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Introduction and Overview
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Evolution of NPPs
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○ What is beyond Gen-IV?

SMR

????



Small Modular Reactors
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Loop-type PWR Integral SMR (SMART)

○ Power < 300 MWe



Small Modular Reactors
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○ Features and advantages of SMRs 
─ Extremely low probability of severe accidents
─ Low capital costs and shorter payback time 
─ Possibly distributed source
─ Multiple applications (desalination and district heating etc)
─ Possible replacement of old fossil plants

SMR market in 2035 [National Nuclear Laboratory, SMR Feasibility Study, 2014]



Autonomous SMR?
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○ AI with big-data
- Expected delivery by Amazon!

○ Industry 4.0
- Unmanned factory with IoT
- Super-connected world



Artificial Intelligence
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Microsoft AI ‘Cortana’VIKI in “I-Robot” 

JARVIS in “Iron man“

○ Deep-learning with advanced neural network
- Operator-assisting AI & Big-Data technologies in near future

○ Reliable enough and licensable for reactor control?



Why ASMR?
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Concepts of Autonomous Operation
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○ Autonomous control for Gen-IV NPP, R.T. Woods, et at, ORNL
○ Automatic vs Autonomous

Automation
Level

Autonomous 
Operations

Operation by 
Exception

Operation by 
Consent

Operation by 
Delegation

Shared Control

Assisted 
Manual
Control

Direct Manual 
Control



Why Autonomous SMR?

11

○ Improved Safety of System

─ Eliminate potential human errors 

: 50-70% incidents essentially due to human errors

─ Holistically optimized control of the whole system  Near-perfect system control!

─ Optimal response to emergency situations

Contribution to CDF 

(Exelon Nuclear, based on the 
normalized F-V importance measure)

IAEA workshop on Improvement of Safety and Economics of NPP, 2002



Why Autonomous SMR?
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○ Enhanced Operational Reliability & Maintenance

─ AI for each component and system (application of ‘big-data’ technologies)

 Early and correct diagnosis Living and holistic PSA 

─ AI-based optimized maintenance & management



Why Autonomous SMR?
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○ Enhanced Operational Reliability & Maintenance

- Halden reactor project : PEANO

: On-line AI-based reliability analysis of nominal and transient detector signals

○ Improved Economy

─ Higher level of safety Less indirect social costs

─ Effective maintenance & management  optimized system operation

─ Operable in extreme environments



Autonomous or Pseudo-Autonomous Nuclear Reactors
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R&Ds on Space Reactors
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○ Old space reactor remotely controlled

○ LANL Heat Pipe reactor for space probe
- Autonomous & remote control

○ NASA Surface Fission Power (Moon & Mars)



Small Secure Transportable Autonomous Reactor (SSTAR)
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○ Gen-IV concept studied by ANL, LLNL, LANL

○ Lead-cooled fast reactor

○ UN fuel

○ Long life (10~30 years)

○ SCO2 power cycle

○ Autonomous operation
- Relatively easy

with fast reactors

○ Tamper-resistant concepts
- Proliferation-resistance

○ Pre-Conceptual study



R&Ds for Autonomous SMR in CASMRR
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Overview of CASMRR
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○ Launch of CASMRR for SMR Innovation in 2016

○ Participating Universities
- KAIST (7 Profs), UNIST (1 Prof). Ga-Chon Univ. (1 Prof), 
Han-Yang Univ. (1 Prof), Cho-Sun Univ. (1 Prof)

- 11 Professors

○ Director
- Yonghee Kim, KAIST

○ Period
- July 2016 ~ December 2022
: Possibly 2 more years

○ Budget from Korean government

○ Research objective
- Development of concepts and key technologies for autonomous SMR with 
unparalleled passive safety 

- ATOM (Autonomous Transportable On-demand reactor Module)



Design Considerations for ATOM
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○ PWR-type SMR with ATF (Accident-Tolerant Fuel)

Elimination of Fukushima-type Accidents



AI for ATOM System
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○ Autonomous control system with minimal human interruption for a wide range of 
operation

○ GAIA (Genuinely Autonomous Intelligence for ATOM)
- Deep-learning with advanced Neural Network
- ACE (Alternating conditional expectation) & GMDH for system diagnosis
- Training data from high-fidelity multi-physics simulations

: Detailed system modelling with MARS+3D reactor code systems

○ Operation mode-dependent autonomous strategies

Monitoring

Control

DiagnosisEmergency 
Responses

Communication

Operator

P
L
A
N
T

Key Functions of the GAIA System for the ATOM



Autonomous Control for Safety Functions
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○ Autonomous Control Algorithm using the LSTM
 LSTM: An advanced Recurrent Neural Network

Time

Input layer

Hidden layer
: 2 layer
: 60 hidden nodes

Output layer
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Autonomous Control for Safety Functions
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○ Training of LSTM Network
- Compact Nuclear Simulator (CNS)

CNS

Reference plant Westinghouse PWR

Electrical output 930 MWe

RCS Pressure ଶ݉ܿ/݃ܭ160

Loop 3-loop

Hot leg / Cold leg 
Temp 325℃ / 290℃

RCS Average Temp 308℃

S/G Pressure ଶ݉ܿ/݃ܭ64.4

Training Accident Scenarios

Loss of Coolant Accident (LOCA)

PORV Forced Open (LOCA)

LOCA + Fault in SI Valve

Steam Generator Tube Rupture (SGTR)

Main Steam Line Break (MSLB)

Loss of All Feed-water (LOAF)

SGTR+MSLB

Training Data set :  225,538 set (currently)



Autonomous Control for Safety Functions
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○ Validation of LSTM Network: LOCA (Hot-leg, 25cm2)
- Component Level:  Automatic + Manual vs. Autonomous 

Control Action for NPP

Accident occurs at 35 sec

Reactor Trip

Autonomous
control 43 sec

Auto+man
control 52 sec ( +9 sec )

AUX Feed Water 
Pump 2

Autonomous
control 48 sec

Auto+man
control 124 sec ( +76 sec )

Accident occurs at 35 sec



Autonomous Control for Safety Functions
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Comparison of Safety Parameters

Core water level at 1000 sec  

Autonomous 
control 4.89 m

Auto+man
control 3.91 m ( -0.98 m )

○ Validation of LSTM Network: LOCA (Hot-leg, 25cm2)
- Function Level:  Automatic + Manual vs. Autonomous 

S/G1 wide range at 1000 sec  

Autonomous 
control 62.95 %

Auto+man
control 45.13 % ( -17.82 % )



Autonomous Control for Safety Functions
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○ Accident Diagnosis
- Objective: Diagnosing the accident to evaluate the performance of autonomous control
- Method: LSTM + Softmax function

<Architecture of LSTM and Softmax>

Types of accident scenarios Numbers

Loss of Coolant Accident (LOCA) 58

PZR Safety Valve fail 5

Steam Generator Tube Rupture (SGTR) 17

Main Steam Line Break (MSLB) 32

Total 112

Training: 122,609 data sets (currently)

Validation: Cold-Leg LOCA (100cm2)

LSTM



Pre-concepts of ATOM Core
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○ Top-tier requirements
Parameter Value

Power 450 MWth (to be maximized)
Power density 60~80 W/cm3

Fuel UO2/U3Si2

Core Damage Frequency (CDF) < 10-8

Grace Time Indefinite
Cycle length 2~10 years

Fuel Assembly 17X17
Reactivity control No soluble boron for Autonomous Operation

Load follow Near-passive Load-Follow Operation

ㄷ

Vessel

Reflector H=2 m



Soluble-Boron-Free ATOM (SMR) Core
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Parameters Target Value Unit

Thermal power 450 MWt

Active core height 200 cm

Equivalent diameter 201.6 cm

Height-to-diameter ratio 0.993

Power density 25.99 W/gU

Cycle length ~45 month

Fuel loading Single-batch

FA type 17 x 17

Number of FAs 69

Fuel materials UO2

Fuel enrichment (max) 4.95 w/o

Reactivity swing* < 1,000
> 400 pcm

Boron concentration 0 ppm

* ((max keff - 1)/max keff) x 105 [pcm]
Serpent model of the ATOM core

CSBA c
utback



New Burnable Absorbers
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 Burnable absorber-integrated guide Thimble (BigT)

 Centrally-Shielded Burnable Absorber (CSBA) for Gd2O3

BigT-fAHR
(Azimuthally Heterogeneous Ring)

CSBA-loaded Fuel Pellet



CSBA Design: Variant, Ball Radius and Loading Schemes
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E F G H

9 E9 F9 G9

8 E8 F8 G8 H8

7 E7 F7 G7 G8 G9

6 E6 F6 F7 F8 F9

5 E5 E6 E7 E8 E9

Zone A 4.95 w/o U

Zone B 4.95 w/o U

Zone C 4.95 w/o U

Case
CSBA Design (variant and ball radius, r)

Zone A Zone B Zone C

1
1-ball, 

r = 1.690 mm
2-ball, 

r = 1.260 mm
3-ball, 

r = 0.700 mm

2
1-ball, 

r = 1.690 mm
2-ball, 

r = 1.260 mm
2-ball, 

r = 0.820 mm

A Quarter of ATOM core



Neutronic Performance of CSBA-Loaded ATOM core
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Passive Load-following and Frequency Operations
(to enhance Autonomous operations)
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Concept of Passive Load-follow

32

○ No active control of the reactor power during load-follow operations
○ Control only in the feed-water flow rate and the governor value

BOC MOC EOC

CTC, pcm/K -48.11 -51.49 -61.85

FTC, pcm/K -2.36 -2.65 -3.04



Conventional Reactor Control
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ARS - ARS +

SRS

SSA2 SAS2 SAS1 SSA1 ASI Deviation

○ Coolant average T and axial shape index (ASI)

0

Output

1

T2T2

T1 =      2 ºF (Low 
Speed)= 3.53 ºF (High 
Speed)

-T1 T1

T2 = 0.5 ºF (Low Speed)
= 0.5 ºF (High Speed)

Summed Error, ºF 

Deviation in average coolant T



Daily Load Pattern
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– 100-50-100 daily load pattern 

– Three consecutive days of PDLFO (Passive Daily Load-Follow Operation)

– Power ramping-down rate 0.83% Pr per minute

– Power ramping-up rate 0.27% Pr per minute

100% Pr

50% Pr

hrTime,
0 7 8 14 17 24



System Responses in PDLFO – (1)
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– Rector power and power demand matches well 

– Only 0.1 MWt power miss-match for 2 hours
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System Responses in PDLFO – (2)
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• Max. deviation at hot leg ~ 5 K at 100% P

 Bigger pressurizer or design changes

• Max possible deviation at average coolant T in 
standard PWRs ~ 5 F at 100% P.



Frequency Operation in NPPs 
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– Power Demand can never be exactly evaluated in advance.

– There are random variations of demand resulting in frequency fluctuations. 

( usually < 20 mHz) 

Example of the frequency variation on the grid in Europe

Source: Technical and Economic Aspects of Load Following with Nuclear Power Plants,
https://www.oecd-nea.org/ndd/reports/2011/load-following-npp.pdf



Passive Primary Frequency Operation (PPFO) – (1)
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– The primary frequency regulation restores the most feasible operating system conditions 
in the short-term after a disturbance (about 2 to 30 seconds ).

– Typically, a NPP operating in a primary control mode is required to adjust its power 
level within the range of ±2 % Pr within power-ramping speeds up to 0.5% Pr per second



Passive Primary Frequency Operation (PSFO) – (3)
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– Good matching between reactor power and power demand 

– Small variation of coolant temperature
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Passive Primary Frequency Operation (PSFO) – (3)
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– Good matching between reactor power and power demand 

– Small variation of coolant temperature < 0.6 K (well within dead-band)
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Passive Secondary Frequency Operation (PSFO) – (1)
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– It acts over longer timeframes (from several seconds to several minutes) and restores the exa
ct frequency by calculating an average frequency deviation over a period of time. 

– Typically, the grid operator sends a digital signal to the NPP to modify their power level by i
n the interval of ±5%Pr. 

– The requested power-ramping speed in secondary frequency operation is 1% Pr per min up to 
5% Pr per minute.



Passive Secondary Frequency Operation (PSFO) – (3)
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– Good matching between reactor power and power demand 

– Small variation of coolant temperature
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Passive Secondary Frequency Operation (PSFO) – (4)
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• The variation of cold leg T ~ ± 1.5K and less 
than ± 0.2 K variation occurs at the hot leg

• ±0.9K variation of the average coolant temperat
ure is noticed

(Very close to the dead-band)  



Challenges for Autonomous NPPs
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○ Generation of Training Data for AI
- High-fidelity multi-physics simulation is enough?
- How to simulate the unexperienced accidents?
- Seamless training is possible?
- Quantification of uncertainty in measured and simulated data 

○ Licensability
- Reliability for untrained region? 
- License by Test?

○ Cyber security
- More stringent security measures for AI systems

○ Redundant AI systems
- Which is more reliable?

○ How to do self-learning?



Concluding Remarks
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Concluding Remarks
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○ Autonomous operation may significantly improve the safety and 
reliability of NPP  systems.

○ Elimination of soluble boron will improve the safety and economy of 
SMR and also it will enhance the autonomous operation of SMRs.

○ A passive frequency control is expected to be highly feasible due to the 
noticeably lower power density in the SMR designs. 

○ Combination of AI and big-data technologies will substantially improve 
the competitiveness of the SMRs.



Thank you!
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