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PHM Concept



PHM Concept

Prognostics and health management (PHM) is an engineering process
of failure prevention, diagnosing and prediction of remaining useful

life (RUL) of a system.

Benefits of PHM
Enhanced system availability by extending the maintenance cycles

through condition based maintenance
Reduced failure rate by performing proactive maintenance to forestall

failures

Extension of operational life
Reduction in inspection costs, required number of skilled labor, system

down time and emergency unscheduled maintenance.



PHM Concept

€2 Data driven approach do not need the system models or
specific knowledge to perform PHM. They rely on historical
and current data to perform prognostics. The major challenge
is the availability of historical and empirical data

PHM Approaches

2 Model driven approach uses mathematical equations that
predict the physics governing failure , sometimes called
Physics of Failure (PoF). They require expert knowledge and
this can be a challenge when the system becomes more
complex.

Data driven Fusion Model driven
approach approach approach

“2 Fusion approach is based on advanced features from both
data driven and model driven approaches. This requires
accurate mathematical models and enough historical data.
This approach is meant to be more accurate than the other
models



PHM Concept
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PHM Concept

PHM Overview

Maintenance planning * De-noising

Reconfiguration * Filtering
Plan - e Etc.
etc. Decisions Sensor data

Remaining

Useful Life Processed

data

Signal statistics
Estimated parameters
etc

State estimation
State prediction
RUL prediction

Diagnosis Features

* Fault detection
e Fault isolation
e Fault identification



Needs and Business Case



Business Case and Needs Analysis

Sustainability
® Interest in LTO (Ops beyond 40yrs)

® Improved availability ® Interest in extended LTO (Ops beyond 60yrs)
® Improved reliability

® Reduced vulnerability
® Support decision making

® Concerns over the effects of aging.
® Shift from time-based to condition-based
maintenance

Drivers

® Maintenance Cost
® OLM deployment in Gen III+

® Maintenance of Small Modular Reactor (SMR)
® Gen IV reactors
® Obsolescence Issues

® Maintenance Eccpa
® Resource utilization
® Improved ROT




Business Case and Needs Analysis

Other considerations

\EE S Logisticians Engineers

* Scheduling Mx * Spares Positioning * Requirements

* Opportunistic Mx * Reduced Spares Satisfaction

* System Uptime Count * Robustness

* Minimize * Logistics Footprint * Design for PHM

unnecessary Mx

Regulatory Bodies Fleet Management Program Mgmt

* Safety * Fleet Health * Meeting customer

» Avoid Catastrophic * Lifecycle Cost expectations
Failures * Mission Capability

* Minimize impact on * Mission Planning

other (healthy) * Minimize downtime

systems

‘ Not Just for Maintenance! |
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MOE & Value Elements

Operations

Engineering

Regulatory

Program manager

Plant Manager

Operator

Maintainer

Designer

Researchers

Policy Maker

Economic Viability of
prognosis technology
Resource planning and
utilization

Informed operator
action/response

Plan maintenance in advance
to reduce downtime and
maximize uptime

Implement PHM system
within requirements and
constraints

Assess confidence level,
uncertainty and error

Assess potential risk

Cost-benefit metric

Accuracy and precision
metrics of prediction or RUL
Accuracy and precision based
metric for RUL estimation

on specific SSCs

Accuracy and Precision
metrics of RUL

Reliability based metrics for design
evaluation.
Computational performance metric

Accuracy and Precision metrics
with uncertainty

Cost-benefit-risk measures,
accuracy and precision metrics to
establish guidelines
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Requirements

Functional
= Data Acquisition

= Data management
= Data processing

= Diagnostics, Health state
estimation, &
prognostics

= Health management

IEEE Std. 1856:

Framework for PHM of Electronic Systems

PHM
Requirements

Requirement (a): PHM
system functional
Requirements

(0 0

Requirement (b): PHM
system development

Requirement (e): PHM
system performance
tracking

Performance

!
1
«trace»

Y

IEEE Std 15233
Systemsand
software
engineering -
System life cycle
processes

[from Stds)

Requirement (d}: PHM
system performance

o0

Requirement (c): PHM
software development

alla
itrace®

|EEE Std 12207
Systemsand
software
engineering —
Software life
cycle processes

{from Stds)

Accuracy
Timeliness
Confidence

Effectiveness



PHM Functional Model

Core PHM Operational
Processes

Functional Block

Advisory Generation (AG)

Prognostic Assessment (PA)

Health Assessment (HA)

State Detection (SD)

Data Manipulation (DM)

Data Acquisition (DA)

Act —>

Advise >
Analyze
Acquire

Sense >

Sensors (S)

Description

This function uses the information generated in the AG to institute
actions to return the systems to a “health state”

This function provides actionable information to operational and
maintenance personnel or external systems

This function provides future state of health, performance life remaining,
or remaining useful life indicators

This function provides information to determine the current state of
health of the systems

This function evaluates equipment state conditions against normal
operating profiles and generates normal or abnormal condition
indicators.

This function processes and transforms the sensor data and health state
information collected by the DA

This function acquires and records the sensor data and health state
information from the systems' internal monitors, data recorder or system
data bus

This involves physical sensors and any ‘soft’ system performance variable
available within the system.




PHM Operational Process
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Health Management Process

Health Monitoring and Assessment Process

Sensors
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Projects

Conceptual framework for digital twin (DT) in PHM application
Anomaly detection in Control Rod Drive System

PHM of Solenoid Operated Valve (SOV)



Conceptual framework for DT in PHM application
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CEDM fault detection with CNN

Deep Learning approach

Data

) State detection and performance metrics
transformation

_—— Training _
Xw(a,b)=W f r(t)w(j) i Dataset
' Train CNN
CRDM Current t Wfavelet. ) - Validation ] r -
Dataset rans ormatlonJ g Dataset : '[ Validate CNN 1 :( Perform.ance J
: training J L Metrics
————— | ) 4
ealth » Testing Dataset ! ;{ Test the Performance
ealtny I L Algorithm Metrics
data |
I
Faulty
data
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CNN Architecture
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Feature extraction Classification

* CNNis a deep neural networks.
e Commonly used for image
classification and video recognition

Layers:
* Feature learning layer
* Classification layer

CNN approach applied for this
research was transfer learning.

 Googlenet

GoogleNet is a pretrained convolutional
network that is 22 layers deep. This
number does not include the pooling
layers and the independent blocks used
for constructing the network. This
network has been used to classify up to
1000 images. This network uses a
boosting approach for prediction

Feature Extraction Layer consist of the convolution
layer, with an activation function and a pooling layer.
The classification layer consist of the Flatten, Fully
connected and the Activation function layer.



CNN Architecture

type p“::ﬂj?ﬂ “:li_fem depth | #1» ::;:fi F#H3=3 E:; I Eﬁ; params ops
convolution T=T/ 2 11211264 | 27K 34M
max pool 3x3/2 o6 = S =64 0

convolution Ixdf1 o = 56 192 2 64 192 112K 360M
max pool 3x3/2 2828w 192 0

inception (3a) 282 28 256 2 td 96 128 16 32 32 159K |28M
inception (3hb) 282 28 480 2 |28 128 192 32 96 64 IR0KE 304M
max pool 3x3/2 14 =14 =480 0

inception (4a) 14x14x512 2 192 06 208 16 48 604 34K TiM
inception (4h) 14x 14512 2 [ &0 112 224 24 o4 o4 437K BEM
inception (4¢) 14x14x512 2 |28 128 256 24 G4 o4 463K [ 00M
inception (4d) 1414528 2 112 [44 288 32 64 64 SE0K 1 19M
inception (4e) 14x 14 %832 2 256 160 320 32 128 128 40K 1 70M
max pool 3x3/2 TxT=x832 0

inception (3a) TXTxE32 2 256 160 320 32 128 128 1072K M
inception (5h) T T 1024 2 354 192 384 48 128 128 |38EK TIM
avg pool =T/ 11 10024 0

dropout (40K 11 1024 0

linear 1 12 1000 1 1 000K M
softmax 1 1 1000 0

GooglLeNet structure

The GooglLeNet was modified
for the purpose of classifying
the CRDM states. For the
CRDM, there were two output
classes and the GooglLeNet was
developed for 1000 classes. The
output classes were modified
and the dropouts as well.

The total number of layers for
the implemented architecture
was 144 and is shown in the
next slide.



CNN Architecture

‘data’

‘convl-7x7_s2'

‘convl-relu_7x7"'

'pooll-3x3_s2'

'pooll-norml’
'conv2-3x3_reduce’
'conv2-relu_3x3_reduce’
‘conv2-3x3’

‘conv2-relu_3x3"

‘conv2-norm2’

'pool2-3x3_s2'
'inception_3a-1x1'
"inception_3a-relu_1x1'
"inception_3a-3x3_reduce’
'inception_3a-relu_3x3_reduce’
‘inception_3a-3x3"
'inception_3a-relu_3x3'
'inception_3a-5x5_reduce’
‘inception_3a-relu_5x5_reduce’
‘inception_3a-5x5"
'inception_3a-relu_5x5"
'inception_3a-pool’
'inception_3a-pool_proj'
'inception_3a-relu_pool_proj’
'inception_3a-output’
'inception_3b-1x1'
"inception_3b-relu_1ix1’'
'inception_3b-3x3_reduce’
'inception_3b-relu_3x3_reduce’
‘inception_3b-3x3"
‘inception_3b-relu_3x3'
'inception_3b-5x5_reduce’
"inception_3b-relu_5x5_reduce’
"inception_3b-5x5"
"inception_3b-relu_5x5"
'inception_3b-pool’
'inception_3b-pool_proj'
*inception_3b-relu_pool_proj’
'inception_3b-output"’
'pool3-3x3_s2'
‘inception_4a-1x1"
'inception_4a-relu_1x1'
'inception_4a-3x3_reduce’
‘inception_4a-relu_3x3_reduce’
'inception_4a-3x3"
'inception_4a-relu_3x3'
'inception_4a-5x5_reduce’
'inception_4a-relu_5x5_reduce’
'inception_4a-5x5"
'inception_4a-relu_5x5"
'inception_4a-pool’
'inception_4a-pool_proj"
'inception_4a-relu_pool_proj’
'inception_4a-output’
‘inception_4b-1x1"
'inception_4b-relu_1x1'
'inception_4b-3x3_reduce’
‘inception_4b-relu_3x3_reduce’
'inception_4b-3x3"
'inception_4b-relu_3x3"
'inception_4b-5x5_reduce’
"inception_4b-relu_5x5_reduce’
'inception_4b-5x5"
'inception_4b-relu_5x5"
"inception_4b-pool”
"inception_4b-pool_proj"
'inception_4b-relu_pool_proj’
'inception_4b-output’
‘inception_4c-1x1'
‘inception_4c-relu_1x1'
'inception_4c-3x3_reduce’
'inception_4c-relu_3x3_reduce’
'inception_4c-3x3"
"inception_4c-relu_3x3'
'inception_4c-5x5_reduce’
'inception_4c-relu_5x5_reduce’
"inception_4c-5x5"
'inception_4c-relu_5x5"
‘inception_4c-pool”
"inception_4c-pool_proj"
'inception_4c-relu_pool_proj’

Image Input

Convolution
RelLU

Max Pooling
Cross Channel Normalization
Convolution
RelLU
Convolution
RelLU

Cross Channel Normalization
Max Pooling
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU

Max Pooling
Convolution
ReLU

Depth concatenation
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU

Max Pooling
Convolution
ReLU

Depth concatenation
Max Pooling
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU

Max Pooling
Convolution
ReLU

Depth concatenation
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU

Max Pooling
Convolution
ReLU

Depth concatenation
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU

Max Pooling
Convolution
RelLU

224x224x3 images with 'zerocenter' normalization

64 7x7x3 convolutions with stride [2 2] and padding [3 3 3 3]
ReLU

3x3 max pooling with stride [2 2] and padding [6 1 © 1]

cross channel normalization with 5 channels per element

64 1x1x64 convolutions with stride [1 1] and padding [6 © © @]
ReLU

192 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
ReLU

cross channel normalization with 5 channels per element

3x3 max pooling with stride [2 2] and padding [@ 1 © 1]

64 1x1x192 convolutions with stride [1 1] and padding [@6 © @ @]
ReLU

96 1x1x192 convolutions with stride [1 1] and padding [6 © © @]
RelLU

128 3x3x96 convolutions with stride [1 1] and padding [1 1 1 1]
RelLU

16 1x1x192 convolutions with stride [1 1] and padding [6 © © 0]
ReLU

32 5x5x16 convolutions with stride [1 1] and padding [2 2 2 2]
ReLU

3x3 max pooling with stride [1 1] and padding [1 1 1 1]

32 1x1x192 convolutions with stride [1 1] and padding [6 © © 0]
ReLU

Depth concatenation of 4 inputs

128 1x1x256 convolutions with stride [1 1] and padding [6 © © 0]
ReLU

128 1x1x256 convolutions with stride [1 1] and padding [6 © @ @]
ReLU

192 3x3x128 convolutions with stride [1 1] and padding [1 1 1 1]
ReLU

32 1x1x256 convolutions with stride [1 1] and padding [6 © © 0]
ReLU

96 5x5x32 convolutions with stride [1 1] and padding [2 2 2 2]
ReLU

3x3 max pooling with stride [1 1] and padding [1 1 1 1]

64 1x1x256 convolutions with stride [1 1] and padding [6 © © @]
ReLU

Depth concatenation of 4 inputs

3x3 max pooling with stride [2 2] and padding [6 1 © 1]

192 1x1x480 convolutions with stride [1 1] and padding [6 © © 0]
RelLU

96 1x1x480 convolutions with stride [1 1] and padding [6 © © @]
ReLU

208 3x3x96 convolutions with stride [1 1] and padding [1 1 1 1]
ReLU

16 1x1x480 convolutions with stride [1 1] and padding [6 © @ @]
ReLU

48 5x5x16 convolutions with stride [1 1] and padding [2 2 2 2]
ReLU

3x3 max pooling with stride [1 1] and padding [1 1 1 1]

64 1x1x480 convolutions with stride [1 1] and padding [6 © © 0]
ReLU

Depth concatenation of 4 inputs

160 1x1x512 convolutions with stride [1 1] and padding [6 © © 0]
ReLU

112 1x1x512 convolutions with stride [1 1] and padding [6 © © 0]
RelLU

224 3x3x112 convolutions with stride [1 1] and padding [1 1 1 1]
RelLU

24 1x1x512 convolutions with stride [1 1] and padding [6 © © 0]
ReLU

64 5x5x24 convolutions with stride [1 1] and padding [2 2 2 2]
ReLU

3x3 max pooling with stride [1 1] and padding [1 1 1 1]

64 1x1x512 convolutions with stride [1 1] and padding [6 @ @ @]
ReLU

Depth concatenation of 4 inputs

128 1x1x512 convolutions with stride [1 1] and padding [6 @ © 0]
ReLU

128 1x1x512 convolutions with stride [1 1] and padding [6 @ © 0]
ReLU

256 3x3x128 convolutions with stride [1 1] and padding [1 1 1 1]
ReLU

24 1x1x512 convolutions with stride [1 1] and padding [6 © © 0]
ReLU

64 5x5x24 convolutions with stride [1 1] and padding [2 2 2 2]
ReLU

3x3 max pooling with stride [1 1] and padding [1 1 1 1]

64 1x1x512 convolutions with stride [1 1] and padding [6 @ @ 0]
RelLU

110

130

138

'inception_4c-output’
"inception_4d-1x1"
‘inception_4d-relu_1ix1'
'inception_4d-3x3_reduce’
‘inception_4d-relu_3x3_reduce’
‘inception_4d-3x3"
'inception_4d-relu_3x3"
'inception_4d-5x5_reduce’
'inception_4d-relu_5x5_reduce’
"inception_4d-5x5"
"inception_4d-relu_5x5"
'inception_4d-pool’
"inception_4d-pool_proj"
"inception_4d-relu_pool_proj’
'inception_4d-output’
‘inception_4de-1x1"
‘inception_4e-relu_1ix1'
'inception_4e-3x3_reduce’
‘inception_4e-relu_3x3_reduce’
"inception_4e-3x3"
"inception_4e-relu_3x3"'
"inception_4e-5x5_reduce'
"inception_4e-relu_5x5_reduce’
"inception_4e-5x5"
'inception_4e-relu_5x5"
'inception_4e-pool"’
"inception_4e-pool_proj’
'inception_4e-relu_pool_proj"
'inception_4e-output’
'poola-3x3_s2"
‘inception_5a-1x1'
"inception_5a-relu_1x1"
'inception_5a-3x3_reduce'
"inception_5a-relu_3x3_reduce’
"inception_5a-3x3"
'inception_5a-relu_3x3"
'inception_5a-5x5_reduce’
"inception_5a-relu_5x5_reduce’
"inception_5a-5x5"
"inception_5a-relu_5x5"
"inception_5a-pool’
"inception_5a-pool_proj"’
"inception_5a-relu_pool_proj"
"inception_5a-output’
"inception_5b-1x1’
"inception_5b-relu_1ix1"
"inception_5b-3x3_reduce’
"inception_5b-relu_3x3_reduce’
"inception_5b-3x3*
"inception_5b-relu_3x3"
'inception_5b-5x5_reduce’
"inception_5b-relu_5x5_reduce’
"inception_5b-5x5"
"inception_5b-relu_5x5"
"inception_5b-pool’
"inception_5b-pool_proj"’
"inception_5b-relu_pool_proj"
"inception_5b-output’
'pool5-7x7_s1"
"newDropout’
gor
*softmax’
'classoutput”

Depth concatenation
Convolution

RelLU

Convolution

RelLU

Convolution

ReLU

Convolution

ReLU

Convolution

RelLU

Max Pooling
Convolution

RelLU

Depth concatenation
Convolution

RelLU

Convolution

ReLU
Convolution
RelLU
Convolution
ReLU
Convolution
ReLU

Max Pooling
Convolution
ReLU

Depth concatenation
Max Pooling
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU

Max Pooling
Convolution
RelLU

Depth concatenation
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU
Convolution
ReLU

Max Pooling
Convolution
ReLU

Depth concatenation
Average Pooling
Dropout

Fully Connected
Softmax

Classification Output

Depth concatenation of 4 inputs

112 1x1x512 convolutions with stride [1 1] and padding [6 © © @]
ReLU

144 1x1x512 convolutions with stride [1 1] and padding [6 © © @]
ReLU

288 3x3x144 convolutions with stride [1 1] and padding [1 1 1 1]
ReLU

32 1x1x512 convolutions with stride [1 1] and padding [6 @ @ o]
ReLU

64 5x5x32 convolutions with stride [1 1] and padding [2 2 2 2]
ReLU

3x3 max pooling with stride [1 1] and padding [1 1 1 1]

64 1x1x512 convolutions with stride [1 1] and padding [6 © © 0]
ReLU

Depth concatenation of 4 inputs

256 1x1x528 convolutions with stride [1 1] and padding [6 © © @]
ReLU

160 1x1x528 convolutions with stride [1 1] and padding [6 @ © 0]
RelLU

320 3x3x160 convolutions with stride [1 1] and padding [1 1 1 1]
ReLU

32 1x1x528 convolutions with stride [1 1] and padding [6 © © 0]
ReLU

128 5x5x32 convolutions with stride [1 1] and padding [2 2 2 2]
ReLU

3x3 max pooling with stride [1 1] and padding [1 1 1 1]

128 1x1x528 convolutions with stride [1 1] and padding [6 © © @]
RelLU

Depth concatenation of 4 inputs

3x3 max pooling with stride [2 2] and padding [6 1 © 1]

256 1x1x832 convolutions with stride [1 1] and padding [6 © © @]
RelLU

160 1x1x832 convolutions with stride [1 1] and padding [6 © © @]
ReLU

320 3x3x160 convolutions with stride [1 1] and padding [1 1 1 1]
ReLU

32 1x1x832 convolutions with stride [1 1] and padding [6 © © 0]
RelLU

128 5x5x32 convolutions with stride [1 1] and padding [2 2 2 2]
RelLU

3x3 max pooling with stride [1 1] and padding [1 1 1 1]

128 1x1x832 convolutions with stride [1 1] and padding [6 © © 0]
RelLU

Depth concatenation of 4 inputs

384 1x1x832 convolutions with stride [1 1] and padding [6 © @ @]
RelLU

192 1x1x832 convolutions with stride [1 1] and padding [6 © © @]
ReLU

384 3x3x192 convolutions with stride [1 1] and padding [1 1 1 1]
ReLU

48 1x1x832 convolutions with stride [1 1] and padding [6 © © @]
RelLU

128 5x5x48 convolutions with stride [1 1] and padding [2 2 2 2]
ReLU

3x3 max pooling with stride [1 1] and padding [1 1 1 1]

128 1x1x832 convolutions with stride [1 1] and padding [6 © © 0]
RelLU

Depth concatenation of 4 inputs

7x7 average pooling with stride [1 1] and padding [6 © © @]

60% dropout

8 fully connected layer

softmax

crossentropyex

CRDM GoogleNet layers breakdown



Performance Metrics

Result

Training Accuracy
TP Confusion Matrix

o o o o o
0.0% [ 0.0% | 0.0% | 0.0% | 0.0%

Performance Metrics

wd1goodlLG

true negative: A correct decision that

Algorithm Performance

.. . acondition does not exist. wdtgoodLL 125%| 00w | 0o% | 00% | 0.o%

_m . True Positive + True Negative étoncc o Il o lo Il o
| » TP + TN + FP + FN . . 0.0% [12.5% | 0.0% [ 0.0% | 0.0%
true positive: A correct decision that g wetgooduL 12.5% | 0.0% | 0.0%
a condition does exist. 3 wazado 0.0% [125% | 00%
E g TP + FP True Fa|Se wdZbadUG ! ! o.g% o_g% o.g%

) e .
Positive Negative w229 | 00w | 0% | 00w | 0o | 00w | 0o
Computational Performance (TP) (FN) S ;,o >
LU
: False Tr .

Time & Complexity - ue. Ul et
Positive Negative Testing Accuracy
Memﬂry&”o (FP) (TN) wdlgoodLG 00% | 0.0% | 0.0% | 0.0%

o o o 1]
0.0% | 0.0% | 0.0% | 0.0%

wdlgoodlLL

Cost-Benefit-Risk

14 ] o o

wd1goodUG 12.5% | 0.0% | 0.0% | 0.0%

false negative: An incorrect decision
ROI = (Return - Investment) / Investment that a condition does not exist when it
actually does exist.

o 12 ] 1]

NECIOCCC e 0.0% |10.7% | 0.0% | 0.0%

ROI based

o ] 14 1]

wd2badLG 0.0% | 0.0% |12.5% | 0.0%

Output Class

o ] o 14

wd2badLL 0.0% | 0.0% | 0.0% |12.5%

CGStS & SaVlngS SaVingSPHM = COStWithDUl PHM — Costmth PHM

wdZbad UG 0.0% | 0.0% | 0.0% | 0.0%

false positive: An incorrect decision that
a condition exists when it actually does

not exist. Synonymous with the term | o0 | 0% |re3% | oo | oo
false alarm.

o 2 o 1]
0.0% | 1.8% | 0.0% | 0.0%

Ease of Algorithm Certification

wdZbadUL

Certification Cost

Certification Method




SOV fault detection with CNN

! Data acquisition - -

1 and preprocessing Data splitting State detection and performance metrics

1 ]

1 1

1 ]
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] . . 1

I SOV Current | Wavelet R Validation . Vs Y

| Dataset . transformation Dataset : Validate CNN | ( Performance
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1 1

! i :
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: I L Algorithm Metrics
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SOV fault detection with CNN

Network Parameters

Hyper
parameter

Filter size 3x3
Max pooling 2x2
Dropouts
Activation
function
Training 30
epoch
Batch size 32
Metrics Accuracy
Learning rate 0.0001
Optimizer RMSprop
Dense layer 2
Output layer 1

4
4

0.25, 0.24,
0.4,0.5,0.5

LeakyRelLU,
Softmax
(output)

09 -
08 1

07 4

_J

06

0.7

0.6 1

0.3 1

0.4

03 1

0.2 1

01 1

0.0 1

CNN training output

Accuracy

= Training_Acc
Validation_Acc

00

25 50 75 100 125 150 175
Loss
— = Trainirg_Loss
"i'ﬂlli'ﬂ'[ll:ll'l._l.lﬂﬁ'}
-\-\_\_\_____ -
00 25 50 75 100 125 150 175

True label

good -

Verification with test dataset

Confusion Matrix
200

175
o 150
125
-10.0
L75
0 10 5.0
25
; ; L Loo
& &

Predicted label
accuracy=1.0000; misclass=0.0000
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SOV RUL Prediction

Experimental Cases for SOV Degradation

* Regression techniques is a form of predictive m

modelling techniques which investigates the fesl NDTTEL, ftor t:‘e ”S""ke e ”;e
g q q experiment was to allow process to
relationship between the input parameters and P P

flow out without any blockage
the output parameters. while being pressurized.

Plunger The tests performed for this case
Degradation involved introducing debris
1,2,3and 4 between the plunger and the guide
tube. The introduction of debris

involved using a very thin material

of thickness of 0.1mm. This was

done to simulate a faulty condition.

SOV FMEA Fail Open This is a faulty state of the SOV in
which the SOV fails to operate

when a control signal is sent. The
Plunger Binding of Contaminants between Sluggish plunger was stuck closed.
plunger in guide guide tube and plunger  operation or
tube failure to operate
Valve body Blockage of Contaminants or debris Blocked or poor
- exhaust outlet build up flow of fluid.

* Regression analysis is one of two commonly
used techniques for RUL prediction, the other
being particle filtering.
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SOV RUL Prediction with Deep Neural Network

Fault state definition

* Deep neural networks also be referred to as deep
feedforward neural network, feed forward neural
networks and multilayer perceptrons (MLP) are the
most typical representation of deep learning models.

Current signal from sensor

Clean and pre-process data

Feature extraction

* Deep learning is a class of machine learning techniques Clean and analyze features
where many layers of information processing stages in (correlation between
hierarchical architectures are exploited for pattern LIRS,
classification and for feature or representation learning.
Split data Split data
(training set) (test set)

e The Deep Neural Network (DNN) is generally a stack of
multiple hidden layers instead of only one hidden layer Deep learning a!gqrithmfor
in the standard ANN architecture. RUL prediction

RUL determination

Evaluate prognostic results

Prognostic framework for RUL determination



SOV RUL Prediction with Deep Neural Network

Layer 1 Layer 2 Layer3 Layer L-1 Layer L

Output

Input dense layer
Hidden layers

Kernel initializer

Activation

(Input layer) (Hidden layers) (Output layer) .
function

Typical DNN architecture Output dense

metrics

DNN network parameters

128 neurons
256 neurons
normal

Input, hidden layer: RelLU
Output: linear

1

Mean absolute error, mean
square error



SOV RUL Prediction with Deep Neural Network

5

DNN training results

loss
~ Training_loss
Validation_loss
rﬂl{.%‘ww Lig .|-_ L1 ': ¥
H 100 200 3,50 4(‘:|C| 560
mae
—_— Mae
val mae
bl Ll |
’M@kwuw‘wm WA
{l] ll:‘m 260 360 ﬂ.';ﬂ 5‘50

RUL (%)

100

80

60

40

20

Actual RUL prediction

— Actual RUL

40 80 120
index

160

200

Actual RUL prediction vs Predicted RUL (DNN)

RUL (%)

100

80

60

40

20

= Actual RUL
—— Predicted dnn RUL

40 80

120 160

28

200



SOV RUL Prediction with Deep Neural Network

Comparison with other Regression algorithm

100
Actual RUL

= Predicted RUL XGBoost
80 Predicted DNN RUL

60

RUL (%&)

40

20

0 T T T T
0 a0 80 120 160 200
index

XGBoost regressor vs DNN vs Actual RUL output

Evaluation metrics of RUL algorithms

Mean absolute error (MAE): This measure
measures how close the predictions are to the
actual output. The smaller the MAE, the better
the model.

n
1 )
MAE == | = 7))
i=1

Mean squared error (MSE): This metric is similar
to the MAE. MSE measures the average of the
squares of the errors in the deviations from the
actual RUL. The closer this value is, the better.

1% .,
MSE =;2(Y1 — Vi)
=1

Root mean squared error (RMSE): This is the
square root of the MSE.

n
1
RMSE = |- (i = 7)?
i=1

Performance comparison

7.4993884451972
11

102.47562603057
746

10.123024549539
405

0.3327358143183
9216

0.1830351628139
5382

0.4278260894498
5323



Summary

* Prognostics and health monitoring is being widely used in
various engineering systems and its application in the NPP
would also be beneficial just as in other fields.

 The overview of PHM as related to data driven approach has
been discussed.

e Some PHM examples and current project being worked on
were discussed.



Thank You

\HUCLEAR GRADUATE SHON.
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