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1. What is the kind of uncertainties in power system in REG?

€ Aleatory uncertainty: Outage of Unit (Ex, Outage of Generator, Lines..)
€ Epistemic uncertainty: Uncertainty of Information
(Ex, Forecast of Load, Supply of Resources)*

Boiler
or
Reactor

Conventional Power Generation Plant

Electrical Energy
Delivery System

Gen.

Resources
(Wind
&

Solar)

Epistemic Uncertainty

Electrical Energy
Delivery System

* Roy Billinton and Dange Huang, “Aleatory and Epistemic Uncertainty Considerations in Power
System Reliability Evaluation”, PMAPS, May 25-29, 2008.



2. Real Time & Generation Scheme
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and the change in philosophy presented
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the digital programs are bui
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Into most economical aress of operation for
new generstor types

type will be required to operate within
a load band determined by calculating
uu point on the load-duration curve
nnual fixed costs and

annual operating costs for a ma-
chine equals the corresponding sum for
the new generator type with the next
highest operating cost; Fig. 2. The
prrposs of this st step In to 6t new

1 positio

lndk-(lon ok e type of new generator
to be purchased to fill areas of capacity
deficits most economically.

Thanext step compuiss the cpacity. of
iaing gueration to wpply sads por-
tlon of ahi losd duration curve; K
This al ailable capacity =
Sasiiion & mmn-nm of the operating
costs of existing and new generators.

For all the foregoing calculations, the
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Finally it is necessary to make a cost
couspariion of (G various expuion

terns. The costs computed include the
fixed charges and ﬂx-d ow-lin‘
on new uni , start uj

and

spining costs of new sy 'axieting units,

and present worth of all cost:

Very briefly the functions of the five

peograma daslgned 1o Spply (hle:philos-
ophy to an electric system are as follows:

1. Progmm 1 determines the most eco-

nomical area of operation for each new
generator type under the load-duration

analysis. By observing the expansion
pattern output of program 1V, an expan-
sion pattern can be developed around the
type of unit in question so that the
first and second units of the type g0 to
the lowest cost location, etc.

Transmission Costs:  Transmission
costs are not included in the program com-
putation. They must be added after
generator expansion patterns have been
developed. These costs are not u-ullly
known in advance, and in general a
determined through load flow tudics
integrating the proposed generators with
the existing transmission system. If,
however, transmission costs in the form
of dollars-per-mw are known in advance
they could be included in the fixed cost

I The programs presented

sidered in arriving at the final answer
regarding future system additions.
Retlrements: Retiremeats say be in:
cluded in program V. Their inclusion
TR afect oaly Uie yearly operating costs
thereafte:
Hydro c.pm:,.

ypes,

w of existing nonhydro

eoera o for cach of the mew

generating areas established.

2 Pregram If takes the outout of pro-
and mserts existing hydro genera-

o Siree: e s Siecuion m

avoid excesses in any area, and

the minimum new Eeneration requircments

by type to musly the peak load esimate;

eratio

optimizing the selection of new steam
generation on a system with a high per-
centage of existing hydro.

Other Limitations: Spinning reserve
turbines, that is, turbines with a normal
rating plus a short-time overload rating at
& Eighiec ek nie) cxmat; . Balilied
in the

is repeated
utomutically for each year of & swdy.
3. Pr 111 caleu! annual costs
Der year of & study usog the optimised new
eration in
program 11.
Program 1V develops automatically o
one run up to 14 difl tor ex-
erns using actual mtings of
or I the 14 pla
one another, -
y from the optimized expansion

|... additional computer runs using program

u. Program V. caleulates all costs. includ-

present worth, associa
ehaite senerator e-v-n-lou llzrn. o
as those developed by program The
detafls e R AL
oy B o LR e R
IV, and V, are preseated in the Appendix.

Other Considerations

Units at Different Sites: The programs
discussed in this paper consider generating

costs only. f plant 1
tion must also be included in any final

ion ( T and
ID bt can be handled properly. fa pro-
gram V. Their costs can then be com-
pared with those for the scheduled capac-
ity additions developed by programs I,
11, and 1V to select the most economical
pattern.
A second limitation is that, if several
different sizes of units were available with
different fixed costs, but exactly the same
variable costs, the computer would al-
ways pick the unit with the lowest fixed
cost per kw. This unit, of course, is
usually the one with the highest capacity,
but it may not be the most economical
in the long range plan, depending on the
selation of (his ualt siés o, the eystem
d system rate of load growth.
This Ilmlulloa. 100, can be overcome by
prudent application of the input data. A
method for having the computer take
care of this problem is presently being
studied.

Fig. 7. Rewls of one expamsion pettern

shown for years 2, 6, and 10 of « study
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Conclusions

The programs developed in this paper
are nnful tols in the selection of the

most_economical development for the
electric production system. These pro-
grams will greatly reduce the number
of alternatives to be studied, and will
provide the planner with the assurance
that he has examined all practical varia-
tions of expansion patterns.

Appendix. Description of the
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Program 1
Ttems of Input
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senerators to be lncuded in @ study. from
the high-capital-cost _low-operating-cost
T ot g i g
-opera

lollas figure.
The bulk of this comt 1 derived. froms u--
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use of fuel and with mainteaance, but
by
of electric energy. second, to be
poleivirflong ABRVI v  RC
is com) of an aggregute of all the costs
which can be broken down
per-mw per figure. Included in this
cost y yearly expenses
xed nature  associated  with installed
capacity, fuel, maint o1 ers.
Wh . ble and fixed costs have

conxidered, they arran;
form in the order of ascending variable
costs, and numbered from one starting
with’ the type of lowest variable cost.
These tables are then used as input to
program 1.
stady, It s sssumed that the shape

o« n.- 1oad-durat curve, plotted as

P
e, T wilt sevslhusge Tue load Juratiea

tabular form as a series of tage steps
cach having o definite tme In hours to
euablish {63 length; Fig, 8. To conserve

step covers 35 mw. er i tudy
for a peak of 10,000 mw, a step will cover

100 mw.
At the beginniag of a study, existing
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esturting
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method for having the computer take

Step covers 35 mw. but later in the study
for'a peale of 10,000 mw, a step
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to the next area.

I Three 2 ew generation is not required, the

costs only. The problem of plant loca-  care of this problem is presently being 100 m >
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a
o later, and schedules the
e pemanition: requlcecmasts for the ates te
sysem steam generation is supplied o the  value of calculated hours might be greater  the new generatar areas; o, For some arsas it s possible that
computer as a table of conve lated, in  of the numbers of the steps which are the the hydro ed will completely supply

of megawstta, agnin due to amony lcita
tions method of obtai

bl Mot Mo Bl types
will be eliminated

editing procedure and restarting
s garried out by the computer automatl-

the area requirements. In this case, all
the old generation ocigiaally alotted o the
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be scheds
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regardless of location, whic the When the computer has run through are the number of new gemerator e program cmploys the procedure just ich wil suvity ti total new peacration
yariable cost, _ The Blocks are lisied in the  all el types being < after explained to move from the bottom area requ ts of the year and
order of nding. pod  the boundary hours for each sitable ‘abd the avallability factor to the top area of the load-duration curve, which will yield, in conjunction with the
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(Back to History of Power Industry)



Ch 0. 19M|7]: X} 2F2|(XIaF2|)et & LtF 2| (At=|F2])
ol 0|d &S Gl Qlmo nttal 59| AHAL

INTO THE
Nature and Caufes CHE
X|’ L ] I 0
OF THE
WEALTH or NATIONS. ) |
Al
By ADAM sMITH, LL.D. ad F.R. S, )c\:f O
Formerly Frifir of Mual Padoiply  the Urscerfity of Geasgaw, = -
o o
IN TWO VOLUMES,
VoL I
|:|-| =)
S — ﬂ
o A2 Z=0 S4k9|
LONDON:
PRINTED TOR W, STRANAN, AND TOLADELY, IN Il - e
MOCCLXRVL,
(FRo| 2xa} YQlof Bt AP)(EE AZEL RHO B _
%2, An Inquiry into the Nature and Causes of the Wealth of (ST U HRER 55, 520! Manifest der = A
Nations), = (RE2)(EE3#, The Wealth of Nations)2 7|2 Kommunistischen Partei )2 :‘S'-_ZF-_I *f”7f°| ZtS 0234
ol AlCjel 17761 32 02lof SHE, H=o| AN ofH ~ ot Z2|Ealg AR 3ot dEE StFoNsel 2zl g
X 25102 18484 22 212 A STHE[QICH

Oj£0| =8 MOt


https://ko.wikipedia.org/wiki/%EA%B3%84%EB%AA%BD%EC%A3%BC%EC%9D%98
https://ko.wikipedia.org/wiki/1776%EB%85%84
https://ko.wikipedia.org/wiki/3%EC%9B%94_9%EC%9D%BC
https://ko.wikipedia.org/wiki/%EC%98%81%EA%B5%AD
https://ko.wikipedia.org/wiki/%EA%B2%BD%EC%A0%9C%ED%95%99
https://ko.wikipedia.org/wiki/%EC%95%A0%EB%8D%A4_%EC%8A%A4%EB%AF%B8%EC%8A%A4
https://ko.wikipedia.org/wiki/%EB%8F%85%EC%9D%BC%EC%96%B4
https://ko.wikipedia.org/wiki/%EA%B3%B5%EC%82%B0%EC%A3%BC%EC%9D%98
https://ko.wikipedia.org/wiki/%EC%B9%B4%EB%A5%BC_%EB%A7%88%EB%A5%B4%ED%81%AC%EC%8A%A4
https://ko.wikipedia.org/wiki/%ED%94%84%EB%A6%AC%EB%93%9C%EB%A6%AC%ED%9E%88_%EC%97%A5%EA%B2%94%EC%8A%A4
https://ko.wikipedia.org/wiki/1848%EB%85%84
https://ko.wikipedia.org/wiki/2%EC%9B%94_21%EC%9D%BC

M=

)

Ch 1. 20M
ApS|A| AE

Of &t Cf.1

ol
=

=

264

2]
=

19914 12

=
—

=

ol
ol

A o] o1

< IJ____E____@
0 o
:Fru_.r_

O — LH
O_L._HE_.A T
_uz%at_o

s E

Fof| 2 E[SHA

Ol = 2{A[O} 2}

—_
(e )

T

, wetAOF XN SsH|, cA|OF BiEEA AWM= FEtA[O

o A[Of

F

—
o
=

—

10 OrX|Sfe = &30 = 7|7 W27t d =1 F O 0| AtE = 2A|Of

L
ol 23 1| O

Ato]of
2710

2l 2
|

2|
=

EH 12
Cf.

B~

SH
A

H
T

gm0t 2R

|

=
=

o

1 19914 8

®)
—

_I

Ct &

MY 7A| 328 BA3H 3

217} AT YT E

- 1
Lt



https://ko.wikipedia.org/wiki/%EC%86%8C%EB%A0%A8
https://ko.wikipedia.org/wiki/1991%EB%85%84
https://ko.wikipedia.org/wiki/12%EC%9B%94_26%EC%9D%BC
https://ko.wikipedia.org/wiki/%EC%86%8C%EB%A0%A8_%EC%B5%9C%EA%B3%A0%ED%8F%89%EC%9D%98%ED%9A%8C
https://ko.wikipedia.org/wiki/%EC%86%8C%EB%A0%A8%EC%9D%98_%EB%B6%95%EA%B4%B4#cite_note-ReferenceC-1
https://ko.wikipedia.org/wiki/%EC%86%8C%EB%A0%A8%EC%9D%98_%EA%B3%B5%ED%99%94%EA%B5%AD
https://ko.wikipedia.org/wiki/%EB%8F%85%EB%A6%BD%EA%B5%AD%EA%B0%80%EC%97%B0%ED%95%A9
https://ko.wikipedia.org/wiki/%EC%86%8C%EB%A0%A8_%EC%A7%80%EB%8F%84%EB%B6%80
https://ko.wikipedia.org/wiki/%EB%AF%B8%ED%95%98%EC%9D%BC_%EA%B3%A0%EB%A5%B4%EB%B0%94%EC%B4%88%ED%94%84
https://ko.wikipedia.org/wiki/%EC%B2%B4%EA%B2%8C%ED%8A%B8
https://ko.wikipedia.org/wiki/%EB%9F%AC%EC%8B%9C%EC%95%84%EC%9D%98_%EB%8C%80%ED%86%B5%EB%A0%B9
https://ko.wikipedia.org/wiki/%EB%B3%B4%EB%A6%AC%EC%8A%A4_%EC%98%90%EC%B9%9C
https://ko.wikipedia.org/wiki/%EC%86%8C%EB%A0%A8%EC%9D%98_%EB%B6%95%EA%B4%B4#cite_note-2
https://ko.wikipedia.org/wiki/%EB%AA%A8%EC%8A%A4%ED%81%AC%EB%B0%94_%ED%81%AC%EB%A0%98%EB%A6%B0
https://ko.wikipedia.org/wiki/%EC%86%8C%EB%A0%A8%EC%9D%98_%EA%B5%AD%EA%B8%B0
https://ko.wikipedia.org/wiki/%EB%9F%AC%EC%8B%9C%EC%95%84%EC%9D%98_%EA%B5%AD%EA%B8%B0
https://ko.wikipedia.org/wiki/%EC%86%8C%EB%A0%A8%EC%9D%98_%EB%B6%95%EA%B4%B4#cite_note-3
https://ko.wikipedia.org/wiki/%EB%9F%AC%EC%8B%9C%EC%95%84_%EC%86%8C%EB%B9%84%EC%97%90%ED%8A%B8_%EC%97%B0%EB%B0%A9_%EC%82%AC%ED%9A%8C%EC%A3%BC%EC%9D%98_%EA%B3%B5%ED%99%94%EA%B5%AD
https://ko.wikipedia.org/wiki/%EC%86%8C%EB%A0%A8_%EC%88%98%EB%A6%BD_%EC%A1%B0%EC%95%BD
https://ko.wikipedia.org/wiki/%EC%95%8C%EB%A7%88%EC%95%84%ED%83%80_%EC%A1%B0%EC%95%BD
https://ko.wikipedia.org/wiki/%EC%86%8C%EB%A0%A8%EC%9D%98_%EB%B6%95%EA%B4%B4#cite_note-4
https://ko.wikipedia.org/wiki/%EC%86%8C%EB%A0%A8%EC%9D%98_%EB%B6%95%EA%B4%B4#cite_note-5
https://ko.wikipedia.org/wiki/1989%EB%85%84_%ED%98%81%EB%AA%85
https://ko.wikipedia.org/wiki/%EB%83%89%EC%A0%84
https://ko.wikipedia.org/wiki/%EB%8F%85%EB%A6%BD%EA%B5%AD%EA%B0%80%EC%97%B0%ED%95%A9
https://ko.wikipedia.org/wiki/%EC%9C%A0%EB%9D%BC%EC%8B%9C%EC%95%84_%EA%B2%BD%EC%A0%9C_%EA%B3%B5%EB%8F%99%EC%B2%B4
https://ko.wikipedia.org/wiki/%EB%9F%AC%EC%8B%9C%EC%95%84_%EB%B2%A8%EB%9D%BC%EB%A3%A8%EC%8A%A4_%EC%97%B0%EB%A7%B9%EA%B5%AD
https://ko.wikipedia.org/wiki/%EC%9C%A0%EB%9D%BC%EC%8B%9C%EC%95%84_%EA%B4%80%EC%84%B8%EB%8F%99%EB%A7%B9
https://ko.wikipedia.org/wiki/%EC%9C%A0%EB%9D%BC%EC%8B%9C%EC%95%84_%EA%B2%BD%EC%A0%9C_%EC%97%B0%ED%95%A9
https://ko.wikipedia.org/wiki/%EB%9F%AC%EC%8B%9C%EC%95%84
https://ko.wikipedia.org/wiki/%EB%B0%9C%ED%8A%B8_3%EA%B5%AD
https://ko.wikipedia.org/wiki/%EB%B6%81%EB%8C%80%EC%84%9C%EC%96%91_%EC%A1%B0%EC%95%BD_%EA%B8%B0%EA%B5%AC
https://ko.wikipedia.org/wiki/%EC%9C%A0%EB%9F%BD_%EC%97%B0%ED%95%A9

mn

- L
S4FFO|of HAQI AFHO[ F 1

[ ]

19565 AR

E

ER[OF AR - ZEL A2
19554 =7i2 €9 .
CEHEFAT AL &Al0h
19684 Af7
=Zofete| 8 - HZ==2H7|0F EHF -
5= 2 A2
77 A& "HI3&=sF|oh
HO Rt == (E2tn

42 02 H|Z (=x|ot
He 1€ (otF =0l
HI| A
Of2 =2 -
8% RO 7|72t £5, B2 20| Y= MK 'y b e

=1 199145 122 26 (30'5_1 J:(..)[” 12 196149 HIE E| = 27| .

o] g TAH ZTHE, (T =) & o OlA Y 97 -

ROjRt 43 olgl 1. 0t2BILj0F 5 EX|0t 9. 2| £0tL0F 13 £2AHLAE lEnna) Sl ol 2
s 2. OLHIZHIO|T 6, FHRIZ AR 10, EEH 14, £320|Y EZ
= 3 dHpt= A 7. 7| 27| AAE 11, B{A|OF 15. S Z=H|7| A B Lef HY - =2he st -
-ss:.f% fé—‘?’— 4 0|AEL|O} 8 2FEH|0} 12. EFR| 7| AEF 19895 & - HIEE =2 51
AA 2= 19914 12

Za A A X AM SEF =2 2| =0k O AbA - 2HEH|OF AbA
ol FAl QI aty|of K| - S neate|of H Y

- AHO 1] - FHEILOF SAF2] 21




Ch 2. 20M|7| =28t XIFEAHWNMH 22| 2= 20F =HC|:
5 Q

o
== 0 et SE@)2t 2[F 221 7|=X&2
- ARTX| SO SHO| M2 7|E HHLM)AYGA 2| 81

« AOFE A|CH =24

« AXHAH A HO| [HE At}

 ICT §E A &=H|, loT,.....

« 5G, 6G A|CH =2f

o OIH|El & Ael, BlH|O|H.... Block-Chain..

» BHE A+ SA[ZH+7|Z Ab+ AP R; =727 AFR|A|AHE B



doosanfuelcell.com

Cathode

Anode

X7tel 0|E ' Doosan Fuel Cell

B0 440 440182 | o o)
0 530t 423 a0 | —— I\ HE - URHK - AR 22

ard Rl =

PAORE TR 2K 3| 2(H ot o o AMAO g VA A

308 0 axll|s i 0|0 LT REA3| 20p2)
© 0= 2YARE N 19E . e

T ol=ul® ¢ o
O 371300 HL0[R2 ¥ HLSHS

S47} e §0| 8kt ar * . o g SY

Ma &

AR LTISl 5, FEFK Y0,

blog.naver.com

m.DI0g.naver.com

°\ SAABHI 4 By

{iﬁaf?i . |
m‘iiefh B B



N RNX

H

Ch 3. 20A|7
L 8K 8 %

3 &

A ZLAQ £0F= L 0] 5!

ISE=:
=

Al

OF 1 LK} 7}

IH

- 18| B =



Ch 4. 21M7] XZ: MBAIZ C|xjlojjgt 145
7|x0| BuSIZ EHo| siAlg & notsIX| 2

LR ES
s
|
ApI Xt
‘. WHXISIAHE) -
| (=15, +=@xpEy) § T e
L EIXEEESsAb S !
a7y
(T IAER)

 petAb

KEPCO |
aBAHA)



WXR V0
W3 12

VXS 34

A=A A=7H=, &lnojl=

19973 11 IMF A= A
1998= 2H HH=Sd5. = giIgst s
1999= 12 ZH=S3d5, SSE4AA=1E 71218 s=S(3r= gigs =H5)
2000= 124 TAFH LA A== =Tofl &S =0 =5 =3
20013 a9 ZIE2AIE 1A 2l 67 2 TFXEIAF =2 =2 ©sEoiai s A1
sS= LEdSEESsE ZIEAIE 298A =T S0 s o™ S XIS
8= oIFelESE, T2 - KA - =5 - o= E oIS gidb| 32 =5
oaFelSds SSE4AA=0E 338 aia=
6= SIS E3S, S99 A0AIE JHE! R odiUEXIESZ7 IS &3 A= 2w
=XH2I3s &Y o= ==




€ xznmE

D uU3EsHYT @) ysFomus

Ol4 | HA AR ZIH 204 "L BT YE2AT 2.

n.kr skenews.kr
o. -
= (® :
v o - ¥ »
150 B8 ather t3ue
o #5:) Baww SR ¥ ¢
$LX] ARND B8 L
[ Kex nanns HAAH I N ]
L ]
° 'S "
[ KEPCD  MEVAT HE, M l » *
(4] (4] ] o an an
1|5} AKX} 0 133 € [
Paes ® L AU RE T LN TR

RN, B SE R RE?

ecoday.kr

oLt HEAN ZYHAM = g A 2= MY Yol

(==}

m.blog.naver.com

AlAFK e

€I u=omantm G eaesgme :
01 ZHedAIRio) 2|1 B B0l ci5}0f 2020.11.5.¢%)14:00
K‘O'M""l'po !&’c P‘:'?:"w'"u“& REME (5Y UuR DN tUE YW resggeT) - RS LA Ve Paewys T VT Tk

HAO! 7|3 1 B O PH2 A 2|5 E AR XA
He - 22t0l H 2|50l 02




Off AR star M HAH 224 H (.

&

kyobobook.co.kr

7. 184

Wia

Lol

slidesplayer.org

}alo] o i =i
¥ )
12 At -
} | = 7 vy —
| OfL|OF - O 4 X]... SZE ST ESE £,
labortoday.co.kr

HIFHC-SE (1216 T - LHE S

Y M=o YR HAMAFENH O|F IR e xox
oI
a1

AWM A

BN 100% XIRAR

S AT MR

HAAJAEUN S JisE SWti= AESAIIs

R SRPVRTF AN, TRV VNDEEA

v ¥

2 pRuy
1. MSRGERNOII XISIAF B2
N v o

W
o
‘\l:l
WM SHAL STUM P gUHE L
171 S EEIC 2R < ST AIATE < AIAE -

S HE AY RS HEHSD HHAAHAT

Hea)a

N

e @ ) )
. @
“ (=] ()

UA Eavy ¥ =

OHLAX IR £

 JECEE]
sl

sxg

(r216 &) - LIZ917|







56 millions inhabitatnts affected
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More than 6.5 million people in the United States lost power during Hurricane Ir
ene, which includes over 30 percent of the people living in Rhode Island, Connec
ticut and Maryland (U.S. DOE 2011).
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prepare

resilient

adjective
(of a substance or object)

‘the capacity to prevent, mitigate, prepare for,
respond to and recover from the impacts of
disasters’

prevent

recover

Figure : Cycle of resilience

puodsa.



Equilibrium Event Previous / New Equilibrium

|
Anticipate  Resist, Absorb_
(Preparadness) (Mitigation)

' 4

\

Time
Recover

','.
Respond, Adapt
(Response)

Figure : Components of Resilience and the Timing of an Adverse Event
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How Can Policymakers and Regulators Help Increase Flexibility?

A RELATIVE ECONOMICS OF INTEGRATION OPTIONS

Involuntary Load Chemical Storage
Shedding
Transmission
Expansion

Coal Ramping
Residential Transmission
Demand Response CT and CCGT Reinforcement Pumped Hydro
Gas Ramping Storage
Strategic
RE Curtailment®
fod e W Thermal Storage

= Joint Market
Expanded Balancing Operation . Management
Footprnt/Joint - - & Hydro Ramping
System Operation Increased Ancillary HISESEE
—— o R Commercial Demand
Service Liquidity Response
Sub-hourly po
Scheduling and Improved Energy
Dispatch Market Design
RE Forecasting Option costs are system-dependent ;
. and evolving over time i
Grid Codes 9 :

SYSTEM MARKETS FLEXIBLE STORAG
OPERATION GENERATION TORAGE

Type of Intervention

o
-

a. There is a tradeoff between costs of flexibility and benefits of reduced (or no) curtailment, hence a certain level of
curtailment may be a sign that the system has an economically optimal amount of flexibility.

b. Joint system operation typically involves a level of reserve sharing and dispatch co-optimization but stops short of
joint market operation or a formal system merger.

c. Wind power can increase the liquidity of ancillary services and provide generation-side flexibility. Curtailed energy
is also used to provide frequency response in many systems, for example Xcel Energy, EirGrid, Energinet.dk.
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Ch 10. Final Energy DNA?
Nuclear Fusion (Artificial Sun)

=T XHY
1387 83

= Euuzy] als

\

AR 2R .
T BAIEDp LA E71UAY|

32



I|-1II =Hof| FRCE
Jl_}?_i 0| OfL|C}

=

ol

7. 3 s

- o ‘|’ 3 f
aa = ' S ¥
L *’.—".iz- ;

J - x !, - w—
. v,‘: J

oy @il 4 e L GTRMANY f‘;_ﬁj N
- P W Tl
- . = l-\ - Py ) ; -\mn-‘“
- N B :’- \ J — UH'_-*- DR O
. : Cene SN
> ' . 4 |
¢ | rRANGE N "‘1“’
‘\ o3 : f/ "o—-n . -3
F ! 4 > m
. e .& '”‘“
- P
’ AN LR ol
o £ <Ay
rORTOOAL ™ > C.daroch. / — 4
< =~ <37 - v.:. e
5 SEAIN ; .~ -2 s
>
4 . “r ”.-)
;v | de .{‘

33


https://www.google.cz/url?sa=i&amp;url=http://m.blog.naver.com/nfripr/70095791094&amp;psig=AOvVaw2xjwxL-a6rP4JhK0pCRzEq&amp;ust=1581208243712000&amp;source=images&amp;cd=vfe&amp;ved=0CAIQjRxqFwoTCOi_0u_ZwOcCFQAAAAAdAAAAABAm

Deutenum (D) Neutron (n)

Q —
Y

@

e
\@

Trtum (T) Helium (He)

¥ FUSION Principle
\

@ &2k (D+T) ~ 5 amu
o UM x| ~ 17.6 MeV

o CHaE g olHX] ~ 3.5 MeV/amu @ A E OHX] ~ 0.85 MeV/amu

Figure 1 541
56 Ba
Slow neutron ‘.
235 )
92
92U 2 r .

{one possible pair of fssion fragments |

@ 212k (U235) ~ 235 amu
@ 2h ol X| ~ 200 MeV

aEva geEal

|}
| 80200 4Ro2m)

Y @

-y -

WEHWUS gy RojU ADE BRpZ012|

HEU VSE s aue FEA BoluAt
718 B2712, 0 37|71 E{Y B8
#21 27| 8 ‘gl gug,

Hewan

34


https://www.google.cz/url?sa=i&amp;url=http://www.ilyoeconomy.com/news/articlePrint.html?idxno%3D30417&amp;psig=AOvVaw2xjwxL-a6rP4JhK0pCRzEq&amp;ust=1581208243712000&amp;source=images&amp;cd=vfe&amp;ved=0CAIQjRxqGAoTCOi_0u_ZwOcCFQAAAAAdAAAAABCjAQ

* D + T — 4He(3.5MeV) + n(14.1MeV) + Energy (1)
n+°%i—T+%He (2)

Tritium Tritium
E Tritium (T .
recycling Dauterium (02 recycling
) Storage i
with T4 with T,
Hz, Dz, HD, Oz

> 100 kg tritium per year '

Hz0, HDO, HTO

Water-
Detritiation
Te Dz
Isotope
Separation

Tritium (Tz)
Deuterium (Dg)
Fuelling

HTQ, CTy, ...
He, N2, CO, COy, ...
Isotope
Pumping and
Tz, Dy, Hz, DT, HT, HD E:LHE“ Separation
Processing

< 2 kg tritium per year '
burned in ITER heilha £0, Cour

35



Funding for ITER

US, FUND l

KO, FUND

Storage and Delivery

External Supplies

KO, FUND

EU, FUND

1

Tritium Depot

Isotope Separation

MBA 2

l EU, FUND

US, FUND

7

Water Detritiation

Tokamak Exhaust

]

JA, FUND

Processing

FUND

Atmosphere and
Vent Detritiation

\ 4

Analytical System

e

orcas  (Herosen
EU, FUND Release Release
Leak Detection

Tritium Plant Building :

CN, FUND CN,FUND
Disruption Mitigation : iz Fuelling i
System 4= Butfing © Gas Distribution
y CN, FUND US,FUND
»| ClowDischarge Pellet Injection
Cleaning
CN, FUND EU, JA, IN
Torus < Eusion Lowor Neutral Beam Injection [« :
i Shutdown System 8
US, FUND EU,FUND
Service Vacuum Neutral Beam Cryo
Systems Pumps
cryostat -------------------------------
EU,FUND Y EU, FUND us l 2 FUND
Cryostat Cryo Pumps Torus Cryo Pumps > Roughing Pumps
A
FUND

Automated Control System, Safety System, Interlock System
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Human safety

Design for profit

Time



Ch 12. Summary and Discussion

»Energy Evolution : Winner DNA!
» Conditions for Winner DNA?
»DNA of Survival Energy: if yes, What?
- What is Clean & Sustainable Energy DNA?
- Human (Citizen) Survival?
- Near Future: Renewable Generation System?
- Far Future: Nuclear Fusion Generation System?
» For Pulling up Flexibility?
» Resilience of Power System?
»Human Survival without Electrical Energy?
» Elements for Resilient Power System?
»What is Making Money(Business Model) in future?
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1. Introduction

* This paper proposes a fuzzy linear programming based solution approach for the long-term
generation mix with multi-stages (years) considering air pollution constraints on CO, emissions,
under uncertain circumstances as like as ambiguities of budget and reliability criterion level.

* The effectiveness of the proposed approach is demonstrated by applying it to solve the multi-
years best generation mix problem on the Korea power system which contains nuclear, coal,
LNG, oil and pumped-storage hydro plants.

* This paper approaches to flexible generation mix problem for 2030 year in Korea eventually,
which is called vision 2030. The proposed approach may give more flexible solution rather than
too robust plan.
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2. The Concept of Flexible Planning

Flexibility?

“Although not necessarily
gives the optimum solution for
the basic forecasted conditions,
yet can keep the reasonable
scheduling solution from being
significantly worsened by any
assumed changes in the
surrounding situations” [8,9].

AN

Cost

-« Robust Planning

Impact |

(Robust solution)

<«— Flexible Planning
(Flexible solution)

«— Non Flexible Planning
(Optimal solution)

AN

Impact Il
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The useful methods for flexible generators mix problem and flexible scheduling problem of

generators maintenance using fuzzy LP, DP, IP and search method have been developed by the
authors [3-23].

It is expected that more flexible solution can be obtained with the proposed methods because the
fuzzy set theory can reflect the subjective decision of decision-maker.

This paper uses fuzzy set theory in order to get a flexible long-term generation mix solution in
Korea power system considering CO2 emission constraint.



3. The LP Formulation of Best Generation Mix

Nuclear @
Coal @

» Load L (Lpn)

P-G (~v > Storage

T Efficiency <

A system model for the proposed method



3.2 Objective functions

N NG

n=1 i=1

: discount rate
. steo size years of study years
. construction cost of the

I-unit in n year

: marginal fuel cost of the

I-unit in n year [won/MWh]

. annual expenses rate
. construction capacity of the

I-unit in n year [MW]

N NG
Minimize Z = > » K d,aAx, + > > K fivi,
n=1 i=1
— F (A Xin ) yin)
where, r
i : unit type T,
N : number of total consideration year di,
NG : number of unit type
K. =(L+e,)/@+r)"" Fin
K fin :((1+efi)/(1+ r)" ' o
e, . apparent escalation rate of Alx
construction materials of i-unit "

e, . apparent escalation rate of y

fuel of iI-unit

. generation capacity of the

I-unit in n year [MWh]
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3.3 Constraints

1) Installed capacity constraint considering supply reserve rate reliability

NG
> (X +A%,)+HYD, =L, (1+R) n=1~N
=1

where,

Lo,: peak load at n year

R, supply reserve rate in n year. [p.u]

HYD,: capacity of hydro generator in n year, the HYD,, is given in this study.

2) Energy constraint of demand

NG
Z y. =(Ly, + Lg,)x8760/2+V, —HYD,x8760xCF, n=1~N
=1

where,

L, base load at n year

V.. the added demand energy is caused by pumped-storage generator
CF,,: average capacity factor of hydro generator
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3) Production energy constraint of generation system

Vo, < (X, +AX )x8760xCF,. 1=1~NG, n=1~N
where, CF;: average capacity factor of the i-unit
4) Capacity constraint in initial year
Xo =EX; i=1~NG
where, EX;: capacity of the i- existing unit

5) Constraint of mutual relationship between existing generator
and new generator capacity (state equation)

Xin+1:Xin +AXin+1 |:1~NG, n:1~N
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6) Energy constraint of LNG thermal plant
ySnZLEPmin n/é:B n:1~N

where, LEP : LNG thermal generator production energy for LNG minimum due to
consumption in n year

&, the rate of fuel consumption of LNG  [Ton/MWh]

min n

7) Constraints of reservoir capacity of pumped-storage generator
y5n — 77g ><\/n
where, n,: efficiency of pumped-storage generator

8) No load following power constraints of nuclear power plant

(Xln_XSn)SLBn n=1~N
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9) Upper-lower constraints of new unit capacity

AX. <AX . i=1~NG, n=1~N

10) CO, air pollution constraint

max n

NG
> CO2, &y, <CO2
=1

where,

CO2,, : CO, density of the i- unit in n year [ppm/Ton]

&; - fuel consumption rate of the i- unit [Ton/MWh]

CO2,., , - maximum quantity of CO, permitted in n year [ppm/year]



11) SO air pollution constraint
NG
Z S(')Xinfi yin S SOX max n
i=1

where, SOX;, : SO, density of the i- unit in n year [ppm/Ton]
SOX . - Maximum quantity of SO, permitted in n year [ppm/year]

12) NO, air pollution constraint
NG
Z I\oninéi yin < |\onmax n
=1

where, NOX; , : NOy density of the i- unit in n year [ppm/Ton]
NOX, .. - maximum quantity of NO,, permitted in n year [ppm/year]
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4.1 The Optimal Decision by Fuzzy Set Theory

The fuzzy decision D

q P
D:(_ﬂGijﬂ(_ﬂCJ—j
=1 j=1

Membership function resulting from fuzzy goals and constraints

1o (x) = min[min Hg;, min ,uCJ}
J=1~p

i=1~q

The fuzzy mathematical programming problem consists of finding the maximum
of the fuzzy decision D

/UD(X*): maX/UD(X)
o (X0 X+ X0 ) = MaX g (X, X0+, Xy )

1 N
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To maximize the satisfaction level, A of the decision maker subject to fuzzy
construction cost/budget

A5 = max luD(x) = MaX {min |:luG(x)’ luC(x) :| }
= Hojx)

The concept of fuzzy optimal decision making

A

1.0

He M

Al-———————-

0.0




4.2 The Fuzzy LP Formulation for Flexible Generation Mix

Membership Function of Fuzzy Cost Level

LA Z§ZO

AL F(x)=Z
Z,+AZ,

hl

F(AX, , Y. )+ AZA<SZ,+AZ,

56
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Membership Function of Fuzzy Reliability Level

A 4 Rz R,

R(x)
RO-ARO RO ]

NG
([Z (X, +Ax_ )+ HYD, j —L,, j / L, —AR,A =R, - AR,
=1
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Objective function

Maximize L*

RO-ARO X*

v



Flexible best generation mix problem by using fuzzy set theory

Objective functions: Maximize 4

Constraints : Subject to F(Axy,, vy ) + AZy 2= Zy+ AZ,
NG

{('—El (-‘fm-f +AY?’H )+HYDH)'LPM)’,LPH -4 RD)*- = RD -A RD

NG

> v = (Lpy + L, ) x 8760/2 + V,, - HYD,, x 8760 x CFg
1=1

Vin = ’./Xr'n-f +A\'m J X 8760 x CFr
Xip = EXI

Xip = _l(m_;+ﬂ‘(m

Vin = LEijJm /03

Vsn=1e X Vn

(Xin- Xspn ) < Lgn

Axiy = AXpaxin

NG

> &y © COoppaxa

=1

NG

E] S OXf?i f-_z Vn < SOXMAXH

=

NG

E NOxyi, f-:i' Yn = NOXyaxa

=1



5. Case Studies

» Maximum load, minimum load, and hydro plant at standard years

Years = Peak load L, [MW] | Baseload Ly [MW] = Hydro [MW] | LEP (103Ton)
2006 58,990 35,394 1,800 --

2011 65,940 39,564 2,000 4,500
2016 70,050 42,030 2,200 5,500
2021 74,000 44,400 2,400 6,500
2026 77,000 46,200 2,600 7,500
2030 80,000 48,000 2,600 7,500




» The characteristics and economic data summary

Gen. | Initial capacity | Fixed charge (d;) Agp of fixed Marginal fuel cost | A, of fuel cost
Type [MW] [10°won/kW] | charge (ec;) [%0] (f;) [Won/kwW] (ef;)[%0]
Nucl. 17,716 144.4 3.5 4 1
Coal 18,465 79.7 3.4 17 1
LNG 17,437 61.4 3.3 67 1
Oil 4,686 153.2 3.3 87 4
P-G 3,300 63.4 3.5 0 0
cﬁ?tnruaile Capacity Fuel consumption rate ( &) Density CO,, SOy, NOy

%] factor [%0] [Ton/MWh] [ppm/Ton]

19 90 --

17 90 0.2300 700 450 500

17 60 0.1100 450 200 300

17 55 0.2000 600 200 100

13 30 --




» Maximum and minimum of capacity per a stage year

of new generators ([MW])

Gen. Type AX AX i
Nuclear 5,000 0
Coal 5,000 0
LNG 5,000 0
Oil 500 0
P-G 1,000 0

» Maximum permissible limitation of air pollution

of air pollution emission

Air pollution 2011 2016 2021 2026 2030
Cco, 40 40 40 40 40
SO, 40 40 40 40 40
NO, 40 40 40 40 40

where, CO, : 103[Ton/year], SOy, NO, : 10°[Ton/year]
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Results of Flexible BGM

> Flexible generation mix for APC reinforcement mix [%0]

Z,=16.4 Trillion Won

Gen. Proposed method - APC reinforcement mix (Case F1)

type 2006 2011 2016 2021 2026 2030
Nucl 27.94 28.71 32.47 35.62 35.16 33.91
Coal 29.12 29.65 27.53 25.71 25.38 24.48
LNG 27.50 27.75 25.73 24.03 23.71 25.37
Oil 7.39 5.92 5.49 5.13 5.06 4.88
P-G 5.20 5.43 6.21 6.89 7.88 8.65
Hyd 28.4 2.53 2.58 2.63 2.81 2.71
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Best generation mix by proposed method with CO, air
pollution constraint (case F1): Total Capacity

Generation capacity

90
80
70
60
50
40
30
20

10

,000
,000
,000
,000
,000
,000
,000
,000
,000

2006

2011 2016 2021 2026
[Year]

2030

O Nucl B Coal OLNG OOil mP-G OHyd
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Best generation mix by proposed method with CO, air

pollution constraint (case F1): Percent Mix

[%]

100%
90%

80%

70%

60%
50%
40%
30%
20%
10%

0%
2006

2011 2016 2021
[Year]

2026

ONucl BCoal BLNG OOil mP-G OHyd

2030
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» Comparison of Conventional and Proposed BGM

Construction Operation SL
Total Cost : :
Cost Cost [Billion Won] (Satisfaction
[Billion Won] [Billion Won] Level)
Conventional | 15 1 11,23899 | 15,714.00 '
(Optimal)
Proposed 4,498.82 1201850 | 16,517.32 0.93
(Flexible)
Difference 813.23

Robust ?




» Sensitivity analysis I: SL (Satisfaction Level) according to Z,

Z, SL
Cases [103 Billion | (Satisfaction
Won] Level)
=0 16.5 0.99
Fuzzy =1 16.4 0.93
considering —

APC =2 16.3 0.87

-3 16.2 0.80
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The relationship between Z, and SL (Satisfaction Level)

[103 Billion Won]

Z0O
166

165
164
163
162
161

16

Fuzzy considering APC

08

087 093 099
A

Satisfaction Cost: 150 Billion Won / 0.1SL(Satisfaction Level)




»>Sensitivity Analysis Il: Cost variation according to
changing of the CO, gas air pollution constraints.

[Billion Won]
Permissible
maximum : .
For CO, Constr(l:Jctlon Operating Total Increased Cost
. ost Cost Cost
constraint
x 108 [Ton/yr]

Case 0 - 4,475.10 11,238.99 15,714.09
Case 1l 40 4,498.82 12,018.50 16,517.32 803.28
Case 2 35 4,531.21 12,468.79 17,000.00 483.68
Case 3 30 4,563.62 12,919.07 17,482.69 482.69
Case 4 25 4,596.02 13,369.35 17,965.37 472.68
Case 5 20 4,638.19 13,826.55 18,464.74 499.37
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Construction, fuel and total costs variation according

to gas emission constraints.

20000

18000 — l‘la—

16000 F——F=—
14000 ——"
12000 -
10000
8000
6000
4000 > —@ ® . < *— _— 4

2000

— 40 35 30 25 20

—e&— Construction —8— Operating —&— Total Cost
Cost Cost

CO, constraint cost: 10° Won / [CO, Ton/yr]
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6. Conclusions

» The proposed Flexible Generation Mix in 2030 year

Satisfaction | Nuclear Coal LNG Oil P-G Hydro

0.93 33.91 24.48 25.37 4.88 8.65 2.71

» The Total cost is 16,517 billion won until 2030 year for Korea power system
(Note : 970 won/USS$)

» Air pollution Emission Cost

«Considering air pollution constraints (Cost) —Not considering air pollution constraints (Cost)

*The cost for air pollution constraints is 803 billion won

Specially, CO, constraint cost is obtained as 10> Won / [CO, Ton/yr]

> This paper describes that mutually exclusive objective function on cost minimization and

reliability maximization can be easily solved with Fuzzy linear programming
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ectricity utilization is environmentally benign and as a form of energy carrier ele
ctricity is clean and safe. It causes no pollution or environmental emissions at the
point of end user.

Carbon dioxide (CO,), which is the main gas suspected of causing global war
ming (greenhouse effect), is far more difficult and expensive to control.

Increasing prospects ratification of the Kyoto Protocol, liberalization and privatizat
ion of the electricity supply industry is becoming a global trend.

The paper proposes a fuzzy dynamic programming based approach for multi-st
ages (years) the long-term generation mix with considering emission constraints
under the uncertain circumstances.

Essentially the theory consists of the imposition of the framework of a fuzzy decisi
on on the dynamic programming concept.

The method can accommodate an arbitrary shape of membership functions and t
he operation of the pumped-storage hydro plants. Economics, reliability, air polluti
on and load uncertainties are evaluated from the membership functions given at
all states.
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q p
*D = (N Gi)N (N Cj
i=1 =1

* MD(X) = min [mln Ugis mm Hc; ]
i=1~p JF1=q

* up(X*) = max pp(X)

* U (X% X%, X)) = max pp (X, X, XN)
X1 Xy
* Up (X%, X%, Xy )mmax [max {min(pp(X,), Heo(Xo),- oo enas (Xn-)s BEn (XD HT X0 Xy Xg
= max[min{pp(X;™),lea(X2), - Men-1 (Xn-1)s Men(Xn)) 3
* up (%4, X*, Xy ) =max [min {pp (X *, X0, X0 ), Mg (X1 Ben (Xn)
X Xy
* up (Xg*, XM Emax[min{ up (X, >, Xq 1 ™), e (X0) 3

X1 X,

(1)

(2)

3)

(4)

()

(6)

(7)
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POOE ¢

Nuclear

Coal

LNG

Oil

Hydro

P-G

Problem statement

The annual loads are given.
The number of generator is not that of units but that of types.
Nuclear power plants are able to perform load following.

hydro generator construction is separately planned

_______» Load (CD)

TITITT

> Storage

Efficiency

a

Fig 1. Model for the propose method
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€ Objective Functions
(1) The economic criterion ( C)
- N NG N NG
Mlnlmlze Zl = Zz I‘<cindinCZiAXin —I_ZZ I‘<fin fin yin - C(Axm ! yin) (8)

n=1 i=1 n=1 i=1

/£ unit type number (1 for nuclear, 2 for coal, 3 for LNG, 4 for oil, and 5 for
pumped-storage

generators are specified in this paper)

N number of total study stage years

NG: number of unit types

Kein= (T+ex)/(1+n)" AT

Kin= (1+en/(1+n)"A7

€. apparent escalation rate of construction materials of type-/ unit
er. apparent escalation rate of fuel of type-/ unit

r. discount rate
AT: step size years of study years

din. construction cost of type-/ unit n years

fn marginal fuel cost of type-i unit nyears [$/MWh]

a; annual expenses rate of type-/ unit
Axir. new construction capacity of type-/unit in n years [MW]
Vin. generated energy from type-/ unit in n years [MWh]

C: Total cost function



Where,

Z,, : aspiration level of decision maker for the total cost

(2) Reliability criterion (R)

maximizeZ »» = NGxin—Ln [ Lon n=1~N

= R(Xin)
Where,
R : Supply reserve rate

function
(3) Air pollution criterion ( A)

maximize Zs. = _NZG:COz,aym n=1~N

= A(Yn) (12)
vhere,

CO,,, : CO, density of type-i unit [ppm/ton]
pi : fuel consumption rate of the type-i unit
[Ton/MWh]

A : Air pollution function

ZZn Z ZOZn (1 1)

Where,

Z,,: aspiration level of decision
maker for supply reserve rate in n
year

Where,

Z,,: aspiration level of
decision maker for air
pollution CO, emission
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& Constraints

1)  Power supply constraint

NG
inn > Lpn(l—l— Resn) nNn=0~ N
i1=1

(14)
where,
R, supply reserve rate criterion in n. [p.u]
2)  Constraint for peak load uncertainty
15

where,
Lraspn - fOrecasted aspiration level of decision maker for forecasting load in year n

3) Relation constraints between new plants and existing plants

Xin+1:Xin+AXin |:1~NG, n:1~N

(16)
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4)  Unit generation limit constraints

Xminin < Xin < Xmaxin (17)

5) SO, and NO, emissions constraints

(18)

(19)

where,

SOy , NOy; : SOy and NO, emission densities respectively of type-i unit [ppm/ton]
SOy maxnt NOxmaxn - Maximum permissible amount of Sox and NO,, emissions
in nyear [Ton]
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€ Membership functions

(1) The membership function for economic criterion ( C)

1
pe (X(t=1),u(t)) = {e

:AC(e) <0
WeACK-DU®) - AC(0) >0

where,

MC(-) : membership function for economic fuzzy set
ACE) = (FEX()-Cagp®)/Casolt)

C,sp(t) : aspiration level for cost at t-stage/year

WC : weighting factor of the economic membership function.

(2) Membership function for reliability criterion

1
Hr(X(E~1),u(®)) ={e

:AR(¢) >0
WaAR((E-DU(D) : AR(e) < O

where,

Ur(") : membership function of reliability (supply reserve rate) fuzzy set
AR()= (ROX(D)-Rysp®)/Rysplt)

Rasp(t) : aspiration level for reliability (supply reserve rate) at t-stage/year

Wy : weighting factor of reliability membership function .

(20)

(27)
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(3) Membership

:AA(e) <0
pa(X(t—1),u(t)) = aWAAA(X(t-D)u(t)) . OB
where

UA() : membership function for CO, air pollution fuzzy set

AA() = (AX(1)-Assp(0)/Assp ()

Aasp(t) : aspiration level for air pollution at t-stage/year

W,: weighting factor of air pollution membership function .
(4) Membership function for the forecasted peak load

W (AL(®)/ 20 (N2
L (xX(t=2),u(t)) = Wi (AL(e) /120-+ p.U )

where,
u () on
ALC) = (LyXO)~Lptasp )/ Lotasp(®

Lpfasp(t) : aspiration level for forecasted peak load at t-stage
Opu(t) = 0(t)/Lpsorecasted(t)

o(t) : standard deviation of L, (t)

W.: weighting factor of the membership function of the forecasted peak
load

function for the air pollution criterion ( considering CO, only )

(22)

(23)
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¢ The proposed fuzzy dynamic programming based solution procedure

D=C(RNA[L (24)

where,
C,RA & L are economics, reliability, air pollution and
forecasted load fuzzy sets

pp (X(1)) = max[min{zc (X(t =1),u(t)), A (X(t=1),u(t)), s (X(t =1),u(t)), 1 (X(t=1),u(t))}]

Ui (£) < U(t) < Uppy (1) (25)

where, x(t)=x(t-1)+u(t)
uD(x(0)) = 1.0
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Y

creating candidate plans being feasible solutions

evaluating UC,uA,LUR,uL

searching optimal solution

determining uD(x(t))

creating candidate plans being feasible solutions

1

Fig 2. Procedure for analyzing the generation mix problem
using fuzzy dynamic programming
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Table 1. Maximum load, minimum load, and hydro plant at standard years

Year | Peakload L, [MW] | Base load Ly [MW] | Hydro [MW] LEP (10%Ton)

2006 48,108 30,340 1,800 --

2011 57,340 34,200 2,000 4,500

2016 69,500 42,500 2,200 5,500

2021 78,200 47,500 2,400 6,500

2026 87,000 53,500 2,600 7,500

Table 2. The characteristics of economic input date
Gen. type Ir::i;:oa;gi/f;r Fixed charge AR, of fixed Marginal fuel f':(\eEch?;t c't;gtn ;Jai:e
[MW] [10°won/kW] charge [%] cost [Won/kWh] [%] [9%]

Nucl 16,715 145.0 2 6.8 1 19
Coal 17,465 100.0 1 13.8 1 17
LNG 14,313 85.0 1 21.5 1 17
Oil 4,308 75.0 1 120.0 4 17
P-G 2,000 45.0 1 0.0 0 13

89



Table 3. The capacity factors and the gases

emission data of plants

Capacity Fuel consumption Density (o)
Gen. factor rate (p) [ppm/Ton]
Type [%] [Ton/MWh] CO,, SOy, NO,
Nucl 80 --
Coal 70 0.4030 700 450 500
LNG 65 0.0500 450 200 300
Oil 55 0.0234 600 200 100
P-G 30 --

Table 4. Yearly total generating capacities [MW]

Year Generation Capacity [MW]
2006 56,601

2011 67,800

2016 88,500

2021 93,000

2026 105,000




Table 5. Generation mix and capacity in the initial year (2006)

Gen. type Generation Mix [%] Capacity [MW]
Nucl 29.5 16,715
Coal 30.9 17,465
LNG 25.3 14,313

Qil 7.6 4,308
P-G 3.5 2,000
Hyd 3.2 1,000
Total 100 56,601

Table 6. Maximum permissible limitation/criterion of the SO, and NO, emission constraints (103[Ton

Gases 2011 2016 2021 2026

SO, 40 40 40 40

NO, 40 40 40 40




Table 7. Aspiration level of total cost, reliability and CO, in years/stage

Aspiration 2011 2016 2021 2026
Cost (Z,,)
[10%2won] 65 120 155 182
COZ (ZO3n)
[105Ton/yr] 125 140 155 170
Reliability (Z,,)
[%] 10 10 10 10

Table 8. Weighting factors of membership function

Weighting factors of membership function

Cost 10.0
Reliability 15.0
Load 10.0

Co, 5.0




€ Membership functions for fuzzy sets of cost and reliability

1 L
0.9 0.9
o.8 - 0.8 [
0.7 - 0.7
0.6 - 0.6 [
05 - 0.5
0.4 L 0.4 -
03 L 0.3
— 0.2 -
o 1 | o.1
o
@) —2 —1 (0] 1 2
-2 -1 (o) A;I: : ]2 A R1 [p.ul
.U
(@)  Pattern of membership functions of (b) Pattern of membership function of
cost (C) and CO, emission (A) reliability (R)

Fig 3. Membership functions for fuzzy sets of cost and
reliability
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€ Results and discussion

(1) Case CO : crisp and not considering emissions constraints using crisp
(2) Case FO : fuzzy but not considering emissions constraints
(3) Case F1 : the fuzzy considering emissions constraints

(4) Case F2 : the fuzzy case considering CO, emission constraint with -10% deceased CO,
aspiration level

Table 7. Best generation mix for the conventional crisp method (not consid
ering CO,) [%]

Crisp Conventional method (Case CO0)
Gen. type (minimize total cost)

2011 2016 2021 2026
Nucl 28.5 23.5 23.5 22.0
Coal 39.4 48.5 48.5 47.0
LNG 14.5 17.0 18.5 19.0
Qil 10.4 3.0 2.3 2.0
P-G 3.2 4.7 4.5 7.8
Hyd 4.0 3.3 2.7 2.2




€ Results and discussion

Table 8. Best generation mix for the conventional fuzzy method (not consid
ering CO,) [%]

Fuzzy Conventional method (Case FO0)
Gen. type ( Not considering CO, emission constraint)

2011 2016 2021 2026
Nucl 23.5 23.5 23.5 46.5
Coal 44.4 48.5 48.5 21.5
LNG 14.5 17.0 18.5 19.0
Oil 10.4 3.0 2.3 2.0
P-G 3.2 4.7 4.5 8.8
Hyd 4.0 3.3 2.7 2.2
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€ Results and discussion

Table 9. Best generation mix for the proposed fuzzy method (con
sidering CO,) [%]

Fuzzy Proposed method (Case F1)
Gen. type (CO, reinforcement mix)

2011 2016 2021 2026
Nucl 46.5 48.5 48.5 48.5
Coal 17.4 23.5 23.5 23.5
LNG 14.5 17.0 18.5 19.0
Qil 10.4 3.0 2.3 2.0
P-G 7.2 4.7 4.5 4.8
Hyd 4.0 3.3 2.7 2.2
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€ Results and discussion

Table 10 Best generation mix for the other proposed
fuzzy method
(considering CO, with -10% deceased CO,

acniratinn level) [9%]
aspHationtevel){+o4

‘ Fuzzy Proposed method (Case F2)
(CO, 10% more reinforcement mix)
Gen. type

2011 2016 2021 2026
Nucl 46.5 48.5 48.5 48.5
Coal 17.4 23.5 23.5 23.5
LNG 14.5 17.0 18.5 19.0
Oil 10.4 3.0 2.3 2.0
P-G 7.2 4.7 4.5 4.8
Hyd 4.0 3.3 2.7 2.2




€ Results and discussion

Table 11. Satisfaction levels for

cases
Constraints Satisfaction Level
Case CO Crisp and Minimize cost and not considering CO,
Case FO Fuzzy and not considering CO, 1.0000
Case F1 Fuzzy and considering CO, emission constraint 0.8984
Case F2 Fuzzy and -10% Aasp 0.5093
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v New approach for the long-term generation mix with multi-criteria considering
air pollution constraints, which are not only SO, and NO, but also CO, emission
limitations, under the uncertain circumstances is proposed using a Fuzzy
Dynamic programming.

v" The effectiveness of the proposed approach is demonstrated by using it to determi
ne the best generation mix problem of the KEPCO-system, which contains nuclea
r, coal, LNG, oil and pumped-storage hydro plant in multi-years.

v" Aresult of the CO, emissions constraint is the recommendation of nuclear or LN
G power plant construction shown available. This in turn increases the total cost o
f the BGM.

v" The proposed approach can be generalized to handle other emissions constraints s
uch as those on SO,  and NO,.

v" This approach can accommodate the operation of pumped-storage generation whi
ch has a relationship with operation of nuclear power plant with some strict for lo
ad following.
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1)
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R

f

£ ot==2 Ml 2 &= A (Installed capacity constraint)
G

N
> (X +AXn) > Ly L+ R,)—HYD, n=1~N
=1

nH 2O ST O0H[FHT|E [p.u]

n-

HYD,: nH 9| =4 7| S [MW]

2)

=2 0l 4 XI Ml 25 2= 21 ( Energy constraint of demand)
NG
> Yin > (LF +L5)=8760/2+V, —HYD, x8760xCF,, n=1~N
=
LP . n @ Z O XL HMW]
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3)

4)

5)

6)

MY AH|l0lE= M2 A (Production energy constraint of generation system)
=1~ NG, n=1~N

—

yin < (Xin + AXin) X 8760 X CFI

o CR:i M2 H B 2H[0|E=

=J|Eue A

— 1L =

Xi1=EX,

CHEX::

HAAZ2Z AT AEH M2 XA (Constraint of mutual relationship between existing
generator and new generator capacity (state equation)

Xin+1:Xin+AXin+1 |=1~NG, n:1~N

LNGat=E &2 M

y3n =

LEP,

[0

|

IN

O Ol Xl Ml 24 (Energy constraint of LNG thermal plant)

1=1~N

Hl
o

ox
0F
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d
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U
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HI = 2k M| 2F & 24 (Capacity constraint in initial year)

=1~ NG
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Table 1. Maximum load, minimum load, and hydro plant at standard years

Year | Peak load LP [MW] | Base load LB [MW] | Hydro [MW] LEP (103Ton)
2006 48,108 30,340 1,800 --
2011 57,340 34,200 2,000 4500
2016 69,500 42,500 2,200 5500
2021 78,200 47,500 2,400 6500
2026 87,000 53,500 2,600 7500
Table 2. Maximum load, minimum load, and hydro plant at standard years
Gen. (1) (2) (3) 4) (5) (6) (7) (8) Density [ppm/Ton]
Co, SO, NO,
Nucl. | 16,715 | 1450 | 2 6.8 1 19 80 --
Coal | 17,465 | 1000 | 1 | 138 | 1 17 70 0.4030 700 450 500
LNG | 14,313 | 85.0 | 1 | 215 | 1 17 65 0.0500 450 200 300
Oil | 4308 | 750 | 1 |1200| 4 | 17 55 0.0234 600 200 100
P-G | 2,000 | 45.0 | 1 0.0 0 | 13 30 --

{(2) Initial capacity [MW]; (2) Fixed charge [10°won/kW]; (3) AER of fixed charge [%];

(4) Marginal fuel cost [Won/kW7]; (5) Agg of fuel cost [%]; (6) Annual cost rate [%];

(7) Capacity factor [%]; (8) Fuel consumption rate [Ton/MWh]}

TYZLOD MY SATA

111



Table 3. Best generation mix for the conventional and proposed methods.[%]

Gen Conventional method Proposed method (Case 1)
Type (Base Case: Case 0) (APC reinforcement mix)

2006 2011 2016 2021 2026 2011 2016 2021 2026

Nucl 29.5 37.7 31.1 21.6 24.8 37.7 43.6 38.9 34.9

Coal 30.9 26.5 33.1 35.9 38.6 26.5 21.9 24.7 22.2

LNG 25.3 21.7 22.0 22.3 22.2 21.7 20.8 22.3 28.5

QOil 7.6 6.5 6.0 5.9 5.8 6.5 6.0 5.9 5.8
P-G 3.5 4.5 5.0 5.6 6.0 4.5 5.0 5.6 6.0
Hyd 3.2 3.0 2.8 2.7 2.6 3.0 2.8 2.7 2.6

Table 4. Total cost evaluation of best generation mix in the two cases. [Billion Won]

Construction Cost Operation Cost Total Cost

Conventional method 3,463.10 7,751.29 11,214.39

Mix with CO, APC 4,065.65 7,221.03 11,286.68
Remark(Difference) 602.55 -530.26 72.29
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