L L S0 agx’ B 4y angy, ®

=5{-m z+lsﬁ
X o, Y+
x| uﬁqllg%MHW”(x, ¢ 0)

- leﬂji}'””(x, u'ddp! ] (61)
where TV (x, p, 0)=%S;1d1'(KZF°’Xx, )

We may rewrite Eq. (61) as

111
u ov, a(xx,ﬂ) +w'5111(x]p)

=g a-o+ T

X
“’3N|

Ty, gl Ydp! +_m< C;ﬁ )
S dt[S d#'[#———awmg;’ 1)
+{1—c(1—pI¥"(x, &, 1)]. (62

First let us solve the following equation to
find the solution of Eq. (62).

11r

o
i (==
XS~1 y’gs (x, p'ddp +5Cx—x! Yo(p—p).

(63)
We find that the function ¥,.!7/(x, #) obeys
the homogeneous equation as the eigenfunctions
&y, 1 1(pe™+*/? everywhere exceptat x=x'. At
that point a discontinuous is introduced by the
source:
(pu—p")
©
(64)

The boundary conditions at x=-4-wo, together

Ve (x! +, p)—We M (x' —, p)=

with the completeness of the singular eigenf-
unctions, permit us to write

1 117 177
ll’xsl”(x,;z)=SOA ) 4 e rvdy
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177 Iz
—i—a+ ¢+ Ces=» M1, x> (652)
and
0 117 I
U’zsl”(x,,u)=—SlA (D) ¢ e irdy
117 17r
—a ¢0_ (”) e M <yt (65b)

where we have chosen Re(vo!?/)>0. The jump

condition, Eq (64) determines the coefficients
I

A"y and ¢

1 s 111
u—mo)p={ A8 (v
11r 11r
+as+ ¢

0+s s

Grta ¢ (66

Applying the orthogonality relations to Eq.
(65) gives

=g, Cu"IN,. (), (672
and
A =g n/N O, (67b)
where N::I(s) and N:”(v) are
N o=(" g, yan (682)
and
11r 0rr
N Gd=4{ @) )
v o2
+ 2 (ept o)) (a8

Applying the normalization condition gives
us

B
¢ (" r)= 2(u—us) (=7 1J
(69

and

2 =1-%(a-p

_ B Ypf' _an
T a1 At+s—1 JPS—I y—us ' (70)
Thus we have got

&95 (ﬂ”)¢ Cﬂ)
l” (x ﬂ) S -————————N ( ) g sl ) /v

1

Irr 1rr

$_ (" é ()
+ 25 77 28

N

(x—x) 7y 111
s (x—x vn 4
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1r

, ur
) s(ﬂ ) ¢0+, s(Jt)
177
N ()
0+

1
¢0

+

17r
e—s(x—zl)/va (71)

We obtained
177 1 ,2
v, = (22)
1 bad 11r
I3 !
X S_ld,l S_mdx v (xm)

[ 1ap [#___aw‘"(;:;, #)

+1—e(1—pIr™} | (72)

Taking the Laplace inversion transform of
Eq. (72), we obtain

Ty, p)= 2711-2' jzzi‘:ww1”(x,p)e““‘s)'ds.
(73)

In summary, we get
PI=FV gV, g
and
=l >,
4. Remarks
In the previous section, we have analytically
obtained the asymptotic solutions which are

valid in all the time regions to the ¢— order.
As =0, the solution of the neutron transport
equation with delayed neutrons agrees with
the well known solution of the neutron trans-
port equation with prompt neutrons only?.
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