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Abstract

A finite element method is formulated for one-speed integral equation for
the neutron transport in a slab reactor. The formulation incorporates both
the linear and the cubic Hermite interpolating polynomials and is used to
compute the approximate solutions for the slab criticality and Milne problem.
The results are compared with the exact solutions available and then the

effectiveness of the method is extensively discussed.
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1. Introduction

The finite element method has become a
popular computational technique for the
solutions of various neutronic problems such
as multi-group diffusion equation'~* and
neutron transport equation.s” The method
is closely tied up with the Ritz-Galerkin
scheme utilizing as expansion functions the
piecewise polynomials which are defined in
_the prescribed subregions of the domain of

the independent variables.

In this paper we investigate the use of both
the linear and the cubic Hermite interpola-
ting polynomials® for obtaining the appro-
ximate solutions of an infinte slab critical-
ity® as well as the Milne
These problems are of interest because their
exact solutions are available and thereby

problem® .

the quantitative comparision between the

exact and the approximate solutions are

possible.
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Fig. 1. Spatial Mesh of Slab Thickness a

2. Formulation

2.1 Slab Criticality

The one-speed integral equation for the

neutron transport in a slab reactor is given
by

é(x) = —%—J;El (1x—x'1) ¢(x')dx'. (1)

¢ is the average number of secondary neu-
trons per collision due to scattering and
fission. FE;(x) is the expontial integral fun-
ction. The criticality problem to be con-
sidered here is to find the smallest ¢ for a

given slab of thickness a. The specific

numerical method for the problem is a finite -

element method combined with the piecewise
continuous Hermite interpolating polyno-
mials.

the slab is first-
divided into N intervals. The Hermite inter-

As shown in Fig. 1,

polations are then defined in each interval,
(-1 h<x=<nh. Let’s assume that Eq. (1) is
approximately satisfied by a trial function,
¢..(x), represented by an expansion

$y, (x) = Zl Z aeu,? (%) )

The runing index pis related to the order
of the interpolating polynomials. For the
linear interpolation, the summation over p
is unnecessary. For the cubic interpolation,
the summation over p goes from 0 to 1. The
expansion coefficient ¢.%, denotes neutron
flux, while ¢,! neutron current, at the mesh
point ». Combining Eq. (2) with Eq. (1) and
apppiying the Ritz Galerkin scheme, one obt-
ains a system of equations of the matrix form,

Up=—- E¢, 3)
U is a tri-diagonal matrix whose elements
are given by

Dll— (U.p UN) 5 U. (x) U »/ (x) dax. (4)

E is symmetric square matrix. Its elements
are defined by

»/—j dek»(x)g By (lx—x|) U (') dx'.
(5)

¢ represents a column vector,
¢=column vector {0°y =+ de? @1°, »+- 12, ...¢N',}

©
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The explicit expressions for U, and E
depend on the interpolationg polynomials
adopted. They are evaluated in Appendix
in terms of both the linear and cubic
Hermite interpolating polynomials.

2.2 Milne Problem

This is the problem of finding the distri-
bution of neutrons in an infinite half-space
(x>0) through which neutrons are diffusing
from a source at infinity. The problem is
often termed as that of a half-space with a
source at infinity. The objective that we
seek here is to test the accuracy of the
finite element method with the use of
Hermite interpolating polynomials. The
same problem has been considered by Abu-
Shumays et. al!®. But they used the liniar
and cubic spline approximations. For the case
of linear approximation, our approach is the
same as theirs, while two are different for
the cubic approximation.

As the trial solution of the Milne problem,
let us suppose that Eq. (1) is approximately
satisfied by

¢ (%) =%o+2+6,, (). @

x; is the extrapolation distance, 0.7104 in
unit of the neatron mean free path. This
form is used in Ref. 10 and is chosen to
represent reasonably well the neutron distr-
ibution near the vacuum boundary. Subsit-
uting Eq. (7) into Eq. (1), one finds the
working formula to which the finite element
method is applicable,

80 =% § B (lx—a/ 1) g, ()’
— G Ea(a) + L Ei(x). (8)

Assuming the expansion, Eq. (2), for
.. (x), one obtains

Up=E¢p+b. €)]

U and E are defined in the same way as
Eq’s. (4) and (5), except that the upper
limit of integral is replaced by the infinity.
b is a column vector given by

b=column vector {b’, +*be?, by b2 by?}
(10)
where

b= =5 (B (), U () + 4 (Ea(2),UP ().
1

The numerical accuracy can then be che-
cked by the following quantities

{6, ax
= ¢" (0) ’ (12)
and
("ap ()
r=T——— (13)
50 ¢11 (x) dx

3. Numerical Results and Discussion

The slab criticality and the neutron flux
near the vacuum boundary are very much
dependent upon the evaluation of matrices,
U and E. The computation of matrix U is
straightforward and can be made with any
accuracy. But that of matrix £ is a little
complicated and involves the truncation
error. In appendix the cubic Hermite in
terpolating polynomials and their explicit
expressions are given in terms of the expo-
nential integral functions of varicus order.

In Tables 1 and 2 results are shown for
the criticality calculations carried out in
slabs of varying thickness. They were
determined from Eq. (3) utilizing a Cho-
lesky-modified LR algorithm!®,

The algorithm makes the most of the
positive definite, symmetric property of
matrices, U and E. It is used here for the
stability of computation and for saving the
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Table 1. The Number of Secondary Neutrons per Slab Criticality
(The Linear Hermite Interpolation)

FEM Computation (% error)

Slab Thickness Exact
N=2 N=4 N=8
11,3310 1.02 1. 0216261 (0. 1594) 1.0207239 (0.0710) 1. 0207850 (0.0770)
6. 6004 1.05 1.0522965 (0.2187) 1.0502420 (0.0230) 1. 0500275 (0. 0026)
4.2268 1.10 1. 1025529 (0. 2321) 1. 1002386 (0.0217) 1. 100186  (0.0017)
2.5786 1.20 1, 2025393 (0.2116) 1.2002493 (0. 0208) 1. 2000402 (0. 0033)
1.4732 1.40 1.4022732 (0.1624) 1.4002120 (0.0151) 1.4000238 (0.0017)
1. 0240 1.60 1. 6020478 (0. 1280) 1. 6001497 (0.0094) 1.5999741 (0.0016)
0.7776 1.80 1.8019241 (0. 1069) 1.8001318 (0.0073) 1.7999639 (0. 0020)
0. 6220 2.00 2.0019863 (0.0993) 2. 0002640 (0.0132) 2.0001010 (0. 0050)

Tabele 2. The Number of Secondary Neutron per Collision for Slab Criticality
(The Cubic Hermite Interpolation)

FEM-Computation (% error)

Slab Thickness  Exact
N=2 N=4 N=8
11.3310 1.02 1.0219963 (0. 1957) 1.0193104 (0. 0676) 1.0186892 (0. 1285)
6. 6004 1.05 1.0528780 (0.2741) 1.0474592 (0. 2420) 1. 0481820 (0. 1731)
4.2268 1.10 1.1023345 (0.2122) 1.0962197 (0.3437) 1.0980651 (0. 1759)
2.5785 1.20 1.2011160 (0.0558) - —
1.4732 1.40 ' — —

calculational labour. The number of spatial
mesh intervals is chosen 2,4, and 8.

The comparision of the computed ¢ with
exact values shows that errors appear in
the third to the fifth significant digit.
Errors, especially in the case of the linear
Hermite interpolation, decrease as the mesh
interval becomes finer. It is noted that the
cubic Hermite interpolation does not improve
the accuracy which is obtained with the
linear interpolation. This lack of accuracy
seems accidental and is conjectured to be
due to the numerical errors involved in the
evaluation of matrix E.

Referring to Tables A-1 and A-2, the
elements of E are combinations of expon-

ental integral functions. These functions

converge very slowly for arguments greater
than 3~4. Therefore, it is likely that
summation or difference of these functions
at arguments close to one another may
cancel significant figures and thus produce
results of low accuracy. This conjecture is
substantiated by observing the fact that a
double precision computation of exponential
integral functions results in errors less -than
a single precision calculation, by an order.
Therefore, it seems that a more accurate
though time-~
consuming, is required-to determine ¢ satis-

evaluation of matrix E,

factorily by the cubic Hermite interpolationg
polynomials.

Table 3 lists the cubic results of the finite
element solutions for the neutron flux near
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Fig. 2. Neutron Flux Near Vacnum Boundary

Table 3. Neutron Flux near Vacuum Boundary

Distance from ;
Vacuum Boun- Neutron Flux (Cubic Interpolation)

dary, », in unit

of het/(N—1) N=4 N=8 N=16
0 0.601658  0.588021  0.579574
1 2.362306  1.400005  0.997567
2 4.038839  2.130975  1.354195
3 5.706866  2.850159  1.698037
4 3.566009  2.036612
5 4.280921  2.372756
6 £.965572  2.707685
7 5.709929  3.041968
8 3.375888
9 3.70959
10 4.043177
11 4.376681
12 4.710135
13 5.043559
14 5.376961
15 5.710291

the vacuum boundary. Fig. 2 depicts them
for the mesh number of N=16. According
to Eq. (9), the flux determination involves
an integration to infinity and an inversion
of matrix U—A% E alike. The infinite in-
tegration is replaced by a finite one, assum-
ing the neutron flux reaches the asymptotic
value at the five mean free paths. As for
a Cholesky
decomposition technique!® is adopted.

the inversion of the matrix,

Table 4 compares the computed neutron
flux with the exact solution in terms of 1
and x, which are defined by Eq’s. (12) and
(13), respectively. Unlike the case of the
slab criticality, the cubic Hermite interpo-
lation gives much better results than the
In the course of
numerical computation, the diagonal elem-
ents of matrix U are observed to be more
important to determine the neutron flux than
the off-diagonal elements, whereas both the
diagonal and the off-diagopal elements of
E are equally important in the slab critic-

linear interpolation.
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Table 4. Quantities L and x

L X
Number of Basis Functions
Linear Cubic Linear Cubic
1.415649 0.644026 0.690208 1.131641
8 0.731126 0.443262 0.615166 0.712738
16 0.518393 0.377282 0.537190 0.584046
32 0.4393388 ) 0.511759
Exact 0.358 0.546

ality calculation. Therefore, it is conceived
that any numerical errors made in the
matrix £ can affect the slab criticality
more strongly than the flux determination.
This may explain the reason why the cubic
Hermite interpolation gives better results
in flux computation than in the eigenvalue
problem.

4. Conclusion

We obtained the finite element solutions
to the slab criticality and the Milne
problem in terms of the linear and the
cubic Hermite interpolating polynomials,
The lengthy integration is one formidable
aspect of this method. Computation of the
matrix F the elements of which are given
by linear combinations of the exponential
integral functions is most time-consuming.

The linear interpolation is found to give
results which are in good agreement with
the analytic solutions of the related
transport equation. The cubic results agree
well with the analytic solutions, yet are
not so good as expected. This is ascribed
to the way that we computed the matrix
E. As pointed out in section 3, the expon-
ential integral functions convergé vefy slo-
wly at arguments greater than 3~4. The
evaluation of £ from computing each of
exponential integral funcitons indjvidually

may then result in a large cumulative error
in the elements of the £ matrix. Therefore,
as one way to improve the cubic results, it
is suggested that the linear combinations of
exponential integrals are expanded in
series!®? as a whole and the series is then
used to compute the elements of the matrix
E
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Theory,

Appendix Evaluation of of Mairix E

Case 1: The Linear Hemite Interpolating
Polynomials
The Hermite interpolationg polynomials of

linear type in equal intervals are defined
as

u,.°‘=-z—+1—n n—1D)h=x=<nh

U,,o (x) =] u"a+=n+1_%
0

elsewhere

nh=x<m+1)h
(A—1)

k stands for the uniform mesh interval.
It is straightforward to evaluate U using
Equations (A-1) and (4). Computation of F
is a little complicated. Since it is a sym-
metric matrix, it is sufficient to consider
elements E;; for /=j Defining the columns
and the rows of £ in the order of #%(x);
i=0,1, N, one can show

En=L"
E. =L"+L"!
E‘ii=llii+lzij+13ij+l4ii

lfor 1=j=i=N

Epiyy =L+

Eyyy, =LV ¥b i ¥t

N+ly N+1

for 1<j=N

—————

ENH» =l

where
= § 8 S 5
i— —
(5+2-) (G+e)

[ E2mm 2k B+ Gk SR
for 7=j
(=B (li—j I h+h) —2B5(|i~—j1 W) —Ex

(|i—jlh—h) —hE,(1i—j|h+h) +hE,
(li—jlh—h)—R*E;(1i—f|k)] for i=j

E—Dh 5k
L= ax  \ax'
’ S(z'fé)h S(f—nh

(2 (=20

E (lx—%"1)

[ S OB (=) W) —2E5 (i~ D B+ Ex (G-

J=2)M)+2hE(G—) ) —2h E(G—j-
DB +RE (=B for i—j=2
B )+ 20 )+ )~ L+ L

for i—j=1
(B (i) ) ~2B (=) )+ B

((G—9) h) +2hE, ((1+j—2) k) —2hE.((
—i)h) +BE((j—9) k] for i—j=0

I3ij:]1fi, and I4ij=12ji.

Case 2: Cubic Hermite Interpolating Poly-
nomials The cubic interpolating

polynomials are given by
o x—= =Dk \?
U=y =)
x—m—1Dk \?
—2( k )
n—1)h=x=nh

U,,0+=3<«———-————u(”+%l)h—?‘ )2

_z(w:i)s

Ul (x) =

ph=x=(m+1)h
0 elsewhere
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Uity | U= —(E= =LAy’
+<£:_(7;1—_1)ll_ ) SJ
(n—1)h=<x=nh
U,.”=h[(“(11+_;’)h;x_)z]
- ()]

nh=x=m+1)h
0 elsewhere

To define the columns and the rows of
matrices E and U, we reorganized the labe-
lling of the above element functions as

Sair1 (%) =2,° (x) 1 .
frirz () =ur (%) | for 1=1,2, -+ N.

In terms of f functions, the elements of

U and E are redefined by
U= f={ f0 £ dx

Ey= £ Bf) = duf, () § dn' B(lx—a/ Df(x")

U can be easily constructed referring to
integrals in Ref. 1. It is laborious to con-
struct E. After some manipulation, one can

show that, for upper diagonal elements of E,
E =V (0), E;=DIo)
E, 2i1=V (—9) +7 (&), By 2ia0= ~D@+D

(—d)for i=1, - , N—1.
E1,2N+1=V (N) ’ E1,21v+z= —5 (N)
E;=S(0)

Bz 2n=D@)+D (©) }
Es202=SE) —§ (9

E,, 2N+1=5 (N) , B, 2N+z=—§ (N)

Esivrs 2i42=D(6—f) =D (j—i)
Bty ont1 =V (i—N)+V (N—-t')

iZ{=j=N

Ez.'+1, zi+1=2V (1"']) +_‘7 (’—J) +T/_ (]—’)
} for

Eyii1y 2r2=—D(N—i) —D (N—i)

vz, 2542=28({—5) —8 (i—5) =T (j—7)
Eyitz, 251=D (j—1) —D (1—J)

Eyjvzr awn=D (N—1) =D(i—N)

Epivz, ani2=S(N—7) —§ (N—1)

Eopity ot 1=V (0), Ezpt1, 2x42=—D(0),
Erniz, 2nv42=5(0)

where
) — 9 22 . 5 J23( 6 32 (s
V(z)——}—lTI (#) —6h5 I (z)—Tg—I @

+ 4571 (0)

V@) =gl2 =D —S5 0 (-2)
A

D=2 ()=S0 — 276
+Em )

DO =) (—2)—5c ) (~2)
+& 7 -2

S@ =21 () — 120~ 120
)

=n- 1 5o s 2 13 e

S @)=z J7 (=2)—55J% (=2)
S )

h4

I ()= S:dt t'"S:dt’t’"El(lt——t'—i—ih’ D

Jm () =§:dt tmf:dt'tf»E,(lt+t'+ih|)

Table A-1and A-2 listintegrals, J**(s)
and J~ @),
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Table A-1. Integrals I7» (i) (2<m, n=<3)

I =1 =0
m— | AE(({+1)h—2E:(2h)+E; ((—1) b) J+4h(Es (¢+| 8E;(h)+-8h E; (k) +4h*Es (k) —8E ()
s ‘ D A) —Es((i—1) k)J3-2k* [Es(((+1Dh) +%h3E4 (0) —BAEs (0) —{-—g—h‘EZ (0)
= | B (G—1) )~ RE; (k)
— —12(Es (¢4+1) k) —2E3 (7h) +Es (G—1) k)] 2h3E; th) —2h3E; (0) +2hE, (0}
"= —12k (E (G ) —E (—1)B) ] E 1 por
n=3 —6R(Ey (1) ) —Eo (i—1) B) J—2h?(Ex(ihy | —WFs (0 +3hE0)
—Es ({i—1Yh) J+R*E,(zh) —h® E; 3k)
—36(Es ((#+1) k) —Es (6h) +Eo ((§—1) b)) ' —79Ey(h)—T2h Es(h) —36hE:(h)
m=3 —36h[Ey( ‘i+1) k) —Eo((1—1))]— 18R E(f+1)4) —12k% Eo(h)+72Es(0)—3A4E5(0)
n=3 +E( (= )W) —6RE((+ D —Es(G—)m)) | 12 . 2.,
SWEL(ih)— KEA(h) — 18 Ey(0)+—5-HE\(0) +2HEx(0)
12[Es ((¢4+1)B) —2E5(sh)+-Es((i—1)R)]
m=3 +12A(E; (1) k) —E; ((i—1)h)] w
e HBRE (4 1)A) +Es( (i—1)h)) o)
+ 2R Es((¢+1)R) —Es(ih) 1 —hE(7h)
—h5Ey (ih)
Table A-2. Integrals J»*(i) (2=<m, n=3)
;20 i=—1 =2
m=2 4(E;((£4+2)h)—2E:((4+1)R)+E:(¢h)]. 8E.(h) +8hEe(h)+8h*Es(h)| A[E(—ih)—2E((—i+4-1)h)+Er)
) 48k [Es((i4+2)R)—Es((i+1)A)] +4WE(h)+-h*Es(h)—8EH0)| (—(i4+2)h)]1+4+8h[E(—(i+1)R
n= +4h2[2Es((1.+2)h)—Es(t'-.*~l)h)] ——4th5(o)+%h3E.(o) —EG(.——(;‘-{-2)1;)]_4},2.@s
+4RE(({42)R)+-ME;((i+2)h) (—(+1)Rh)42E:(—(§+2)R)]
g EO) —ARE(—(-+2h)+BE{—(i+2)h)
12[LEs(sh) —2Es((i-+1) )+ Es((£42) h) ]| 24hE:(h)+24h*Ec(h) —12(Es(—1ih) —2E(—(i+1)h)
—24h[E;((s+1)h)—E,((5+2)h)) +14h3Ec(h)+-5RE, (k) +E(—(542)k)) —24k [E(—(¢
m=2 123 Ec((i+1)h)—2Es((i+2) k)] +hPEy(h)—24hEq(0) F+1)A—E(—(§4+2)A))
n= — 2R Es((4+1)A)—TE((i4+2) )] —2h*Es(0)+-RAE (o) +12h% [Eo(—(G+1)A)—2E, (—(¢
FERE((i42)h) + B Es( (i+2)h) L heE (o) +2)h)) —2k°
30 (Es(—(i+1)h)—TE(— (i-+2)k)]
—SHE(—(#+2)h)+R°Ey —(i4-2)h)
m= 7 ” ”
n=2
36(Es(¢h)—2Es (i+1)h+Es((i+2)h)]| 72Eo(h)+72hEs(h) 360Ee(—ik)—2Bo(—(i+1)A)+Eo(—
~T2hLEs(({+1) B) —E ((i4+2) k)] +72hE;(h)+48h3Eg( k) (Z+2)R)1+72[Es(—(i4-1) k)
meg | —BE(GHDD) 2B (G+2 )] | +21AE(h)+6KEL(h) —Ey(—(i+2)h)] —36k*(E,
| —12BLE(GHD R —4E (20 h)] | +hEs(h)—T2Es(0) (— (4 1)h)—2E(—(i+2)R)]
n=3 +-21A4Es ((#4-2) k) +6A°E ((£4-2) b) _36},25‘7(0)_{_%},55*‘(0) +12h*[Es(—(i+1)h) —4E,
—heE;((¢4-2) k) 1 WE (—(i4+2)R)]F-2LAEs(—(i+2)h)
g hTEL) — W (—i+ D)+ BE —(i-+2)h)




