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Abstract

Three recently introduced tenchniques in the area of nuclear analysis are

discussed: the structure-factor method of evaluating group material properties,

the vector-synthesis method of generating three-dimensional multigroup flux

distributions, and an indirect method of defining optimal restricted partitions

of neutron phase-space. Each new method is compared with other commonly

employed techniques and is shown to be a simplification which leads to a

reductions in computational effort while retaining acceptable accuracy.

1. Introduction

A power reactor is the product of economic
compromise. Economic compromise enters into
all phases of reactor design and operation
because satisfactory results must be obtained
while costs are maintained at a level compet-
itive with other power sources. Any develop-
ment which improves results without increas-
ing costs or reduces costs without adversely
affecting results is economically favorable.
Compromise is necessary to determine the
economic utility of any development which
vields improved results while increasing costs
or which yields slightly poorer results while
decreasing costs.

The field of reactor core design includes
three major areas of interactive analysis.

Structural analysis determines the mechanical
characteristics of the design; thermal-hydraulic
analysis determines the macroscopic physical
characteristics; and nuclear analysis determines
the microscopic physical characteristics.
These characteristics of the design must be
evaluated for all expected conditions of reactor
operation including hypothetical accidents.
During the design process, external data
may be input to any of the three areas, in-
terim results from any area may be utilized
as input to any other area, and final output
may be extracted from any area. These in-
teractions are shown schematically in Figure 1.
The subject matter of this paper lies almost
entirely within the domain of nuclear analysis.
Figure 2 presents a simplified diagram of the

flow of informition within nuclear analysis.
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Accurate determination of material proper-
ties is the most important phase of nuclear
analysis because these properties are the input
from which neutron-flux distributions in space,
angle, energy, and time for the system are
calculated. The flux distributions interact
with the material properties by means of two
“feed-back” loops.

The first loop is self-correcting and contains
various search routines. One important search,
which is not often applied, assures that the
energy distribution used to evaluate the mi-
croscopic material properties is consistent with
that derivable from the computed flux distri-
butions. Another modifies the macroscopic
design parameters of the system, usually one

or more dimensions or isotopic concentrations,
until a desired value of the effective multipli~
cation factor k., is obtained.

The second loop employs depletion routines
to approximate the long-term time dependence
of the flux distributions. The depletion rou-
tines change the isotopic concentrations in
response to the computed flux distributions.
If the differences from the original concentra-
tions are small, only the macroscopic material
propertes are affected. When the concentration
differences are great, it is necessary to
reevaluate the microscopic material properties,
as the energy distribution of the neutron flux
has been altered.

The new developments which are considered
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in this paper are three: the evalution of group
material properties by the structure-factor
method, the approximation of three-dimension-
al multigroup neutron flux distributions by
vector synthesis of two-dimensional trial func-
tions, and the definition of optimal restricted
partitions of neutron phase-space by an indi-
rect method. Each of these has a valid economic
justification, specifically, the calculational
techniques required to obtain useful results
are simplified, resulting in a reduction of com-
putational effort. Hence, wider surveys of
reactor systems and more complete parametric
studies of specific configurations may be per-

formed under the same budgetary restrictions.

2. Group Material Properties by the
Structure-Factor Method

The complexity of the transport equation
renders impractical attempts to obtain analytic
solutions for the space and energy dependent
neutron flux distribution. Since reactor design
calculations usually place greater emphasis on
the spatial variation of the flux, the energy
dependence is assumed to be contained in
a separable energy spectrum ¢(£), which
possesses a finite integral over the range
(0=<E< o). A further simplification partitions
this range intoc a finite number of intervals
(E,_..<E<E,) where n assumes integral values
from 1 through N, E, is zero, and E, is
infinite. These assumptions lead to the space-
dependent multigroup equations for the neutron
flux, in which group-averaged material prop-
erties appear in three forms.

The first form is

En
(ar 6mes B, T
gUn D=t D)
JaE 98>
En—1
where g(j,E, T) is an energy and tempera-
ture dependent property of the j-th isotope.

This property may be
o, the microscopic total cross section, which
satisfies
0, =0.F071+0+ 0
o. the microscopic capture cross section
os the microscopic fission cross section
g.s the microscopic elastic-scattering cross
section
g,s the microscopic inelastic-scattering cross
section, which includes cross sections for
the (n, n’), (n, 2n), (n, 3n) and other
reactions and satisfies
Ois=0 (ny 100 T 0 Cy 20 T oy 380y o000
v the number of neutrons released per fission
¢ the cosine of the elastic-scattering angle
¢ the logarithmic energy decrement due to
elastic scattering.
The second group-averaged property is de-
fined by
En En
dE _(dEgs(E)h( j, E-E!,T)
h(J, non, T)=—En~1 E?x;l -

e

En—1

@
where A(j, E—FE’,T) is the temperature de-
pendent function specifying the probability of
neutron transfer from energy £ to energy £’
by interaction with isotope j. The function #4
may be

7., the elastic-scattering transfer function
z;, the inelastic-scattering transfer function,
which satisfies
Ts=T (a3 H2T Cy 200 3T Cp 3> Hoeeeee
75 the fission transfer function, which is
given by
Tr=Xsv0y
where X; is the energy spectrum of newborn
fission neutrons. By definition, the integral
over all exit energies £/ reduces these func-
tions to the corresponding entrance-energy
dependent cross sections, .., o, and voy,
respectively.
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The third and most important group-aver-
aged property is

dE ¢(E)
St(n) T>: En En=l 1 (3)
dE §(E) —sr5
f o ZE D

where ZX,(£,T) is the energy and tempera-
ture dependent macroscopic total cross section
of the system. This definition is required by
the reciprocal appearance of X, in the diffusion
coefficient. Further. the approximation

2(n, TH)=[3(n, TH)!
where X, (n, T) is defined by Eq. (1), has
been used, which implies that X, is nearly
constant over the energy range contained
within the z-th energy group.

Since the energy spectrum of the system is
a function of the macroscopic total cross
section, Eqgs. (1), (2), and (3) define a lengthy
iterative process for obtaining a consistent
set of group material properties. Two com-
puter codes MC? V¥ and GAF/GAR/GAND?®»
have been written which evaluate group ma-
terial properties for a system by this means
directly from ENDF/B® cross section data
tapes. Both codes require large computer sys-
tems and long execution times. Further, the
results have limited usefulness. If the com-
position of the system is changed more than
minimally, the spectrum will be altered and
an entirely new set of group properties must
be determined.

The assumption that X,(&, T) is a relatively
constant function of energy permits the re-
placement of ¢(E) with a system-independent
energy spectrum ¢,(E), which may be com-
puted separately. Substitution of this unper-
turbed spectrum into Egs. (1) and (2) results
in the definition of “infinitely dilute” group
material properties, which are essentially
temperature independent. They are distingui-
shed from the system-dependent group proper-
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ties by the use of angle brackets. These
properties may be employed in calculations
for any system which possesses a spectrum
approximating the assumed ¢,(£). Most of
the currently available compilations of group
material properties, for example, those in
ANL-5800%, have been evaluated by this
method. However, the total cross section of
the system is not usually energy independent.
Hence, these compilations cannot be applied
with confidence to a general reactor system.

The structure-factor method, introduced by
Bondarenko®?, avoids these problems by per-
mitting evaluation of the group-averaged ma-
terial properties of the system from the
infinitely dilute group material properties
defined using an appropriately shaped unper-
turbed spectrum. It is particularly applicable
to the calculation of fast-reactor systems.

Following the usual procedure, the macro-
scopic total cross section of the system is
obtained from the microscopic total cross
sections of the component isotopes by the
relation.

3.(E, T>=_>51N,-'a,<j',E,T>

where N;” is the nuclear density of isotope
7'. However, this is rewritten in terms of
the j-th isotope only,

2,(E, T)=N,l0.(j,E, T)+a,(j,E, T)) (5)
which has the group-averaged value

2i(n, T)=N;l0.(j,m, T)+0,(j,n,T)] (6

The quantity o, is the effective microscopic
total cross section of the remainder of the
system.

The energy spectrum of the system is
assumed to follow

(B
KE=5 Ty

which allows for resonance absorption effects.
Thus the group-averaged material properties,
Egs. (1), (2), and (3), may be written in
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terms of infinitely dilute group-average of
modified properties,
; _ <glo,+o1t (U4n, D>
, 0, T)= 282t le Ao —
€01 D=2 Yo G, D>

Wi mon Ty= <Blota,)7'(j,non', 17>
Gomont = = e a3 G, TS

and

0 Ty Nl o™ G, TY>
O DT e G s D

The structure factor for a microscopic ma-
terial property is defined as the ratio of the
group-averaged material property to the infi-
nitely dilute group property. Further, it is
readily shown from neutron conservation that
the structure factor for a transfer function is
the structure factor for the corresponding mi-
croscopic cross section. Thus

: _ <glotedt G T
im T 00= g 3N Lo bo, G T

while the structure factor for the microscopic
total cross section is derived from the combi-
nation of Eq. (7) with Eq. (6), which yields

. _ 1
Fuliom T 00= = i3S

(g, 40,174, n T)> ) .
[.<[a.+aa]—2(j, n TS 00U, 7 T)J

It should be noted that the structure factors
are the only quantities in this development
which are system dependent, and this depen-
dence is contained entirely within the ¢, func-
tion. In order to simplify evaluation of the
structure factors, ¢, is assumed constant over
each energy group. As a result, a compilation
of infinitely dilute material properties and
appropriate structure factors may be formed
for a given unperturbed energy spectrum and
group structure without reference to a specific
reactor composition.

When this is done, it is found that structure
factors are required only for the microscopic
total, fission, capture, and elastic-scattering
cross sections. Further, only fissile and fertile
isotopes have structure factors with significant

temperature dependence. Finally, the depen-.

dence of the structure factors on ¢, and tem-
perature is restricted in range and smooth.
Hence interpolation is readily performed.

A computer code ETOX® has been written
which evaluates the infinitely dilute material
properties and structure factors of an isotope
for selected temperatures and values of o,
directly from the ENDF/B data,
energy spectrum, and a specified group struc-

a specified

ture. A compilation of material properties and
structure factors for 34 isotopes using a typical
fast-reactor spectrum and a 29-group energy
structure has been published recently”™. In
order to utilize such a library, the analyst
requires only the isotopic concentrations for a
particular system and two additional aids.

The first is a technique for evaluating struc-
ture factors for temperatures and ¢, values
not tabulated. The variation of the structure
factors is such that linear interpolation between
tabulated values as a function of the logarithm
of the argument is satisfactory. The range of
o, over which interpolation is possible is ex-
tended by addition of the value 107, for which
all structure factors become unity. For values
of ¢, not within this extended range, the
factor assumes the nearest tabulated value.
When the temperature lies outside the range
of tabulated values, the interpolative formula
may be utilized for extrapolation.

The second device is an iterative procedure
for determining a consistent set of material
properties for a specified system. This is
required because the structure factors for
each isotope are functions of o, and evaluation
of ¢, for any isotope involves a knowledge of
the structure factors for all other isotopes.
However, a simple iterative scheme is availa-
ble which will derive a consistent set of struc-
ture factors and values of ¢, for all isotopes
in each energy group. Utilizing the definition
of s,, the value for isotope ; during iteration
¢ may be written
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%{ N Ful i, 0.0 <o my>
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Thus the most recently determined values
of ¢, and the structure factor for the total
cross section are always used for each isotope.
The iterative process is started by assuming
a o, value of 107 for all isotopes and it conti-
nues until all values of ¢, and the structure

factor have converged satisfactorily. The
converged values of o, may then be used to
determine the other structure factors. This is
basically the technique implemented by the
computer code 1DX?®>.

The structure-factor method, as presented
here, evaluates group material properties cor-
rectly for systems which may be described
as homogeneous. However, it may be applied
to lumped-fuel systems if the definition of the
microscopic total cross section for fissile iso-
topes is properly modified.

This type of heterogeneity effect is an op-
tion of the 1DX code. Further, it is possible
to consider a system with gross heterogeneities
as several loosely coupled regions and to de-
termine the group material properties appro-
priate to each.

One problem which has not been considered
in this formulation of the structure-factor
method is the possibility that resonances from
different isotopes might overlap. Such reson-
ance cross shielding could invalidate the
assumption that ¢, is effectively constant with-
in any energy group. The consequences of this
effect have been reported for a sytem involving
The study
indicates that cross shielding between the
unresolved resonances of the two isotopes, or

a mixed uranium-plutonium fuel®,

between the resolved resonances of one and
the unresolved resonances of the other has
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a negligible effect on the computed structure
factors. However, overlap of the resolved
resonance regions of the two isotopes alters
the structure faciors by as much as 6%.

The final test of the usefulness of the
structure-factor method lies in the accuracy of
its results and the computational effort involved
in its usage. A comparison of group cross
sections for sample systems computed by the
ETOX and 1DX codes indicates close agree-
ment with those generated by the MC? and
the GAF/GAR/GAND codes'®. Thus the
structure-factor method possesses acceptable
accuracy. The computation times for the three
codes on one system were about 20 minutes
for MC?, about 10 minutes for GAF,/GAR/
GAND, and about 2 minutes for ETOX-1DX.
Thus the structure-factor method is between
five and ten times faster. Further, the com-
pilation produced by ETOX may be used
repeatedly for similar systems, while the
entire MC? or GAF/GAR,GAND calculation
must be performed for each new composition.

3. Three-Dimensional Multigroup Fluxes by
the Method of Vector Synthesis

As reactor systems increase in size and
complexity, the need for three dimensional
calculations to characterize the neutron flux
becomes more important. No longer are one-
dimensional or even two-dimensional calcula-
tions sufficiently accurate when non-separable
spatial effects, complete reflectors, or asym-
metrical systems must be considered.

The obvious approach to a three-dimensional
problem is to attempt to solve the defining
equations directly. Several computer codes
have been written which perform the necessary
calculations in the multigroup transport or
diffusion approximations. They are flexible in
geometry and usually quite accurate and reli-
able. The main problems encountered in their

use are ones of space and time: space required
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to store data during the calculation and time
required to obtain a satisfactory degree of
convergence in the solution.

A typical three-dimensional multigroup di-
ffusion code, 3DB!,

storage units in addition to a core of 65K

requires 11 peripheral
words, and solves a problem with 2 energy
groups and a (20X20X20) spatial mesh in 30
minutes. The analogous two-dimensional code
is 2DB'®, which requires only 4 peripheral
storage units and a 65K-word core, while
obtaining convergence in problem with 4 energy
groups and a (30X 30) spatial mesh in 1 minute.
By comparison, HYFN!®), a one-dimensional
diffusion theory code of great flexibility, re-
quires only a 32K-word core to solve a problem
with 18 energy groups and 100 spatial intervals
in 10 seconds.

Since requirements of storage and execution
time increase by nearly an order of magnitude
each time the dimensionality of a computer
code is increased, it is reasonable to ask
whether solutions of lower dimension could be
applied to three-dimensional problems, if not
as complete solutions, at least as initial flux
guesses for a three-dimensional code. For
convenience here, consideration is restricted to
systems possessing a right-prismatic geometry.
Therefore the multigroup diffusion equation
for the flux in the #-th energy group satistfies

V2 D(ry, 35m) 7o9(rs, 2:m)

—aizD(rz, z;7m) ~aa£ #(72, 2: 1)
=37y, zm) ¢(ro, 25m)+

1
kd/

N
+ 5 (B0 mnom+

X3 (s, z;n’—»n)J Hra,zn’')=0 (8

subject to appropriate boundary conditions,
where the energy group index runs from 1
through N, the axial coordinate varies between
z~ and 2%, and 7; is a two-dimensional position
vector indicating a point on the cross section

A, which has the boundary S.

The simplest approach assumes the solution
has a separable dependence in the axial direc-
tion,

#(re, 2 m)=p(rasn) {(zn)

Obviously this technique can be utilized only
when the two-dimensional solution on the cross
section applies for the entire height of the
system. Hence, all material properties must
possess the same separable dependence on
axial position; top and/or bottom reflectors,
and partially inserted control rods cannot be
considered.

Suppose the system consists of M axial
regions in which the distribution of material
properties on the cross section differ. It might
be assumed that the solution could be formed
by combining the two-dimensional solution
appropriate to each axial region with a single

axial function. Thus the flux would be written
M
$(rs,zin)= 3 H(zn—2) H(z=2,-1) g (rum)

C(zim)

where H (2) is the Heaviside step function
and the m-th axial region extends from z,.1
to z,. Although the cross sectional and axial
distributions determined by this method each
satisfy the requirements of continuity on
themselves and their first derivatives, the
three-dimensional solution is discontinuous at
each axial interface where

P72 )X Ppi1 (r2im)
Thus, this technique does nct yield a valid
solution for the three-dimensional multigroup
flux.

A better approach is that which assumes
the full solution is a linear combination of

solutions of the form
!

#(r2, 2 1) =;éll 0u(ran) C.(2n)

where M’ is the number of distinct axial
regions, ¢,.(7,:7) is the two-dimenional solu-
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tion for the m-th region, and {.(z: %) is the
axial mixing function for that flux shape.
This result satisfies all the continuity condi-
tions required of the three-dimensional solution
and leads to the method of vector synthesis,
which is discussed below.

More complex techniques allow the axial
solution to retain some dependence on tne
horizontal position vector 7;. One such method
is that of multichannel wvariational synthesis
formulated by Wachspress and Becker!¥.
This theory is intended more for the synthesis
of energy spectra but does include significant
spatial aspects. The cross sectional area is
partitioned into disjoint channels and axial
solutions are sought for each. The axial di-
mension is divided into regions and within each
a subset J(m) of a total of / two-dimensional
The three-
dimensional flux in the m-th axial region is

solutions are assumed to apply.

then written as

FACH

¢.(72, 2 7m) Z=} o;(ran) Z;(rs,zm)

i=1

Although they yield accurate results, this and
similar techniques become extremely complex
algebraically and will not be considered
further.

The crux of the vector synthesis method is
the approximation of the three-dimensional
flux in each energy group by the vector
product

#(re, 2 m)=0(ran) Z(z:in)
where @(rz;7n) is a set of trial functions, each
defining the shape of a two-dimensional flux
in the n-th energy group, and Z(z;n) is a set
of axial mixing function for that group. In
the minimum case, the number of components
of each set, denoted as P, must be equal to
the number of distinct axial regions, M’, and
each component of the trial-function set must
be a solution to the two-dimensional multi-
group equation in some axial region of the
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system.
Although
results for the least computational effort, it is

this situation yields the best
not a necessary condition. In fact, the only
restrictions are that the components of the
trial function set be linearly independent and
that their number be at least equal to the
number of distinct axial regions. As a result,
not only is it possible for P to exceed M,
but P may also be a function of the energy
group, without invalidating the vector synthesis
technique.

With each trial function ¢.(r: %), there
must be associated a weight function 6,72 7).
1deally, the weight function should be adjoint
to its associated trial function. However, the
improved accuracy obtained in this manner
does not justify either the increased time re-
quired to compute the necessary two-dimen-
sional adjoint solutions or the problems involved
in their storage.
fact, that it is more economical to use the
trial functions themselves as weight functions

Experience has shown, in

and to compute additional trial and mixing
functions whenever necessary. Again, the
analysis is not affected by the choice of weight
functions, so long as they are equal in number
to the trial functions and are linearly inde-
pendent.

The equations satisfied by the mixing func-
tions alone are obtained from the three-dimen-
sional multigroup diffusion equation, Eq. (8),
and its boundary conditions by the following
orocedure. First, the assumed vector-product
expansion is substituted for the three-dimen-
sional flux. Second, each term of the diffusion
equation and its boundary conditions is pre-
multiplied by an arbirary weight function for
the appropriate energy group and integrated
over the cross sectional area of the system.
The resulting expressions may be written

4 DG w2 2 m—( B m+DB ) |
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i 1
Z(zm) +3 [zs(z; ARy L.

keff

Kz ' —>n)] Z(zn')=0
and

L 4 geos. R S o TN
T Z(z*; n)- O Z(z*n)=0

where 1*(%) is an average linear extrapolation
distance for the flux at the top and bottom
surfaces of the system,

respectively. These
equations define a properly posed one-dimen-
sional multigroup diffusion problem and may
be solved by standard source-iteration tech-
niques. The only complication is the matrix
nature of the equation.

The in-scattering and fission source matrices
are rectangular, [P(n)XP(»n')], with com-
ponents given by

Z:p(z; n' »»n)=S‘Ad7’z 0,(rzn)

B(re, 250 —n) @,(rasn’)
and

Fo(zn! ~>n)=SAdrz 8,(ram)
XD s(re, 2o 0 =), (ran’)
The remaining coefficient matrices are square,
[P(n) X P(n)], with components defined by

D(z;n)= S‘Adrzﬂq(rz; 1) D(ry, 2 m) 0,(ra; 1)

5 :uz(zi n)=SAd7’z 0,(rasn) (7 2 1)p(72 1)

and
DB¥(z;n)= —Ldrz 0,(ra;m) V2 D(rs 2;m)

7205(72, ) €))
The expression for the components of the
transverse leakage matrix Eq. (9) may be

simplified by means of the vector idenity

g v-F=p-gF—pg-F
and application of Green's Theorem to convert
the area integral of the divergence term into
a surface integral. The result may be written

DB(z; n)=5Adr2 D(ro, ;1) 7aB,Craim)

Vo @s(ra; n)—Ssds 0., (ra m)D(ry, z; n)
n-P2 7z 1)

The surface integral vanishes on those lateral

faces which possess reflective or periodic

boundary conditions. Further, by utilizing the
concept of a linear extrapolation length when
free-surface boundary conditions are required,
the normal derivative of the trial function at
the surface may be readily evaluated. Hence
the components of the leakage matrix are
given by

DB*(z; n) =5Adr2 D(ra, 2 m)V2 0,(re 1)+

V20,(r2s n)+—3}7§Fsds 6,(ra; ) @p(rz; n)

where 4 is the linear extrapolation length,
which assumes the value 2,3 in diffusion
theory, but is 0.710446 in the transport ap-
proximation, and FS defines the lateral faces
of the system which possess free-surface
boundary conditions.

The computer code RSYN!®, which applies
the vector-synthesis technique, permits the
cross sectional area to be represented by a
rectangular, cylindrical, or triangular mesh.
It contains the two-dimensional multigroup
diffusion code 2DB as a subroutine for com-
puting trial functions and adjoint weight func-
tions. Once the matrix coefficients have been
evaluated, the mixing function vector is deter-
mined by a rapid one-dimensional multigroup
diffusion calculation. The solution to a vroblem
with 4 energy groups, a (60x60X20) spatial
mesh, and 2 axial regions was obtained in
approximately 3 minutes. The 2DB calculation
of two trial functions for each energy group
consumed nearly all of this period. Comparison
with a 3DB calculation for the same system
indicated a negligible error in k., and the
fluxes at each point, while the execution time
had been reduced by a factor of 30. Thus
the vector synthesis method should prove to
be a useful addition to the techniques of
nuclear analysis.
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4. Optimal Restricted Partitions of
Neutron Phase-Space by the
Indirect Method

Reactor survey calculations determine the
response of the integral properties of the de-
sign as the parameters of the system are
varied about their reference values. Since
integral properties are under consideration.
survey calculations require only suificient detan
to maintain an acceptable degree of accuracy
in the results. Utilization of simplified tech-
niques permits the study of a wider range of
parametric variation for a fixed expenditure
of computational effort than would be possible
with calculations of greater complexity.

Simplification commonly appears as a reduced
number of intervals in the partition of the
range of the arguments of the neutron-flux
distribution function. The value of the integral
property computed for this reduced partition
will normally differ from that computed with
the more detailed partition. Obviously, the
optimal reduced partition {s that which mini-
mizes the magniude of the error in the integral
property. four methods of
defining this optimal reduced partition were
available, and none was entirely satisfactory.
A fifth technique has now been developed

Until recently,

which improves the situation significantly.

The most general technique, which is also
the most difficult to apply, is the “Ex Nihilo”
approach. Here the analyst difines the reduced
partition without referring to that used in the
griginal calculation, being guided only by his
experience and intuition. Under such circum-
stances, only a very a very skillful analyst
could consistently arrive at structures which
even remotely resemble those of minimal
error.

The other methods require two assumptions.//

First, the original partition is presumed to have

partition of F intervals.
“partition of the range of one argument is con-
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sufficient detail so that it is an optimal parti-
tion of the range of the continuous variable.
Second, the reduced partition of minimal error
is assumed to have boundaries which are a
subset of those used by the original partition.
Thus, an optimal “restricted” partition is
actually sought.

The “Eyeball” approach is commonly applied
in this search. The analyst employs his ex-
perience and nvuition in selecting Yhe pounda-
ries of the reduced partition. However, the
likelihood of obtaining an optimal result is
pot much greater than with the “Ex Nihilo”
approach.

The restricted partion which minimizes the
error in the integral property may always be
determined by the method of “Exhaustion”,
because every partition of the appropriate
complexity is considered. However, this tech-
nique is often extremely uneconomical since
the number of calculations of the integral
property which must be performed when the
range of only one argument is partitioned is
given by the binomial coefficient of the
pumber of internal boundaries in the original,
or fine, and the restricted, or coarse, parti~
tions,

" 19!
To(F, =6 P=o= it csi
=Gty
For example, definition of the optimal restric-
ted partition of 7 or 23 intervals from one
of 29 intervals wonld require 376, 740 separate
calculations.

The “Linear” approach requires the addi-
tional assumption that the optimal restricted
partition of C intervals can be obtained from
that of (CXY) intervals by the elimination or
restoration of one boundary from the original
Thug, when the

sidered, the “Exhaustion” technjque requires
q



New Developments in Power Reactor Core Design—R.D. Johnson 147

C separate calculations to reduce be optimal
restricted partition of (C+1) intervals by one
and (F—C) calculations to increase that of(C
—1) intervals by one. If the coarse partition
has more than half the number of intervals in
the fine partition, the optimal restricted par-
tition would be obtained by sequential reduction
from the original partition, while sequential
increase from the partition of one interval
would be used if the coarse partition has
fewer than half the intervals of the original.
As a result, the total number of structures
which must be evaluated by this technique is
given by

F(C—D@EF-0)

T.(F, O)=
FF-CXFP+C—1) LF=C=F

lp
1=C=5F

Thus the determination of the optimal 7- or
23-interval structure from one of 29 intervals
would require 153 calculations of the integral
property. Although this is a significant reduc-
tion from the effort required by the method
of “Exhaustion”, there is no guarantee that
the basic assumption of this method is valid.

A new approach to the problem of defining
optimal restricted partitions has been developed
by Harms'®>,
from the original calculation to determine a

This technique employs data

function of those argument with partitioned
ranges which minimizes the magnitude of the
error in the value of the integral property
when the misfit between the function on the
original and restricted partitions is also mini-
mized. Thus the method might best be termed
the “Indirect” approach. For simplicity, this
presentation considers only the case in which
the range of a single cartesian argument is
partitioned.

In the reference calculation, the range of
the argument x is partitioned into ' fine inter-
vals, whose boundaries form the ordered set

e

The neutron-flux distribution function for this
fine partition is the set

= o

each member being the average value of the

F

f=1

flux on the interval(ax*,_;<x<x*p.

A restricted partition of C coarse intervals

is defined by the ordered set of boundaries
c
X c= [X c}

whose members are a subset of the boundaries

c=0

of the fine partition,

X c=X */’ (€3]
and which spans the same space,

7O=0

AO=C=F

The average fluxes on this partition form
the set @c.

The technique developed by Harms postu-
lates the existence of a weight function w(x)
with the property that the restricted partition
which best maintains the character of the
weighted flux on the fine partition also mini-
mizes the magnitude of the error in the value
of the integral property. _The total error of
the #-th order in the weighted flux for the
restricted partition X¢ is given
¢)

TE(F, =353,

¢=1 f"f(gz,{;f{jls*/__wcgscjn
(¥ r—x%r-1)

and the optimal restricted partition of C inter-
vals is defined as that which minimizes the
magnitude of this error function.

The magnitude of the first-order error fun-
ction may always be reduced to zero by using
the conservation condition

(o)
Wepe(Ke—Xec1) =2, wHs* (¥ r—x%r1)
F=re-1)+1

to define the average value of the weighted
flux on each coarse interval. Thus, the re-
stricted partition which minimizes the second-
order error function is sought as the optimal

structure.
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Although the method of “Exhaustion” could
be applied to this problem, the number of
partitions of the appropriate complexity has
not been reduced. The “Linear” approach could
also be used but for the questionable validity
of its fundamental assumption. Hence, a more
attractive technique is a form of the method
of steepest descent applicable tc piecewise co-
ntinuous functions. Such a technique has been
utilized by Harms in the computer program
PARTL

An initial value of the second-order error
function is computed for a coarse partition
with internal boundaries selected from those
of the fine partition. Each of these boundaries
is then displaced to the right or left by one
fine interval, unless this is precluded by the
presence of another boundary of the resticted
partition, and the corresponding value of the
second-order error function is computed. The
result is a set of no more than 2(C-1) values
for the second-order error for these minimal
variations in the initial coarse partition.

The minimum member of this set is compared
with the initial second-order error value. If the
value is smaller, the corresponding partition
is utilized as the basis of a second set of
minimal variations. This procedure is conti-
nued until the varied partitions no longer reduce
the value of the second-order error function.
The result is a local minimum in the error
function.

The entire procedure is repeated for various
initial coarse partitions until all local minima
of the second-order error function have been
located. The restricted partition associated
with the least of these local minima is the
optimal restricted partition X*..

The main problem involved in the applica-
tion of this indirect technique is the determi-
nation of the weight function- which best
relates the average fluxes of the fine and

coarse partitions to the integral property. In
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some cases, the correct weight function is
easily specified. In others, comparative cal-
culations of the integral property are required
dsing possible weight

optimal partitions.

functions and their

An example of the usefulness of this tech-
nique in reactor survey calculations has been
reported by Harms and Johnson!”. The system
under consideration was a dilute aqueous sol-
ution of plutonium nitrate in a critical, unre-
flected, spherical geometry. One-dimensional
HFN
code'® with 18-group cross sections computed
by GAMTEC-II'® gave results which were
in close agreement with experimental data.

The goal of this study was to determine

diffusion theory calculations by the

whether calculations with optimal partitions of
fewer energy groups could reduce the magni-
tude of the error in the effective multiplication
factor to an acceptable value. Therefore, cross
sections were computed by GAMTEC-II for
two sets of energy structures with 4, 6, 8,

:.5} i,"\
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/'/ \ ! \\
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= / \ !
= \ roA
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Fig. 3. Comparison of magnitude of relative
error in effective multiplication factor for
energy structures selected at random and
by computcr code PARTI
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10, 12, 14, and 16 groups each, and used in
subsequent HFN calculations. The energy
structures of the first set were formed by
random sampling of the internal boundaries of
the original 18-group partition. The members
of the second set were optimal resticted
structures as determined by the PARTI code.
A separate pilot study, reported by Harms
and Stoddard?”, had indicated that the spati-
ally integrated group fluxes should be used
in the PARTI calculations, while the best
weight functions would be unity rather than
some group dependent reaction cross section.

The magnitude of the relative error in the
effective multiplication factor computed for
each set of energy structures is presented in
Figure 3.

The relative-error magnitudes for the ran-
domly selected structures do not form a mo-
notonic sequence, while those for the PARTI-
selected structures do. Further, the random
structures with fewer than 12 energy groups
lead to errors in %,;; which are significantly
greater than those associated with the optimal
partitions. The fact that the random structure
of 12 groups yields an error magnitude which
is smaller than that obtained with the corres-
ponding PARTI structure leads to the conclu-
sion that an insufficient number of PARTI
trials had been utilized, because the global
minimum-error partition had not been identi-
fied.

In any case, the use of optimized partitions
with more than 4 energy groups yields relative
errors in k. no greater than 5X107* in
magnitude, an entirely acceptable value. Fur-
ther, the time required by the HFN calcula-
tions is approximately a linear function of the
number of energy groups. Hence,
calculations with such optimally simplified

survey

energy structures are feasible under conside-

rations of both economy and accuracy.

5. Summary

This paper has presented three new develop-
ments in the nuclear analysis aspect of reac-
tor core design. First, it has been demon-
strated that the structure factor technique can
be utilized to provide tabulations of group
material properties which are applicable to
wide range of reactor systems. Second, vector
synthesis has been discussed as a convenient
method of approximating three dimensional
multigroup fluxes using two-dimensional flux
shapes. Third, the use of an indirect approach
in selecting restricted partitions of the space,
energy, and/or angle variables has been shown
to achieve optimal or nearly optimal results
in the retention of accuracy during reactor
survey calculations or parametric studies.

Each of these techniques results in a simpli-
fication of the calculations involved in reactor
core design. The major effect of these simpli-
fications is a reduction in the computational
effort, which in turn has a favorable economic
consequence. Further, these techniques do
not lead to the introduction of errors of intol-
erable magnitude. Therefore they should
prove to be of significant assistance in power
reactor core design where the combination of
accuracy with economy is paramount.
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