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1. Introduction 

 

The method of characteristics (MOC) has 

extensively been developed over last couple of years 

for solving transport equations in nuclear engineering. 

Different aspects of MOC, including acceleration 

techniques, parallelizing algorithms, and its 

applications to diverse fields have been proven widely 

[1] [2], and incorporated to some codes like 

OpenMOC, STREAM, and DeCART [3] [4] [5].  

This paper introduces a transport solver for a 2D 

reactor core problem using MOC including its detailed 

geometrical meshing capability, solving algorithm of 

the neutron transport equation, and compatibility with 

the multi-core systems. In this work, a MOC solver 

which can analyze 2D cores having various 

geometrical symmetries was developed and the 

standard Coarse Mesh Finite Difference (CMFD) 

acceleration scheme was implemented using the pin 

surface net currents. In particular, the MOC solver 

uses a pin cell-based modular ray tracing, which is 

very efficient in reducing the time for ray tracing. The 

geometry modeling is done with a similar way used in 

MCNP and so our MOC solver has great flexibilities 

in complicated shapes in fuel pins, guide tubes, and 

burnable poison pins. Also, OpenMP was applied in 

parallelization over the azimuthal directions and cyclic 

loops of the rays. 

The validation of the MOC solver was performed 

against two benchmark problems, the C5G7 

benchmark [6] and the KAIST benchmark 2b [7].  

 

2. Methods 

 

2.1 Geometry options 

 

Depending upon the prevailing symmetries a 

problem could be modeled in one of the four geometry 

options (1) full core, (2) quarter core, (3) diagonally 

half core, or (4) octant core. The full core option has 

freedom of using any boundary condition on any side 

of the core. There is no restriction on the sizes of the 

pins or their meshing schemes also. However, all the 

other options require appropriate boundary conditions. 

Furthermore, a given flat source region (FSR) has to 

fully exist on one side of the symmetry line i.e. a 

symmetry line cannot pass through an FSR. Similarly, 

the octant and diagonal symmetries require both 

boundary conditions and meshes to be symmetric 

about the diagonal lines. The Fig. 1 shows the 

available geometry options in the current version. 

 

 
Fig.  1. Different geometry options in the solver  

 

The geometry modeling starts by defining the FSRs 

using the predefined surfaces in geometrically distinct 

fuel pins. Then, the fuel assemblies are modeled using 

the fuel pins, and finally the core is modeled using the 

fuel assemblies. 

 

2.2 MOC sweep 

 

The contribution from a track k to the angular flux 

over an arbitrary FSR could be calculated using the 

following multigroup transport equation: 

 
𝒅𝝍𝒎,𝒊,𝒌,𝒈,𝒑

𝒅𝒔
+ 𝜮𝒊,𝒈

𝒕 𝝍𝒎,𝒊,𝒌,𝒈,𝒑 = 𝑸𝒊,𝒈 ,                            (1) 

 

where the source 𝑄𝑖,𝑔 is given by 
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𝑸𝒊,𝒈 =
𝝌𝒊,𝒈

𝒌𝒆𝒇𝒇
∑ 𝝊𝜮𝒊,𝒈′

𝑭 𝝓𝒊,𝒈′𝒈′ + ∑ 𝜮𝒊,𝒈′→𝒈
𝒔 𝝓𝒊,𝒈′𝒈′ .    (2) 

 

Integrating Eq. (2) with a track segment having 𝑠𝑖𝑛 

and 𝑠 as the entering and leaving points for an FSR 𝑖, 
gives the change in angular flux along track k over 

FSR 𝑖. This change in angular flux along a track 

segment in an FSR is given by 

 

𝜟𝝍𝒎,𝒊,𝒌,𝒈,𝒑 = (𝝍𝒎,𝒊,𝒌,𝒈,𝒑(𝒔𝒊𝒏) −
𝑸𝒊,𝒈

𝜮𝒊,𝒈
𝒕 )  (𝟏 −

𝒆−𝜮𝒊,𝒈
𝒕 𝒔𝒎,𝒊,𝒌,𝒑) .                        (3) 

 

The polar angular quadrature suggested by 

Yamamoto for the numerical polar direction 

integration was used in this work. The change in 

angular flux is thus first numerically integrated to get 

the corresponding change in the scalar flux due to a 

track segment passing through that FSR as in Eq.(4). 

 

𝜟𝝓𝒊,𝒌,𝒈 = ∑ 𝒘𝒑𝒑 𝒔𝒊𝒏𝜽𝒑 𝜟𝝍𝒎𝒊,𝒌,𝒈,𝒑    .   (4) 
 

Finally, the scalar flux for the energy group 𝑔 and 

the FSR 𝑖 is obtained by summing this 𝛥𝜙𝑖,𝑘,𝑔 from all 

tracks 𝑘 in the FSR and all azimuthal angles as follows: 

 

𝝓𝒊,𝒈 =
𝟒𝝅

𝜮𝒊,𝒈
𝒕 [𝑸𝒊,𝒈 +

𝟏

𝟒𝝅𝑨𝒊
∑ 𝒘𝒎(𝒌)𝒘𝒌𝒌 𝜟𝝓𝒊,𝒌,𝒈] .  (5) 

 

2.3 CMFD sweep 

 

The scalar flux obtained from Eq. (5) is correct 

numerically, however, it converges rather slowly. Out 

of the numerous accelerating techniques, coarse mesh 

finite difference method is used, because of its 

simplicity and power to converge in rather fewer 

iterations. In the CMFD module, the pin-wise coarse 

mesh diffusion problem is solved using the Jacobi 

method, which conserves the surface currents and 

reaction rates to the FSR-wise fine mesh transport 

problem. The non-linear coupling coefficients are 

calculated from the pin-wise net-current accumulated 

during the MOC sweep to ensure equivalence of the 

corresponding diffusion solution. 

The current summation for the pin located at (𝐼, 𝐽), 

at its surface 𝑠, from track 𝑘, and polar angle 𝑝 is used 

for finding the normalized surface net currents as 

follows: 

 

𝒋�̃�,𝑱,𝒈,𝒔 = ∑ ∑ 𝒘𝒎(𝒌)𝒘𝒑𝒘𝒌𝒑 𝒔𝒊𝒏𝜽𝒑𝒌∈𝒔 𝝍𝒎,𝒌,𝒑,𝒈,𝒑 .  (6) 

 

The pin-averaged flux and cross sections for the pin 

at (𝐼, 𝐽) from all FSRs 𝑖 that exist inside this pin are 

calculated using Eq.(7a) and (7b), respectively. The 

FSR area 𝐴𝑖  and the pin area 𝐴𝐼,𝐽  are calculated 

numerically in the track-laying module once, only. 

 

�̅�𝑰,𝑱,𝒈 =
∑ 𝝓𝒊,𝒈𝑨𝒊𝒊

𝑨𝑰,𝑱
                                                (7a) 

𝚺𝑰,𝑱,𝒈 =
∑ 𝚺𝒊,𝒈𝝓𝒊,𝒈𝑨𝒊𝒊  

∑ 𝝓𝒊,𝒈𝑨𝒊𝒊
                                          (7b) 

 

The pin-surface diffusion coupling coefficient (�̂�) 

and the non-linear coupling coefficient (�̃� ) for the 

surface 𝑠 of the pin (𝐼, 𝐽) with its neighboring location 

( 𝐼’, 𝐽’ ); (+) for the right and top surfaces and (–) 

otherwise, are calculated as follows: 

 

�̂�𝑰,𝑱,𝒈,𝒔 =
𝟐∙𝑫𝒈,𝑰,𝑱∙𝑫

𝒈,𝑰′,𝑱′

𝑫𝒈,𝑰,𝑱∙𝒉+𝑫𝒈,𝑰′,𝑱′∙𝒉
  .                                      (8a) 

�̃�𝑰,𝑱,𝒈,𝒔 =
±�̂�𝑰,𝑱,𝒈,𝒔(�̅�

𝒈,𝑰′,𝑱′−�̅�𝒈,𝑰,𝑱)+
𝑱
𝑰′,𝑱′,𝒈,𝒔

𝒉

�̅�𝒈,𝑰′,𝑱′+�̅�𝒈,𝑰,𝑱
   .              (8b) 

 

Negative scalar fluxes could be encountered for 

certain cases if the non-linear correction coefficient 

was large. For instance, due to multiple types of the 

MOX fuel pins, CMFD acceleration can fail when 

newly updated non-linear correction factors are used. 

However, a damping factor of 0.5 as a rough guess is 

good to stabilize the acceleration scheme [3]. The 

damping factor of ‘0’ would mean using correction 

coefficient from the previous iteration (i.e. slow 

convergence), and ‘1’ would mean a fully new 

correction factor from the current iteration (i.e. faster 

convergence but lower stability). 

The pin-wise flux is calculated for the pin (𝐼, 𝐽) that 

has neighboring location pins (𝐼’, 𝐽’), iteratively using 

Jacobi method coupled with OpenMP parallel 

computing. The first term of Eq. (9) i.e. leakage sum, 

is performed over all four surfaces of the pin, and 𝑠’ is 

simply the opposite surface of 𝑠, (like north for south 

and vice versa). 

 
𝟏

𝒉
{∑ 𝑳𝒔 − 𝑳𝒔′} + 𝜮𝒈,𝒊,𝒋

𝒕 �̅�𝒈,𝑰,𝑱 = 𝑸𝑰,𝑱,                        (9), 

where 

𝑸𝑰,𝑱 =
𝝌𝒊,𝒈

𝒌𝒆𝒇𝒇
∑ 𝝊 𝜮𝒈′,𝑰,𝑱

𝒇
�̅�𝒈′,𝑰,𝑱𝒈′ + ∑ 𝜮𝑰,𝑱, 𝒈′→𝒈

𝒔 �̅�𝒈′,𝑰,𝑱𝒈′≠𝒈   

𝑳𝒔 = �̂�𝒔(�̅�𝒈,𝑰,𝑱 − �̅�𝒈,𝑰′,𝑱′) ± �̃�𝒔(�̅�𝒈,𝑰,𝑱 + �̅�𝒈,𝑰′,𝑱′) . 

 

After normalizing the CMFD flux to the pin-wise 

MOC flux, the FSR-wise MOC flux, 𝝓𝒊,𝒈
𝑴𝑶𝑪 , is 

corrected as in Eq.(10). This flux prolongation and 

updating of effective multiplication factor from the 

CMFD module are the two improvements to the MOC 

solution that accelerate the convergence.  
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𝝓𝒊,𝒈
𝑴𝑶𝑪 →  𝝓𝒊,𝒈

𝑴𝑶𝑪 ×
�̅�𝑰,𝑱,𝒈

𝑪𝑴𝑭𝑫

�̅�𝑰,𝑱,𝒈
𝑴𝑶𝑪                       (10) 

 

Finally, the total source in the MOC module is 

calculated from this corrected FSR wise flux (𝜙𝑖,𝑔
𝑀𝑂𝐶) 

of Eq. (10) before remaining MOC sweep of Eq. (2). 

 

2.4 Parallelizing 

 

OpenMP (Open Multi-Processing) is used for 

executing most of the loops in parallel. The input is 

read and processed over a single thread. Later, the 

tracks are generated in parallel. So, presence of the 

multiple unique pins does not take longer time than 

generating tracks for a single pin. Afterwards, these 

tracks are linked in parallel to form the core-wise 

global tracks and their closed loops. 

Inside the MOC and the CMFD modules, most of 

the loops are parallelized using simple omp directives. 

The outer most loops of the MOC solver module is 

enlarged by combining azimuthal angles and 

corresponding loops of the global tracks. This is done 

to accommodate larger teams of the threads. Because 

the global tracks are not identical, so, the load on each 

thread is also not identical. That is the reason for using 

dynamic load balancing for this loop. 

Thread isolation without absolute locking directives 

like atomic, are preferred to ensure safe data updating 

on the heap memory but the absolute isolation, e.g. 

provided by the critical directive is avoided due to 

their overhead time requirements. Moreover, due to 

extensive heap memory usage, the neutron current 

normalization, final data printing, and numerous other 

petty tasks are performed using a single thread. 

 

2.5 Benchmarking 

 

The C5G7 benchmark geometrical description 

along with seven-group cross sections set, and the 

KAIST 2b benchmark along with its respective seven-

group cross sections set are used for verification of the 

results. Both benchmarks (C5G7 and KAIST 2b) are 

defined for a quadrant core geometry. Although both 

of the benchmarks have clear octant symmetry, both 

quadrant and octant geometries could be modeled in 

the current version of the solver. However, simply 

following the given benchmarks, the quadrant 

geometries as shown in the Fig. 1 are analyzed in this 

work. 

 

3. Results and discussion 

 

Same set of MOC solution conditions is used for 

the both benchmark problems. That is, a ray spacing 

of 0.05 cm, 8 azimuthal angles in a quadrant, and 3 

polar angles in a hemisphere are used.  

2.1 KAIST 2b benchmark 

 

The pin power profile for the KAIST 2b benchmark 

problem with all control rods inserted is reproduced in 

Fig. 2. Higher power contribution from the MOX fuel 

assemblies is the reason for the darker shade. The 

instrument tubes are filled with coolant, and the 

control rods do not produce noteworthy amount of 

power. That is the reason for lighter shade at their 

locations. 

 

 
Fig.  2. Pin power profile with all CR inserted 

 

Table I gives the effective multiplication factor and 

the relative maximum and minimum pin powers. The 

contribution to total power from the peripheral 

assemblies is less due to vacuum boundary condition 

on the reflector side of the core (bottom and left in the 

Fig. 2). Similarly, four fuel assemblies having control 

rods inserted also produced relatively less power, 

hence lighter shade in Fig. 2. 

 

Table I: Results of KAIST 2b core analysis 

Quantity 𝑘𝑒𝑓𝑓  𝑃𝑚𝑎𝑥
a 𝑃𝑚𝑖𝑛 b 

Value 0.96286 2.895 0.114 

aMaximum relative pin power, 
bMinimum relative pin power 

 

 
Fig.  3. Neutron flux profile in the KAIST benchmark 2b; 

left: fast group 1, right: Thermal group – 7 

 
Although no noteworthy fast neutron flux exists 

beyond the baffle, plenty of thermal neutrons do exist 

(Fig. 3). So, presence of the extra water assemblies is 

justified. Relatively harder spectrum in the MOX 
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assemblies and softer in the 𝑈𝑂2 assemblies are also 

properly produced. A reflective BC at the right and top 

of Fig. 3 could be attributed to the higher fast neutron 

flux near these surfaces, which constitute the core 

center-lines. Hence, all of the perceivable neutronic 

characteristics are successfully estimated by our solver. 

 
2.2 C5G7 benchmark 

 

The current solver was also applied to estimate the 

effective multiplication factor, the maximum pin 

power and minimum pin powers for the C5G7 

benchmark. The calculated benchmark characteristics 

given in Table II are comparable to the reference 

values given in the benchmark. The maximum error in 

the calculated pin-power for all pins is less than 2%, 

which is comparable to other well-known packages 

like DeCART2D [5], also given in the benchmark 

solution. The relative error in 𝑘𝑒𝑓𝑓  is just -0.03%.  

The 𝐸𝑟𝑟𝑜𝑟𝑚𝑎𝑥  in table II is the maximum error in 

any pin in the reactor core. This pin (and other pins 

with error of the order of 1%) are the fuel pins located 

adjacent to the reflector region. So, this could be 

attributed to the flat source approximation because 

there is a big change in the pin-source from the fuel 

region to the neighboring reflector region. A 

sensitivity analysis with a finer flat-source region and 

a linear source approximation are the planned 

improvements against the error of around 30 pcm 

compared to the reference MCNP calculation. 

 
Table II Results of C5G7 benchmark analysis 

Quantity Calculated *Reference Relative error 

𝑘𝑒𝑓𝑓  1.186896 1.186550 −0.03% 

𝑃𝑚𝑎𝑥  2.494 2.498 0.16% 

𝑃𝑚𝑖𝑛 0.235 0.23 −0.56% 

𝐸𝑟𝑟𝑜𝑟𝑚𝑎𝑥  0.270 0.265 1.74% 

*MCNP results 

 

2.3 Parallelizing 

 

    Currently, the parallel efficiency is around 40% 

on a 16 thread 8 core personal computer, when both 

MOC and CMFD solver modules were used an 11th 

Gen Intel i7 dual processor machine (Fig. 4). The 

single sweep time saturates to little less than one 

second after 8 threads. This could be attributed to false 

sharing or non-efficient load balancing. Increasing 

number of threads is definitely beneficial but it does 

not look as good as quoted by some other codes [3].  

 

 
Fig.  4. Total time for a full sweep and parallel efficiency as 

a function of number of threads used 

 
4. Conclusion 

 

    An MOC-based neutron transport solver was 

developed for 2D core problems. This solver concerns 

the reactor core in cartesian geometries incorporating 

different symmetry options. Use of the acceleration 

technique CMFD and running on multi-thread systems 

via OpenMP directives makes it fast enough to solve a 

100-assembly core benchmark like C5G7 in less than 

one minute on a personal computer. 
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