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Abstract

A method of obtaining the partition function for a system of electrons is
developed by defining a new density matrix, in which the Fermi statistics is
explicitly incorporated. The corresponding Bloch equation is formulated and a
practical method of solving the equation is obtained for weak potential. This
theory is applied to structurally disordered ststems which might be reasonable

models for liquid metals.

2

ok

Fermi $A% =4% A2d 4=34d& AiFeozd A5 Partition 48
Tt el AT A d=g Yl &5t Bloch A4 4o} PA=Y L o
Potential ol sjete] o] & F& Wil dojF et of o] FAFEHY mle] &

T e TEA ETAA A A3

1. Introduction

One of the most conventional approach to
the theoretical investigation for the electronic
states in liquid metal is to determine the ave-
raged single particle Green fuction by various
approximations. =32 More recently, another
approach to the liquid metal problem has been
developed by Rousseau ef a/* using the density
matrix method. In this approach, one deter-
mines the partition function of the system
instead of directly determining the density of
states. The density of states is related to the
partition function by a form of integral transf-
ormation, although the inverse transform to
obtain the density of states may not be trivial.

Consider a structurally disordered system

such as liquid metals for which the one-electron
potential due to the ionic configuration {R,} is
described by

V(D =Zotr—RD) W

- —
where v(r—R,) is the localized potential cen-
tered on an ionic site K;. The one-electron

Hamiltonian for this system is written as
H=[—7 V(@] @
Here, we employ the atomic units(h=1, ¢*=2,
m =%) and, for the convenience of expression,
we take the volume of the system to be unity.
In the usual density matrix theory®, the
canonical density matrix C(_>r, ;: B) is defined
in terms of the eigenstates llfi(_;') and eigen-
values £; of the Hamiltonian H by
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CC—;,—;a: ﬁ) = Z W;’C_;‘) W,.—(_;'o)e‘ﬁﬁ‘i (3)

where B=(kzT)!. The canonical density
matrix C then satisfies the Bloch equation

HO=—-3¢- @

with the boundary condition CE;,
8Gr—r).
For the solution of this Bloch equation,
Hilton ef a/> suggested the form
C=C,e FUCrs7u B )
where C, is the free particle density matrix.
Bloch equation (4) then reduces to a diffe-
rential equation for U(;,;,, B), and they obta-
ined a solution for U in closed form neglecting

o B)=

a term nonlinear in U. Rousseau ef al® applied
this theory to the disordered system and, in
particular, obtained a convenient form for the
calculation of partition function in liquid
metals, using a simplified form of Kirkwood
approximation for higher order correlation
functions. Pant ef al/® applied this theory to
evaluated the density of states of electrons in
liquid aluminum,

The partition function they obtained, how-
ever, does not have the usual physical signi-
ficance such that various thermodynamic
quantities can be derivable from it, since it is
essentially based on the Maxwell-Boltzmann
statistics.

In the present work, we incorporate the
Fermi statistics in the density matrix theory
such that a partition function with correct
statistics can be obtained for the electrons in
liquid metals.

2. Modified Density Matrix Theory
We define a new density matrix, in which
the Fermi statistics is incorporated, by
D(#, 70 a, )= S U I UG Din(l+e=#2)
()

where a is a quantity related to the chemical
potential 4 by a=pu. The logarism of the
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grand partition function @ is then represented
by the trace of D:

In Q=jD(‘r’, 7 a ) dr )

It is easily verified that, in place of the Bloch
equation (4), we obtain a similar equation
satisfied by D as

oD __ oD
H%-— 38 ®

with the Hamiltonian H given in(2), From
the definition of D in(6), we have a boun-
dary condition for =0 as

DG, 70 &, =101+ —7.) ®
independently of potential V. As an auxiliary
relation which would eventually relate a to §,
we have the condition

53D(r 7 a B)dr= S =N A0

1+e -a+ﬁEa
where N is the total number of the electrons
in the system. We here observe the fact that
even though the density matrix D and grand
partition function @ are functions of formally
independent variables « and 8, they are related
in a specific equation a=p(p)B for a system
of fixed number of electrons N. This relation,
however, is not predetermined but should be
determined by the condition (10) after D is
obtained. In actual calculation, therefore, it
is imperative to go through a self-consistent
procedure to determine the relation a=pu(f)B.

The free particle density matrix D, can be
obtained directly from the?definition (6) as

D7, 70 2, Y=Te* T Im(Lhes 8 (D
andthe diagonal element D,(a, ) is indepen-

dent of -; and can be conveniently separated
into a function of g and a function of a as

D.(a, )= )35 In(l+eF)k2dk

=1
=52

We try a solution in the form

‘gS;ln(l-I—e“‘*')xzdx a2

D(r, 70, Y =D(7, 70y a, fe=V 71 712 £3(13)
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V() in (D is
Substituting (13) into
(8), we obtain an equation satified by U as

assuming that the potential
sufficiently weak.

rU—-rUy*— f,; aU+rzx72%(a]
—2r. 7 2 5pv—1, 3

oU oU

—l—Tza (VU}Z—{—V—{—Tza V=0~ 5‘3 (14)

where 7; and 7, are functions of « defined by

71(a) =5:ln(1+e“"')x4dx/5"xz¢

[ 1+€-O(+x‘
as
- a2 =~ xldx
?’z(a)=Soln(1+e°‘ =) dx/SOW
(16)
For small V(;), we assume that
2Ll an

which amounts to neglecting the second and
higher order terms in U and V. We then get
a linear differential equation of U as

___TL oU. oU
U +er2 0
+V=Tz%g 18)

This is the central equation to be investigated
in the present theory. Since it is a formidable
task to seek a solution directly from this
equation, we deliberately leave out the most

troublesome term 72172& for a while. We

Ja
then try to solve a simpler equation
- T1
g+ V= 8 T =5 19
rEU+ 8 + 2 13 aw

To reduce the equation further, it is convenient
to define a function (e, 8) which would satisfy

lL 04 —
B +Tz 3‘3 =1 (20)

Assuming that such a 2 can be obtained and

- -
regarding U as a function of », 7,, and 1, we
can write (19) as

oU v €4D)

reU—%1
The Green function for the last equation is
found to be”

- -
r—ri.
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—— —
G(r,ro, 71, 2)
_ 1 (r=ril+ir—rD

4 Qr—ril-lr—roD)

e [(r—rl+[Frral Y—(r—ro)?)
@2
It is easily verified that G satisfies (21) with
V=0 at 7#; and becomes (47:[7—;;I)'1 as
The exact solution for (21) is then
given by

U(Z 70, 2) 25 G(—;':;:rl, D Va'l)g;l 23

We now consider the boundary condition
in connection with the form of the solution
we are seeking here. Comparing (9) and
(13), we find that U—0Q as pB—0. On the
other hand, the Green function givenin (22)
satisfies the condition G—0 as 2—0 and thus
U in (23) also satisfies U—0 as 1—0. These
two conditions dictate therefore that 2 should
satisfy the condition 2—0 as g—0.

With this boundary condition for 1, we
return to the problem of finding the function
A(Ca, ) which would satisfy (20). Consider
a particular path in -8 plane

Bla, c0)=c eXp[Sulz~da] @

for which dg= ﬁ%da, where ¢ is an arbitrary
constant. Along the path (24),

di= —~>da+< 22 )dp

2[7[47_ ”fa“;} J-£-da (25

and using (20) we obtain
-8
di= 7'1 da (26>

If the point (ai, B1), for which we are trying
to find the value of 2, lies onthe path (24),
we can determine the corresponding value 2
from (26). We therefore adjust the constant
¢ such that the path (24) passes through
(a1, B1) by

c=p1 cxp[—-S —-da) @n
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Then integrating (26), we obtain

—g.g-r3can(®_1 rcm
A=pre 5 Lercoda (28)
where
("7
Ta(%) = SO 7-da 29)

and the lower integral limit a, should be
determined by the boundary condition that 2==0
for 8=0. Since the integral (28) is performed
along the path (24), the value of a corres-
ponding to p=0is a=—co. We therefore have
the explicit solution of 2 as

2(ay, ) =pre™7+ 20 Si

71 e dy  (30)

1

We now take care of the term 7.p? %g
which has been deliberately ignored in the
solution of (18). It might be possible that
there are a number of ways to deal with this
problem. We propose here a convenient method
to get the solution of (18) by modifying the
Green function (22). We assume that the
Green function for (18) have the form

GI (r; o, 71, 2)
=G(r, 7o, r12)F(r, Yo, 71, 2) (31)

where G is the Green function for (19) given
by (22). Defining new functions £ and f as

-—— —
E(r, Yo, 71, 2)

=L [(Ir—ril+lr—ro Dt —rore)?]

42
32
f=1—e (33)
We let
F=aytaifta:f?+asfo+-- (€]Y)

which would converge for all the possible
values 7. From the definition of G/ it is
evident that

—1 (35
411.'[7‘—7'1[

lim G'=lim G=
eV
and U would satisfy the same boundary con-
that is U=0 for B=0. To satisfy
another criterion for Green function, G’ should

satisfy

dition,
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aG" _
L =0 (36)

for ri\:r—:. Substituting (31) and (34) into
(86), we can determine the cocfficients ao,

VZGI __aa}_Gl +erZ

a;, ay, - by requiring that the coefficient of
each power of l7—rﬁ should vanish separately.
Finally, the determined G’ should replace G in
(33) and this completes the solution of our
central epuation (18).
Once U is determined,
function is expressed as

15QCa, £) =Do(a,_s>je-v<n nab dr (37

and we can evaluate many interesting ther-

the grand partition

modynamic quantities, such as Helmholtz free
energy, using this partition function. The
density of states n(E), in particular, is related
to InQ by a form of integral transformation

InQCa, 13)=Sn(E)ln(1+e°"“)dE (38)

Although the inverse transform is not analy-
tically possible, we can investigate some
interesting properties of #(E) using this
relation.

Finally, we observe that the density of
electrons can be evaluated by

oD > _ — .—> 1
3;‘(’: r)—; w:(r) wl (r> 1+e-u+ﬂgi (39)

3. Application to Liquid Metals

We apply the general theory developed in
the previous section to the electrons in liquid
metals. The potential for this system is
described by (1) and the function U for this
potential can be written as

> > >
U(r, 7, 2) = ; u(""Rh X) (40)
with
> o
u(r—Ry, 2
=[6'G—R. =R 7, DorDar! @D
For a particular configuration of ions { },},

the grand partition function @ can be expressed
as
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an=DaSIZ exp| *u—(—;’—_ﬁh D} dr 42)

using (40), Following Rousseau et al®’, we
introduce a Mayer function

wG—R)=expl—uGr—R, DI—1 (43
then,

mQ=D, [(1+5 wGr—R)
+ er'sz—fl)wa—E’)
2! o5er

1 S . > =
+ 3 B! wG—RowG—RDuwG—R)

teJdr 44
the prime on the summation means that any
term with same index for R, R,’, R,”-- should
be omitted.

To perform an ensemble average of this
kind, it is necessary to know the correlation
functions between atoms to all order, although
only two-body correlation function is directly
measurable by neutron or X-ray scattering in
systems like liquid metals®>, Several schemes
of approximation are known to get the higher
order correlation functions, including the well-
known Kirkwood approximation. In the context
of present theory, the most convenient one is a
simplified version of Kirkwood approximation
introduced by Rousseau et @/*>. In this scheme,
the approximation to the n-th order correlation
function is given by

70 =-LlgGigri g0

+g(ra)g(r2s) - 8(rz,) -+

+8(r.08(r.2)-&r.-)]  (45)
where £(ri2)=g(l71—721) is the two-body
correlation function between atoms located at

£Gin

> >
71 and 72.

The ensemble average of I»Q can then be
obtained by

n@=D.0+ |22 oW —11dr e
W(r)
where p is the density of atoms, and

W(;1)=S w(rs) g(ri)dr “n

The auxiliary equation (10) is written as
1 ,,0-.22 5iU_ U =
s nQ 5 D, 51 ¢ dr=N (48)
where the integral in the second term can be

expressed as

oU -y 2
Y eVdr

2ot —2 D (W 117

W(r,

ou > w(rz) >
+ (r ( 5—{e W(72)
of 5| Wan

hl}g(ﬁz)d—;z]d_;’l 49
for liquid metals.

It might also be very interesting to inves-
tigate the space distribution of electrons in
liquid metals, which might ultimately be
related to the ion-ion interaction, using the
relation (39) given in previous section.

For the actual calculation, we suggest that
pseudopotentials, which are well known for
simple metals®> might be very useful. The
nonlocality and, in particular, the energy
dependence of the pseudopotential might bring
in some difficulties which should be examined
carefually. Since the density matrix is defined
in terms of all the possible energy eigenstates,
the inaccuracy of the potential for the higher
encrgy states might lead to inaccurate density
matrix. We expect, however, that this effect
can be ignored since the probabilities to occupy
the higher energy states are very small for
electrons in metals at ordinary temperature.

The local pseudopotential, on the other hand,
has the well-know property that it is much
more slowly varying in the core region than
the real potential is. Due to this property, the
local pseudopotential is more suitable for the
present theory, in which a weak potential is

assumed,
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