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1. Introduction 

 

The experiment activities using large-scale facility 

always experience the heat loss during its operation. The 

transient tests are especially challenging to quantify the 

heat loss amount due to its changing states with time. 

Furthermore, experiments at high temperature with high 

thermal-conductive fluids, such as 600℃ liquid sodium, 

are more prone to losing heat. However, it must be 

considered with best effort to understand the behavior of 

transients and thus the prediction of code analysis can 

have credibility.  

In this paper, one of the transient test results from 

large-scale sodium test facility, STELLA-2, was selected 

to compare the heat loss modeling effect for code 

calculation. The hypothetical heat removal was modeled 

and the condition was arbitrarily set to see the effect.  

The scope of this paper is only limited to the 

evaluation of heat loss effect of concern and it does not 

suggest any design changes or specific modification to 

the facility to reduce the heat loss.  

 

2. Test Facility and Condition 

 

2.1 Test Facility 

 

The Sodium Integral Effect Test Loop for Safety 

Simulation and Assessment(STELLA) program was first 

launched to support the development of Sodium-cooled 

Fast Reactor in Korea[1]. The STELLA-2 is the second 

phase facility and it is capable of testing various 

transients including the Design Basis Events (DBEs)[2]. 

It resembles the reactor but in smaller scale. The scale 

ratio of STELLA-2 is 1/5 in length and 1/125 in 

volume[3]. It is designed to conserve most of the 

estimated behaviors during accident conditions and the 

focus is especially on the natural circulation inside the 

system[4]. In Figure 1 and 2, schematic and image of 

STELLA-2 is shown, respectively. 

 

2.2 Test Case Condition 

 

Among many cases of previous experiments, 

asymmetrical operation with Intermediate Heat Transfer 

System(IHTS) working condition was selected. The 

followings are the summarized version.  

 

- Core power: simulated decay heat 

- PHTS pump: 1 nominal flow & 1 coastdown flow 

- IHTS pump: 1&2 remain unchanged 

- UHX heat transfer: nominal heat rejection 

- DHRS: no engagement 

 

 
Figure 1 Schematic of STELLA-2 system 

 

 
Figure 2 3D image and photo of STELLA-2 facility 

 

3. Heat Loss Effect 

 

3.1 Code Analysis 

 

For the code calculation, MARS-LMR, the reactor 

safety analysis code was used. The basic assumption and 

approach were kept same as the reactor safety analysis to 

be consistent with reactor design philosophy including 

node layout, heat structures in heat exchanger and so on. 

The comparison result between reactor and STELLA-2 

is not the scope of this paper and a dedicated paper[5] is 

previously published in journal. In Figure 3, the node 

layout of STELLA-2 is illustrated.  
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Figure 3 Node layout of STELLA-2 

 

3.2 Result of Core Temperature 

 

In Figure 4, the core inlet and outlet temperature trend 

is shown. The general behavior does not show any 

similarity and the long-term difference is obviously large. 

In experiment, the temperature decreases after ~1,000 

sec but in code calculation it increases gradually after 

~300 sec. The main reason of this difference is due to the 

unwanted heat loss at hot pool. It was observed that the 

core outlet temperature and the IHX inlet temperature 

were quite different meaning the heat loss.  

 

 
Figure 4 Core in/out temperature trend 

 

4. Heat Loss Modeling 

 

3.1 Hypothetical Heat Transfer 

 

For quantification of the heat loss, firstly, the heat 

rejection point needs to be identified. In STELLA-2, 

there is a large bunch of cables at the upper part of core 

to provide power to the core heaters. These cables turned 

out to be the major source of unwanted heat transfer to 

outside.  

To model an appropriate heat removal, hypothetical 

heat transfer path was assumed with heat structures at the 

hot pool area (Figure 5). The boundary condition for this 

heat removal was arbitrarily set to match the experiment 

condition. Especially, it was set to have natural 

convection because a fixed amount of heat transfer was 

not desirable for transient experiment. In Figure 5, 160 

component corresponds to the core and 175, 180, 183, 

187 are the hot pool with sodium.  

 

 
Figure 5 Detailed change in hot pool modeling 

 
3.2 Comparison 

 

In Figure 6, the comparison result of experiment, code 

calculation with/without heat loss model. It is clearly 

distinguishable that the calculation with heat loss model 

follows the experiment trend. Although there is still 

slight difference in long-term behavior, the general trend 

is in good agreement. Therefore, the importance of heat 

loss model is significant and it should be more precisely 

evaluated with more experiment results.  

 

 
Figure 6 Improvement result with heat loss model 

 

5. Conclusion 

 

For comprehensive evaluation of the reactor behaviors, 

STELLA-2 facility is actively working on accumulating 

the experiment data on thermal-hydraulic phenomena. 

For qualitative analysis of inevitable heat loss for high 

temperature system, this study tried to identify the heat 
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transfer path as well as model a heat rejection. The test 

case used in this study is asymmetrical operation with 

normal cooling through IHTS. The hypothetical path was 

modelled with natural convection and the comparison 

result showed some improvements. However, for better 

prediction, more quantitative analysis will be needed 

with more experiment data.  
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