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Advanced Radioactive Waste Treatment using Nanostructured Hybrid Composites
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Professor Gary Bond (UCLan) (GB) (Project
P-l)

Professor Gary Bond is Head of the Cenire for Materials
Science and has been a visiting professor at the CNRS
(Centre National de la Recherche Scientifique) Laboratory
for Catalysis and Spectroscopy in Caen (2007). His
research is focused on interfacial phenomena and he has
substantial experience in the analysis and
characterisation of solid materials. He has particular
expertise in the application of carbon substrates as
adsorbents, supports and catalysts. He has secured over
£2M research funding from industry and government
agencies including the nuclear industry. His current
portfolio of projects includes two projects which are
focused on the decontamination of iradiated graphite. He
has published over 40 refereed publications, contributed
chapters to 3 books and is the co-inventor on one patent.
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Professor Harry Eccles (UCLan) (HE) (Project
Co-l)

Professor Harry Eccles is the Professor in Nuclear
Materials (part-ime). He is a chemist by profession, with
35 years’ research and development experience in the
nuclear industry. He is recognised internationally for his
separation science expertise which includes ion
exchange, solvent extraction and biosorption. In the early
1970s he developed a chelate ion exchange material for
the recovery of uranium from sea water. On joining BNFL
in the mid 1970s he was involved in the development of U
and Pu purification flowsheets for the THORP PUREX
process.

Since joining UCLan he has been developing new
separation processes for reprocessing iradiated fuel and
for treatment of waste liquors. Also developing technigues
for the decontamination of irradiated graphite and
investigating the mobility of fission products within cement
paste and their rate of diffusion from cement paste.

He is the first recipient of the NNL's Life-Time
achievement award.

Professor Laurence Harwood (University of
Reading and his team) (LH) (Project Co-l)

Professor Laurence Harwood is a chemist by profession
and Professor of Organic Chemistry at Reading since
1996, Regional Editor of Synlett since 2001 and Chief
Scienitific Officer of TechnoPep since 2010. He has been
working in the area of reprocessing since 2004 and has
been a member of the PARTNEW, ACCEPT and
SACSESS (current) EU consortia, MBase and PACIFIC
EPSRC consortia, with total research income for nuclear
associated projects exceeding £800K. The CyMedBTP,
BTBP and PTPhen ligands developed at Reading have
become industry standards for selective minor actinide
extraction from high-level waste (HLW). The recent
immobilization of these ligands onto magnetic
nanoparticles has provided a revolutionary process
applicable to soil remediation and also to clean-up of low
level liquid waste and sludges in storage ponds. He has
published more than 140 refereed research publications,
10 patents, 9 review chapters and 4 books.
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Professor Laurence Harwood (University of
Reading and his team) (LH) (Project Co-l)

Professor Laurence Harwood is a chemist by profession
and Professor of Organic Chemistry at Reading since
1996, Regional Editor of Syniett since 2001 and Chief
Scienitific Officer of TechnoPep since 2010. He has been
working in the area of reprocessing since 2004 and has
been a member of the PARTNEW, ACCEPT and
SACSESS (current) EU consortia, MBase and PACIFIC
EPSRC consortia, with total research income for nuclear
associated projects exceeding £800K. The CyMedBTP,
BTBP and PTPhen ligands developed at Reading have
become industry standards for selective minor actinide
extraction from high-level waste (HLW). The recent
immabilization of these ligands onto magnetic
nanoparticies has provided a revolutionary process
applicable to soil remediation and also to clean-up of low
level liquid waste and sludges in storage ponds. He has
published more than 140 refereed research publications,
10 patents, 9 review chapters and 4 books.
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B Prof. Laurence Harwood, University of Reading

Universi_tyof
<~ Reading

CLEANING UP

NUCLEAR WASTE

Read about Professor Laurence
Harwood's revolutionary research

- "R AN
PROFESSOR LAURENCE HARWOOD:
CLEANING UP NUCLEARWASTE

Laurence Harwood, Professor of Organic Chemistry, spent decades as
a pharmaceutical chemist, until a colleague asked him to get involved
in a project with the nuclear industry. He applied the same structure-
activity relationship studies he was using in drug discovery to helping
develop molecules that could be used to clean up nuclear waste, and
his research took on a whole new set of challenges.

CLEANING UP NUCLEAR WASTE

While nuclear energy leaves no carbon footprint to speak of, it does leave a legacy of hazardous waste -
spent nuclear fuel. Most countries just store it with the intention eventually of burying it deep
underground and this is leading to a lot of material worldwide with storage times estimated at 300,000
years. There are, however, ways to clean up and reuse most of that spent fuel.

“If you start with 500 kg of nuclear waste, 480 kg of
that is uranium and 5 kg is plutonium; these can be
separated using current technology, refabricated as
amixed oxide fuel and reused. This leaves only 15 kg
of waste that now only needs to be stored for 10,000
years. But the difference between 300,000 years and
10,000 years is like throwing an egg off a 30 storey

building or a 1 storey building - the result is the
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Activity Lead [ Quarter No Activity Lead | Quarter No
Organisation [1 [2 [3 [4 [5 [6 |7 = [ Organisation 2 (3 (4|5 |67 |8 (910 |11 [12
1 Synthesis and characterization of | KNU/ 1 Identify candidate substrates for | UCLan/
magnetic nanocomposites with Chosun U. NaSHCs and preparative approach | UoReading
Prussian blue 2 First meeting with Korean UCLan/
2 First meeting with UK partners to | KNU/ partners to agree first 6 months UoReading
agree first year work programme Chosun U. work programme
3 Evaluation of hybrid KNU/ 3 Selection of PDRA UCLan/
nanocomposites’ adsorption Chosun U. UoReading
capacity for radioactive wastes 4 Preparation of and UCLan
4 Effects of background species on | KNU/ characterisation of NaSHCs for
adsorption performance Chosun U. various fission products { FPs)
5 Comparative evaluation of lab- KNU/ 5 Preparation of and UoReading
scale process performance by Chosun U. characterisation of NaSHCs for
adsorption operating conditions actinides (A).
6 Establishment of basic operating | KNU/ 6 Measurement of affinities and UCLan
conditions and process design Chosun U. capacities for FPs
7 Performance evaluation of hybrid | KNU/ 7 Measurement of affinities and UoReading
nanostructured composites for field | Chosun U. capacities for A
application 8 Comparison of data from UK UCLan/
8 Development of an optimal KNU/ teams_1J UoReadingt
operating system for field Chosun U. 9 Compilation of final report UCLan/
application UoReading
9 Compilation of final report KNU/ Deliverables/milestones UCLan/
Deliverables/milest EPJ?JSIUH = SRS A
eliverables/milestones !
Chosun U. ¢ ¢ ¢ ¢ * M
nloE ]| i L
DS D7 D7
D8

M1- Agreement of radionuclides to be evaluated.

M2 - Functional magnetic nanoparticles produced

M3 — Process design for radioactive liquid waste treatment using nanostructured
composites produced

M4 - Optimum process system for radioactive liquid waste using functional
nanostructured composites developed

D1 - First international meeting

D2 - First progress report.

D3 - Second international meeting

D4 - Second progress report.

D5 -Third international project meeting

D6 - Final progress report

D7 - Fourth international project meeting.

M1- Short list of candidate materials produced
M2- Agreement of radionuclides to be evaluated.
M3 - PDRAs identified

M4 - First candidate NaSHCs prepared.

M5 - Characterisation of NaSHCs..

M6 - Optimisation of preparative route completed
M7- Confirmation of affinities and capacities data
M8 - Comparison of data from UK partners

M9 - Draft report prepared.

M10 - Discussion on further/continued collaboration
D1 - First international meeeting

D2 - First progress report.

D3 - Second international meeting

D4 - Progress report.

D5 -Third international project meeting

D6 -Third progress report.

D7 - Final progress report

D8 - Fourth international project meeting.
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Adsorbents for radionuclides
(Cs*, Sr?*, Co?* and I)

! !
Continuous flow stirred-tank reactors Continuous fixed-bed columns
(CSERS) (packed-bed)
J ) !
01 Powder type 03 3D aerogel type 02 bead type
T
w
—>
Magnet
) -~
Magnetite recovery process Low denSity Continuous fixed-bed column
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FeCl,
K, [Fe(CN)g]

-+

Average particle size : 5 nn

Magnetite (Fe;0,) nanopérﬂc]e Magnetic PB nanocomposites
Adsorbent Average particle size Surface area Pore size Pore volume
(nm) (m?g) (nm) (cm®[g)
Mag-PB nanocomposite 13.6 32219 2.579 0.119
Average particle size : 5 nm Average particle size : 13.6 nm

18
R 77 (7 magnaftizFe,0, WPs o [ magFs NP5
18 i
]

|

T 3 2, G o]
0 i 2 3 o4 5 6 7 &8 9 1 0 5 10

L.

15 il il kli]
Particle Size {nm) Particke Sizz [ nm)

0
£
Fig. 1-1. PSA and FE-TEM images of magnetic PB nanocomposites. I(n u
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(b) FT-IR spectra

Fig. 1-2. XRD and FT-IR images of magnetite(Fe;0,)
and magnetic PB nanocomposites.
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Fig. 1-3. MPMS analysis of magnetite (Fe;O,) NPs
and magnetic PB nanocomposites.
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= Adsorption kinetics
Table 1-1.
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Rate constants and correlation coefficients of pseudo-first-order and pseudo-second-order kinetic

models at an initial Cs* concentration of 1 mM (initial pH = 7 and 120 rpm).

Temperature Qe.exp First-order kinetics Second-order kinetics
(°0) (mg/g) K 9e r° a Te r?
30 34.59 0.039 35.14 0.989 0.002 36.42 0.999
20 39.71 0.035 37.05 0.980 0.002 38.60 0.991
10 55.12 0.017 49.87 0.959 0.0003 54.41 0.981

- Rate limiting step: chemical interaction between the functional groups of adsorbent and cesium ions

= Adsorption isotherm models

300

2504 =T T

g, (mg/g)

- Freundlich model
-+ Tempkin model

) 10 20 30 40 50
C, (mM)

Fig. 1-4. Nonlinear isotherm models for
removal of cesium ions at 10°C.

Table 1-2. Comparison of Non-linearized

120 rpm)

- Equilibrium distribution of Cs* between the adsorbent and liquid phase

Isotherm Models for the
Adsorption of Cs* onto Magnetic PB Nanocomposites. (initial pH = 7.0,

Isotherm Calculated isotherm X2 APE r
models parameters
10°C
Langmuir Omax = 294.39, K_ = 0.18 4.19 5.71 0.978
Freundlich K = 77.39, n = 2.98 12.58 10.70 0.958
theTempkin A = 5582, b =270 1.03 1.99 0.992

Knu

uuuuuuuuuuuuuuuuuuuuu



1KPEE AL AN o

011 8-& 35A1tHI(2015-2018]

B S SlO|HE|E Lt SehM|2| MEfXY Zi|

jot

7S 8

Cesium ions captured by the cage of the PB lattice structure

T e (R4 3
2500 2500 1 Alna iR B
IREC w=
F———
2000 2000 - research Mm
Magnetic Prussian Blue Nanocomposites for Effective Cesium
Removal from Aqueous Solution
1500 1500 4 Jiseon Jang and Dae Sung Lee®
> > of Envi Engineer Mational University, 80 Dachak-ro, Buk-ga, Daega 41366, Republic of Korea
()]
% B ABSTRACT: Magnetic Prossian blue (PBJ )mlnpn‘ll= were synthesized =T
a Fe 8 By ey O ol S S e oparticles for i . . -
© C CELEy i 134 . z " .
1000 - 1000 A b 3201 w‘; e i “s" adsorption capability. |
N Fe 7. i
0 pa. =" on magnetic PB
en at high soaic competition in the
500 4 K 500 4 ic PB nanocomposite is a cost-
A Cl magnetic PB ite has extensive applicability for the remaval of cesfum from agueous sohstion.
Fe
1. INTRODUCTION
0 T T . > - - A - > 0+ In the carly period of n:;dem crergy we, rhwanpham was
0 1 2 3 4 5 6 7 8 9 10 0
KeV

opes important fissio e
of their high fisio ;-:Id (609m), lang balfde (302 yv), bagh
volatdity, high 2nd high sobubdity.” Therefors

(a) Before Cs* adsorption (b) After C "=z

aquecus radi
coattal o pikiie Basih: muid

Fig. 1-5. SEM-EDX analyses of magnetic PB nanc ; =
(a) before Cs* adsorption and (b) after Cs* ac ===

was correlated with a cubic framework of Recetved: Jamuary 10, 2016
cyanide bridges such that additsenal alat Revised:  Februsry 27, 2016
the imterstitial sites. Small hydrated cations sch as K2, Rb~, Accepted: March 16, 2016

s, and NH,* can penetrate the structure, whereas larger

g ACS Public

= Cesium ions are adsorbed into the crystal cage structuic v 1icwan neaacyanviciiaw
as an ion pair with a cation
Vs

= Cesium ions are exchanged with potassium ions
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° Magnetic Prussian Blue Nanocomposites

FE-TEM images
‘mnlullmn
Fecl,
K, [Fe(CN)q]

Magnetite (FE,O4J nanopartic ‘ I

Average partibi size : 5nm
Mag-PB nanocomposit

® Amino-functionalized MWCNTs

Active site for Cs* uptake

vy

Mag-PB nanocomposit
Average particle size : 13.6nm

GO-PB composites

H, N(LH) H. N:(CH) H, J(CH)
0.5M —si—0—si— _sl,_
H,S0, | | |

-] o —H

KMnO,

Amino-functionalized MWCNTs

Muliilayer carbon nanotubes Oxidized MWCNTs

° PVAQaIginate Encapsulated Prussian Blue-
Graphene Oxide Hydrogel Beads o

K0,

Graphite Graphene oxide sheet GO-PB composites
— g Grapheae exidesheet
"o Phumcomots
— g

mmmmmmmmmmmmm

g HvlE N2l s

® 3D Barium Sulfate-Anchored Reduced

Graphene Oxide Aerogel

Ouidalien
B

Graphite
@ =— H
o] Hydrathermal ‘
| e Self-assembly | . 7

(a) Stable suspension (GO+BaS0,) {b) Hydrogel

l [

e

.‘ b ‘ 'lrll; ;

Lasmn 4 3omi ih

A 11HHI(2015-2018)

d 24

Freeze-drying

(c) Aerogel
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e
-E"'E
. 11:1=ype (FS3m)
Graphite AN (CNY]
i VL
Cst adso‘f'puph% = 3 'c
Modified NaNO, I ﬁ_“ = .-‘-'.,Eﬁu
Hummers | H,SO, T e L7 |
method KMnO, cst lcsH* Hu L1
O | el

FeCly
Ky[Fe(CN)g]

Graphene oxide sheet

-O PB nanocomposites

Fig. 2-3. Schematic diagram of PVA-alginate encapsulated graphene oxide/PB hydrogel beads

Washing

| GO — mm.. PVA |
(Ll ales>

GO —=>I[ = - —
“ﬁ’c@@"ﬂ- QH wo

PVA —> ,qj/"{_%—(,l_
T Semieg ™

GO —>[ 1

PVA-alginate
crosslink

v

with saturated
boric acid

GO-PB hydrogel beads

' GO-PB composites

Polyvinyl alcohol Average size : 2 mm

T
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* Bed height : 5, 10, 20 cm

e Internal diameter : 1.5 cm

* Influent concentration: 1, 3, 5 mM
* Flow rate : 0.83, 1.67, 2.49 ml/min

/

| PB-GO hydrogel beads

,I Effluent

Sample collection Fixed-bed column Feed storage

Fig. 2-4. Schematic diagram of continuous fixed-bed adsorption system.
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1.0
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/ 7 L ' /
@ A / (b) AN, /
& // A ; 084 | Breakthrough and saturagdion tigfe / ;
o8+ Steeper L) / Increase in masggransfe¥zone /°  / /
Faster mass-trangfer flyg 7/ / ye 2 Vs
AR/ , / ,
06 A/ Y 0.6 J/ o
o £ .,:'Dispérsed // o A . 4 4
S "~ /¥ S)éw breakthrough rate © oA yd
N s s 0.4 4 g VA s
044 £, P [0 % - e
n/ P B VA ®  0.83mL/min
i e 1mM ~ ey - v 1.67 mL/min
/ e v 3mM 0.2 // i e ®  2.49 mL/min
02 4 £ ® 5mM : Ce” X P Thomas
: Lol S Thomas A N7 e Yoon-Nelson
307 ol [ Yoon-Nelson L == < -+ - Adams-Bohart
| == zZ% -+ - Adams-Bohart 0.0 o . . . -
= :
0.0 e T T T T 0 3 6 9 12 15
0 3 6 9 12 15 Time (hr)
. Time {hr) . . ors H H
Initial C: 1 mM, Flow rate: 0.83 ml/min, Bed high: 20 cm Initial C: 1 mM, Flow rate: 0.83 ml/min, bead size: 2mm
1.0 1.0 B
(©) (d)
08 0.8 4 1Breakthrough time /
Smaller particle size Y "
a shorter diffusion pathe/ ya
0.6 - 0.6 - 4
) 5
© S
0.4 A 0.4 4
o S5cm / 2mm
v 10cm 3 mm
0.2 ~ ®  20cm 02 1 . 5mm
Thomas 5 Thomas
.......... Yoon-Nelson . w-e-oo-Yoon-Nelson
- Adams-Bohart - Adams-Bohart
0.0 : : : 0.0 : :
0 3 6 9 12 15 18 0 3 6 9 12 15 18
Time (hr) Time (hr)
Initial C: 1 mM, Flow rate: 0.83 ml/min, bead size: 2mm Initial C: 1 mM, Flow rate: 0.83 ml/min, Bed high: 20 cm

Fig. 2-5. The Influence of operational parameters on the cesium adsorption breakthrough curves using PB-GO
hydrogel beads: (a) influent cesium concentrations, (b) flow rate, (c) bed height, and (d) adsorbent size.



011

—

oL 35

5 0tMI(2015-2018)

Table 2-1. Parameters (a) Thomas, (b) Adams-Bohart, and (c) Yoon and Nel
nonlinear regression model.

Conftants lists available at Science Direct
Bioresource Technology

journal homepage: www.elsevier com/locate/bi ortech

Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian
blue-graphene oxide hydrogel beads in a fixed-bed column system

(a) Thomas model (b) Adams-Bohar

No

Jiseon Jang, Dae Sung Lee*

Co F H K Oemax 2 Kag

Dupar o of Enviramnin) Enghusaring Npsnganak Nativnal Ushershy, 50 Dachak sa. Buk g, Daags 4156, Republc of Karea

APE

(mM) (mL/min  (cm)  (L/mg/h)  (mg/g) X (L/mg/h)  (ma/L

HICHLICHTS

RZ

CRAFHICAL ABSTRACT

+ PUA-lginate encapsulaied PU-CO
nydrogel bead were synthesized.

« Afixed bed clumn reacor packed
with PH-GO hydrogel heads was used
for cesum remaval.

+ The effects of the aperating
parameters an the breskthrough
curves were ivestigated

+ TheYoan-Nebon modd save thebast
fit to the experimental data

)
1 0.83

20 0.59 165.10 | 0.08  24.42 0.998 0.14

3 0.83 20 0.43 167.22 | 0.14 31.23 0.997 0.12

5 0.83 20 0.36 169.42 | 0.20  45.50 0.991 0.11

ARTICLE INFO ABSTRACT

Receved 19 May 2015

Reasved in metsed farm 1 June 3006
o 34 June 3018

devailabie caline 29 June 2015

1 0.83 5 0.64 159.15 | 0.06  14.36 0.997 0.10

15.25

Teywoats
Pk algna hydngel beats

Rreaned cotumn
Paussian bioe

1.90 ==

Basalzhrasgh curve

hased an the  analysis

1 0.83 10 0.62 16132 | 0.10  15.76 0.993 0.13 16.21

rtcke Wity ‘A amtinuous fived-bed column study was perfmed wsing PVA-alginate encapslated Prisian bue
Fapheme axide (PB-GO) hydragd beads as 2 navel adsorbent far the remaval of cesum from aqueos
wilutions. The efiects f different operating parameters, such a5 initial eesium conentatian, pH, el
height, flow rate, and head size. were imvestigated. The maximum adsorption capacity of the -G
ydrogel beads was 1645 mgfg at an initial cesium enncentratian of S mM, bed heightaf 20 cm, and flaw
wate of 01463 mlfmin at pH 7. The Thamas, Adams-Bohart. and Yoon- Nelsan madels were applied to the
sperimental data to predict fhe breskthrough curves using nan-linear regressian. Alfiough bath the
Thames and Yoon-Nelian models showed zood
Nebian madel was found ta provide fie best Tepresentatan for ceum adsarptian an the adsorbert,

agreement with i experimental data. e Yoon

& 2016 Elsevier Ltd All rights reserved.

1. Introduction

1 1.67 20 0.65 158.24 | 0.09 21.32 0.996 0.15 1587 279

The effictive and safe management of liguid wastes is a primary
requirement in the nuclear industry. These wastes arie at every
stage of the nuclear fuel cycle and must be treated to ensure com-
pliance with stringent regulatory standards before final dispasal
into the environment. In pamicular, the need Lo sccommodale
wastes arising from the decommissioning of nuclear installations

1 2.49 20 0.71 156.88 | 0.22  25.78 0.995 0.17 1393  1.08

* Cormspanding actior.

2ckr (DS Lee).

ey e st e BrTa 200605 100
0650 52446 2016 Elsevier Lut. ANl rights resanved.

has gradually increased over the past two decades. Among the
main fission products in nuclear waste solutions, "7 Cs and "™Cs
are of special concern due to their long hal -life (30 years), high fis-
sion yield (6.08%), high activity, and high water solubility. These
properties enable the migration of cesum through groend water

Several physico-ehemi
the removal of radicactive cesum from wastew al
vent extraction. chemical precipitation. membrane processes,

cosgulation. electrodialysis. and irechange (Iwanade e 2 S
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4-hydroxyphenol
(OH)2
Pd(PPhs), K,CO4
EtOH N

Ligands Solid-supported materials o

* Bis-Triazine Ligands
» Magnetic nanoparticle

. - g@ « Graphene oxide sheet
3 l([M N\N7 N— N >
oS S A »
In

.. |. »Carbon nanotube |
hmoilizgtion Applicition Influent

* Clays (montmorillonite) Q
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* Cs selective Ligands

Sample collection
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CyMe,-BTBP CyMe,-BTPhen

Br

72\ A\

=N N= / N
N— N - N=
NN NN N— N

4 \_ N N A\

6,6’-bis(5,5,8,8,-tetramethyl-5,6,7,8-tetrahydro-1,2,4- 5-bromo-2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-
benzotriazin-3-yl)-2,2’-bypyridine tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-
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Fig. 3-8. Synthesis of 5-bromo-Ph4-BTPhen ligands
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Fig. 3-9. Removal efficiency of Cs*, Sr?*, and Co?* by 5-bromo-2,9-bis(5,6-diphenyl-1,2,4-triazin-3-yl)-1,10-
phenanthroline ([5-bromo-Ph4-BTPhen] = 5 mg, [Cs+, Sr?*, Co?*], = 1 mg/L, and pH; = 7).
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Fig. 3-10. The distribution coefficient K; values of Cs*, Sr?*, and Co?* in the stock solution including co-
existing ions for 24 h at 25°C ([5-bromo-Ph4-BTPhen] = 5 mg, [Ca%*, Mg?*, K*, Na*], = 1 mg/L, [Cs*, Sr?*,
Co?*]; = 1 mg L, and pH, = 7).
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l 15t South Korea-UK Project Workshop (University of Reading, 2015.9.7~2015.9.11)

South Korea team’s presentation

Prof. Dae Sung Lee
Prof. Sang-June Choi
Prof. Song Soon Song

Dr Avinash Kadam

Miss Jiseon Jang

Advanced Radioactive Waster treatment Using Nanostructured Hybrid Composites
D & D Research Centre in Korea
National Nuclear R & D Programs in the Republic of Korea

Pectin-Stabilized Magnetic Graphene Prussian Blue Nanocomposite for Removal of Cesium
in Water

PB-based Nanocomposites and Hydrogel Beads for Removal of Radioactive Cesium in
Aqueous Solution

UK team’s presentation

Prof. Laurence Harwood

Dr Ashfaq Afsar

Mr James Westwood

The Development of Ligands for Separation of Minor Actinides from Lanthanides for
Nuclear Fuel Reprocessing

Covalent Immobilization of Minor Actinide-Selective Ligands onto Magnetic Nanoparticles

Progress Towards Actinide-Selective Ligands: Electronic Modulation of BTPhens
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B 2" South Korea-UK Project Workshop (BSLH, 2016.4.25~2016.4.29)

South Korea team’s presentation

Prof. Dae Sung Lee Advanced Radioactive Waster treatment Using Nanostructured Hybrid Composites
Prof. Sang-June Choi Decommissioning Technology of Nuclear Facility in South Korea
Mr Hyunkyu Lee Sorption of Cesium ions from Aqueous Solutions by Multi-walled Carbon Nanotubes

Functionalized with Copper Ferrocyanide

Miss Jiseon Jang Graphene Aerogel as a Highly Efficient and Recyclable Adsorbent for Removal of
Radioactive Strontium

UK team’s presentation

Prof. Harry Eccles Decommissioning of Nuclear Facilities - UK's challenges

Prof. Laurence Harwood Covalent Immobilization of Minor Actinide-Selective Ligands

Prof. Gary Bond Immobilization of Radionuclides
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H 3" South Korea-UK Project Workshop (University of Reading, 2017.5.14~2017.5.19)

South Korea team’s presentation

Miss Jiseon Jang Biochar-based Beads and BDTP Ligands for Radionuclide Separation from Simulated
Radioactive Wastewater

Miss Jungweon Choi Copper Ferrocyanide Functionalized Core-Shell Magnetite Silica Composites for the Selective
Removal of Cesium ions from Radioactive Liquid Waste

Mr Sun-il Kim A Study on the Evaluation of the Effects of Soil Decontamination and Sedimentation Agent
using Chemical Equilibrium Code

UK team’s presentation

Dr Alistair Holdsworth Metal Phosphates for the Remediation of Decontamination Liquors: an Integrated Approach
to Thorough Clean-up

Prof. Harry Eccles Consortium Website

Dr Ashfaq Asfar Separating Minor Actinides from Lanthanides: Solution Phase versus Immobilized Ligand -
the Importance of Speciation
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l 4t South Korea-UK Project Workshop (Z5CH, 2018.3.26~2018.3.28)

South Korea team’s presentation

Prof. Dae Sung Lee 5-bromo-2,9-bis(5,6-diphenyl-1,2,4-triazin-3-yl)-1,10-phenanthrolin for the Selective
Removal of Strontium and Cobalt from Aqueous Solution

Dr Jiseon Jang Three-dimensional Barium-sulfate-impregnated Reduced Graphene Oxide Aerogel for
Removal of Strontium from Aqueous Solutions

UK team’s presentation

Dr Mark D Ogden Functionalised Silicates for the Remediation and Immobilization of Radionuclides

Prof. Laurence Harwood Separating Minor Actinides from Lanthanides: Solution Phase versus Immobilized Ligand -
the Importance of Speciation

Prof. Harry Eccles Nano Chemical Factories for Nuclear Waste
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Crown ethers:

Can form complexes with alkali metal cations
Oxygen atoms donate electron density to cation
Cavity size and the number of donor oxygen
atoms determines the cation for which it is
selective.

Poor extraction in the presence of Na*

Calix[4]crowns:

Selectivity still dependent on crown ether size.
Alkali metal cation also interacts with
calix[4]arene 7 system

Highly conformational pre-organised structure
High selectivity towards Cs* over Na*
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Calix[4]crown Conformations

1,3-alternate 1,2-alternate Partial Cone

Cone conformation allows to much steric bulk reducing cation interaction.
Only calix[4]crown structures adopting the 1,3-alternate conformation show high

extraction for Cs* due to the additional interactions from the n-system.
-~
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Calix[4]arene bis-(3-Carboxylbenzocrown-6)
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calixarene COLEt coH

Dibenzo-18-Crown-6
(cavity radius = 1.45+0.15 A) s X
i OHOH e (OQ/
i o

2 el (B S m% . 3
Lt : pNE R
(@ @ @) @ -

12-Crown-4 15-Crown-5 18-Crown-6 21-Crown-7 24-Crown-8

E10,C

Calix-crown compounds possess a cavity that is highly complementary

The ionic radius for strontium and potassium ions are similar, 1.52 A and
for Cs* ions rather than other alkali metal ions

1.38 A,
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H and 3C NMR spectra (500MHz/Liquid) < FT-IR/NIR Spectrophotometer « Mass spectra (m/z)
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Magnetic separation

-
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Basic performance evaluation

pH & temperature
Solvent

Selectivity

(Cs*, Sr2+)

Competing ions (Na*, K*,
Ca2+, Mgz")

Reclamation

Khnu

KYUNGPOOK NATIONAL UNIVERSITY



25 O =
AizZg 9 L2 02| e ZESTIHHI(2018-2019)

o

Fluidized-bed reactor

effluent
Sample collection

ﬁugu

[
(< —
T0
m

W Optimization of radionuclide removal by response surface methodology (RSM) ' ! !

Batch experiment
Basal evaluation

Temperature

pH ‘ + pH & temperature

Competing ions (Na’, _ Scale-up + Particle size

K', Ca’, Mg”") f 3 —' + Flow rate

é:'(‘-:::‘"t? process +  Competing ions & selectivity
Y Reclamation

=

Analysis : Inductively coupled plasma - optical emission i 4
spectrometry/mass spectroscopy (ICP-OES/MS) cs grae

Influent Q | Co™* ]

Ford

paamg ioactive liquid

Iwo-dimensional contour lines and three-dimensional response surface plots for the maximum removal efficiency using
initial radienuclide concentration (X1), temperature (X2), and pH (X3),
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Advanced Waste

Treatment
Using Nano-structured Hybrid
Composites

Maw materisls hold the key to fundameantal advances in many
markat sactors such as enargy and environmantal protaction.
Mano-matarialz andfor materals with a nano-structure offzr unique
propartizs or combinations of propartias, yat their potantial is still
thwarted. Cur proj
that addrass thass 2nges and can function in acid and
alkaline solutions which have high affinitizs for various fi
products and minor actinides. Jur matarials will revolution

ill devalop nano-structurad hybrid matersls

ion

nuclear waste managemeant offering graater treatmeant flaxibility,
minimized secondary wastes and naw disposal 2nd points for
thess wastas.

\ ~_ - \\
[ £20 | ( millon |

. million \ people |

: Professor Dae Sung Lee (KNU) (KOR) (Project  Professor Sang June Choi (KNU) (KOR)
S S Sy P-) {Project Co-l)

http://innovationlab.org.uk/AWT/
J

Professor Jong Soon Song (Chosun
University) (KOR) (Project Ce-l)

% : '\ willbenefit
2 \\ S
o i “H-..____ ____/'
Project Value Simple Fact
Professor Gary Bond (UCLan) (GB) (Project P- Professor Harry Eccles (UCLan) (HE) (Project Professor Laurence Harwood (University of
[} Co-l)
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