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Abstract - This paper presents a comparison of homogenization techniques implemented in the 

APOLLO3


 platform for transport core calculations: standard scalar flux weighting and new flux-moments 

homogenization, in different combinations with (or without) leakage models. Besides the historical B1-

homogeneous model, a new B-heterogeneous one has indeed been recently implemented in the TDT/MOC 

solver. First analyses have been performed on a very simple SFR core with a regular hexagonal lattice. 

They show that using the heterogeneous leakage model in association with the flux-moments 

homogenization strongly improves the prediction of Keff and void reactivity effects. These good results are 

confirmed when the application is done to the fissile assemblies of the more complex ASTRID CFV core. 

 

 

I. INTRODUCTION 

 

Standard deterministic calculations lie generally on a 

two-step calculation scheme with a first step performed at 

the cell or assembly level using a 2D fine transport 

calculation that provides homogenized parameters for a 

global 3D core calculation in the second step, more often 

using diffusion theory. 

The need for better accuracy in calculating neutronic 

parameters (such as reactivity, control rod worth, power 

distribution) leads to the development of transport core 

solvers taking advantage of the increasing performances of 

the computers. However, the magnitude of the 

computational problem posed by explicitly modeling the 

exact geometry with thousands of energy groups, hundreds 

of angular directions and millions of spatial nodes is still out 

of range of desktop computers with few tens of processors 

but requires expensive super-computers with often limited 

access. So, using transport theory for practical applications 

to three-dimensional reactor analysis still needs spatial 

homogenization and energy condensation. 

Homogenization techniques have been widely studied 

when the core calculation is performed using diffusion 

theory, focusing on diffusion coefficients definition and 

introducing different techniques to attempt to preserve the 

neutron balance (discontinuity factors and SPH equivalence 

techniques are the most employed). Many thoughts and 

references can be found on these subjects in Ref. 1 and 2. 

In the case of homogenization for transport 

calculations, diffusion coefficients are no more appearing 

and the flux-volume weighting of cross sections alone is not 

always sufficiently accurate (depending of the degree of 

spatial homogenization and energy collapsing). 

Discontinuity factors technique is not available in 

APOLLO3


 and some past numerical experiments with 

APOLLO2 have shown that the transport-transport SPH 

equivalence was lacking of robustness when dealing with 

several tens of groups (Ref. 3). May be some recent 

developments proposed in Ref. 4 could help but we 

preferred to follow another way and try to improve the cross 

section weighting itself. 

So, the angular flux moments weighting (Ref. 5), 

generalizing the P1-consistent method of the ECCO cell 

code (included in the ERANOS code system, Ref. 6), has 

been implemented in the APOLLO3


 platform (Ref. 7) in 

order to improve the treatment of exchanges between 

assemblies of different types (fissile and control rod 

assemblies for example) and between core and reflector (as 

shown in Ref. 5). Besides, a B-heterogeneous leakage model 

(Ref. 8) has been implemented in the TDT/MOC (Ref. 9) 

for the treatment of fissile assemblies, following the work of 

Chiba and Van Rooijen (Ref. 10). 

The paper presents first the flux-moments 

homogenization method in the absence of leakage model. In 

the second part, the B-heterogeneous leakage model is 

recalled and the above homogenization is adapted to deal 

with complex flux-moments (a possibility has also been 

introduced in APOLLO3


 to use the leakage rate DB
2
 

with DB
2
 coming from a B1-homogeneous calculation to 

homogenize order 1 transfer cross sections). In the third 

part, the impact of different combinations (leakage model, 

homogenization method) on the effective multiplication 

factor and voiding effect are studied on a simplified “regular 

SFR core” before application to the more complex ASTRID 

CFV core (Ref. 11) in the final section. 

 

II. ANGULAR FLUX MOMENTS WEIGHTING 

 

1. General 3D case 

 

The stationary transport equation discretized on 

microregion i and microgroup g can be written as: 
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In formula (1) the fluxes )(,  


g

i  are the boundary fluxes 

used in MOC calculations to compute the leakage 

contribution in the balance equation (Ref. 9), and the 

integration is done over the boundary of region i. 

After homogenization/condensation 













 Ii Gg

(...) , a 

slightly different form is obtained: 
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Defining the homogenized and condensed angular 

fluxes and moments: 
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the total cross section for macroregion I and macrogroup G 

is now dependent of the direction vector 


: 
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and transfer cross sections moments of the azimuthal rank 

m: 
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In Ref. 5, we proposed to generalize the Pn-consistent 

method (Ref. 12) to 2D or 3D for collapsing these transfer 

cross sections, using a minimization strategy to eliminate 

the dependency on rank m and the anisotropy of the total 

cross section so that the transport equation keeps its 

standard form: 
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This method thus “captures” most of the flux anisotropy 

in the transfer cross sections (mainly in the order 1 terms). 

In the following, it will be called the “moments” 

homogenization.  

 

2. Specific 1D plane case 

 

In the particular case of 1D plane geometries, angular 

flux moments are zero for m0 when the axis perpendicular 

to the slabs is oriented along the polar direction 

(traditionally the z direction of vector 


). So, considering 

the P1 transfer cross section, formula (3) is reduced to a 

current-weighting homogenization with a P1-correction for 

the G towards G terms:  
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where 
',0

,0

' g

i

g

i  is the scalar flux and 
',0

,1

' g

i

g

iJ  is the 

integrated current. 

This homogenization is relevant if a significant current 

is established in the calculated pattern (for example: clusters 

of fissile and non-fissile assemblies, core reflector interface 

as seen in Ref. 3). 

When the pattern is a reflected fissile assembly, the 

current can be locally small and numerical cancellation can 

occur when the size of a macroregion I is growing (it 

necessarily occurs when the assembly is fully homogenized, 

generating numerical difficulties). To overcome this 

difficulty, an extension of the flux moments homogenization 

method has been proposed in APOLLO3


 linked to the new 

heterogeneous leakage model implemented in the 

TDT/MOC solver. 

(3) 
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III. HETEROGENEOUS LEAKAGE MODEL WITH 

FLUX MOMENTS HOMOGENIZATION 

 

Assuming a fundamental mode factorization with: 

rBig

B

g err
 .),(),(   

where ),( 


rg

B  is a lattice-periodic complex distribution 

called “microscopic flux” and B


 an invariant vector that 

represents the macroscopic curvature of the flux within the 

core, the transport equation is transformed into a new 

eigenvalue problem including a leakage term. The MOC 

solver of APOLLO3


 (TDT/MOC) directly solves the 

corresponding B heterogeneous equation in its complex 

form, which, once discretized in space, can be written: 
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to get the complex periodic buckling-dependent flux: 
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The homogenization/condensation of Eq. 6 has a 

similar form than Eq. 2 with an additional leakage term 
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In Ref. 1 and with more details in Ref. 13, it has been 

shown that if the material distribution has a central 

symmetry (which is the case here) and if the 

homogenization is performed on macroregions invariant 

under the action of this central symmetry (this is also the 

case): 

 the even moments of the homogenized flux are real, 

 the odd moments are purely imaginary. 

and so, because of cancellations between symmetric 

microregions inside the macroregions, real values are 

obtained for transfer cross sections and total cross sections 

of different orders: even ones are weighted by the real 

component and odd ones by the imaginary component. 

Formula (3) and (4) can be split into: 
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These formulas have been recently implemented in 

APOLLO3


 and will be mentioned in the following as 

“moments” homogenization as they are only a 

generalization of the formula without leakage model. 

Besides, APOLLO3


 includes also a more classical B1 

homogeneous leakage model that provides uniform leakage 

coefficients at the assembly scale 
gD  so that the leakage 

term in the heterogeneous calculation is written 

)(Re,

2 


g

i

gBD . The corresponding “fundamental” current 

is then g

i

gg

i BD Re,hom, J  and can also be used to 

homogenize order 1 transfer cross sections in replacement 

of 
g

iJ in Eq. 5 (superior order transfer XS are then 

homogenized by the scalar flux). This last method is called 

“homCurrent” homogenization. Standard scalar flux-

weighting of the whole cross sections is of course available 

in the code and will be simply called “flux” 

homogenization. 
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IV. RESULTS ON A SIMPLIFIED SFR CORE 

 

1. Geometries 

 

In order to compare and validate the different 

homogenization methods with minimum biases against 

Monte Carlo TRIPOLI-4® (Ref. 14) reference calculations, 

a very simple SFR core has been modeled. It is composed of 

a finite hexagonal lattice of CFV-like pins axially limited to 

the fissile height. This “regular” core has been made critical 

by adjusting the number of hexagonal rings in a 

configuration without reflector (3D Monte Carlo continuous 

energy TRIPOLI-4® simulations has been used for this, the 

corresponding geometry is given on Figures 1 and 2). The 

core is small, contained in a cylinder of 90 cm diameter and 

80 cm in height. In a second configuration, a 14-cm thick 

steel reflector has been radially added to model a more 

realistic (and more challenging) situation (cf. Figure 3).  

 

 
Fig. 1. Radial cross section of the bare “regular SFR core” 

 

 
Fig. 2. Axial cross section of the bare “regular SFR core” 

 

 
Fig. 3. Radial cross sections of the reflected “regular 

SFR core” (one quarter core) 

 

2. Calculation routes 

 

2D 1968-group TDT/MOC calculations using the sub-

group method for self-shielding (Ref. 15) have been 

performed to generate 33-group cell-homogenized cross 

sections following the different methods presented above: 

- Infinite fuel cell calculations for use with a leakage 

model (the cell picture is enclosed in Figure 1), 

- Pseudo-1D traverse to explicitly describe the radial 

leakage and the interface with the void or the 

reflector. A reflective boundary condition is 

applied on the left and a vacuum one on the right 

(see Figure 4). Five sets of fuel homogenized cross 

sections are produced regarding the distance of the 

cells from the core boundary (different colors on 

Figure 5) and, when the reflector is present, five 

sets of cross sections are generated for the reflector 

itself. 

The ECCO code (Ref. 16), which possesses a simplified 

heterogeneous model called “P1-consistent” (the 

fundamental current is supposed to be isotropic) and a 

current weighting homogenization technique has also been 

used for comparison in the bare configuration. 

 

 

 
Fig. 4. MOC Traverse geometries (up: without reflector, 

down: with steel reflector) 

 

 

Fig. 5. Distinct radial zones for the homogenization (up: 

without reflector, down: with steel reflector) 
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The unstructured Sn solver MINARET of APOLLO3


 

(Ref. 17) allowed us to perform 33-group 3D core 

calculations for four configurations, with and without 

sodium, with and without reflector. A Chebyshev-Gauss 

product quadrature with 72 directions and P3 scattering 

anisotropy cross sections has been used. The thickness of 

the extruded triangular meshes is less than 3 cm in the radial 

plane (see Figures 6 and 7) and 5 cm in the axial direction. 

The finite elements are linear. 

 

 
Fig. 6. MINARET Radial Mesh for the bare core (traverse 

homogenization on the left, cell one on the right) 

 

 
Fig. 7. MINARET Radial Mesh for the reflected core 

(traverse homogenization”) 

 

3. Bare core results 

 

The results on effective multiplication factor Keff and 

sodium void effect for different combinations of geometry, 

leakage model and homogenization techniques are shown in 

Table I. It can be observed that: 

- all the calculations using a leakage model and the 

scalar flux homogenization (blue lines) provide poor 

results on Keff: discrepancies with TRIPOLI-4® are 

larger than +500 pcm when the core is filled with 

sodium and up to +800 pcm when it is voided. The 

voiding effect is then overpredicted by 0.5 to 0.7 $. 

When a flux-weighting is performed, the best results 

are obtained without leakage model (black line). 

- using the flux moments (red lines) coming from a 

traverse calculation or a cell calculation with 

heterogeneous leakage to collapse transfer cross 

sections significantly improves the APOLLO3


 

results. The biases on Keff are less than 250 pcm ; for 

sodium void effect, they are reduced to 0.2 $. The 

agreement with Monte Carlo calculations is quite 

satisfactory. 

- even if they are closer to TRIPOLI-4®, the B 

heterogeneous results are sensitive to the direction of 

the buckling vector: Keff are underestimated when B


is 

oriented in the z-direction (-132 pcm) because leakage 

channels are favored (this effect is enhanced when 

voiding: -198 pcm) and overestimated when belonging 

to the radial plane (respectively +4 and +87 pcm, 

purple line). 

- the B1 model with the homogeneous leakage rate 

homogenization gives satisfactory results on the filled 

core configuration (+115 pcm) but not on the voiding 

one, which leads to an important overprediction of the 

void effect (+0,5$). 

- the ECCO P1-consistent results are close to the B 

heterogeneous one with B oriented in the z-direction 

with a rather low discrepancy on the void effect (-

0.2$). The error on Keff is slightly increased against 

Monte Carlo results (-236 pcm and -311 pcm for the 

two configurations) probably because of symmetry 

assumptions and angular average of the coupling terms 

between the real and imaginary parts of Eq. 5 (see 

details in Ref. 6). For solvers based on the collision 

probability method like ECCO, this simplified 

heterogeneous model offers a real improvement 

compared to the B1 homogeneous one. 

 

4. Steel-reflected core results 

 

When a steel reflector is radially surrounding the core, 

the flux shape in the different groups are strongly different 

from the bare configuration when approaching the core 

reflector interface (see radial flux traverses Figure 8) with 

strong increases in the reflector for energies less than 5 keV 

(groups with g17). Using the fuel homogenized cross 

sections coming from the TDT/MOC traverse calculation 

described in IV.2 allows the influence of the reflector to be 

taken into account, which is not the case when XS are 

coming for the single cell calculation. Table II shows 

however that the trends are still the same than the one from 

the previous case without reflector: 
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- when using the scalar flux homogenization, the sodium 

void reactivity is strongly overpredicted (0.5 to 0.6 $) 

with cell homogenized cross sections and the same 

with Keff when XS are coming from the traverse 

calculation (more than 800 pcm discrepancy), 

- Using the heterogeneous leakage and the flux moments 

homogenization together in the fuel cell calculation 

provides satisfactory results both in terms of reactivity 

and voiding effect, especially when the Buckling 

vector is z-oriented (leakage dominates in that 

direction because of the presence of the radial 

reflector). In this case, the error on K-effectives is less 

than 100 pcm, and is negligible on sodium void effect. 

  

           
 

Fig. 8. MINARET Radial flux traverses without reflector (on the left) and with radial steel reflector (on the right) 

 

 

Table I. Regular SFR core - Keff and Sodium void reactivity for different leakage and homogenization techniques 

                     for the bare configuration 

  
TRIPOLI-4® Keff Sodium Void 

effect (pcm) 
    

  
* 1$ =~360 pcm 

 
Full Voided 

    

  

 

 

1.00478

 2 pcm 

0.98137 

 2 pcm 

-2374 

 3 pcm     

MINARET cross sections origin 

    
 A3/T4 (pcm) Voiding biases 

CODE 

Geometry 

Leakage 

Model 
Homogenization Full Voided pcm $* 

ECCO 

Cell 
P1-cons flux ) 1.01055 0.98934 -2121 568 821 252 0.7 

P1-cons hetCurrent (J) 1.00241 0.97839 -2449 -236 -311 -75 -0.2 

          
APOLLO3 

Cell 
no flux ) 1.00830 0.98661 -2180 347 541 194 0.5 

Cell B1-hom flux ) 1.00990 0.98840 -2154 504 724 220 0.6 

 
B1-hom homCurrent (DB2) 1.00594 0.98426 -2190 115 299 184 0.5 

 
B-het (Bz) flux ) 1.00991 0.98833 -2162 505 717 212 0.6 

 
B-het (Bz) moments 1.00337 0.97927 -2453 -140 -219 -79 -0.2 

 
B-het (Bx) moments 1.00499 0.98236 -2292 21 102 82 0.2 

          APOLLO3 

Traverse 
no flux ) 1.01137 0.98950 -2185 648 837 189 0.5 

no moments 1.00730 0.98359 -2393 249 230 -19 -0.1 
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Table II. Regular SFR core - Keff and Sodium void reactivity for different leakage and homogenization techniques 

                      for the steel reflected configuration 

 

  
TRIPOLI-4® Keff Sodium Void 

effect (pcm) 
    

  
* 1$ =~360 pcm 

 
Full Voided 

    

   

1.09173

 2 pcm 

1.07996

 2 pcm 

-998  3  

    

MINARET cross sections origin 

    
 A3/T4 (pcm) Voiding biases 

CODE 

Geometry 

Leakage 

Model 
Homogenization Full Voided pcm $* 

          
APOLLO3 

Cell 
no flux ) 1.00830 0.98661 -833 299 465 165 0.5 

Cell B1-hom flux ) 1.00990 0.98840 -812 459 645 186 0.5 

 
B1-hom homCurrent (DB2) 1.00594 0.98426 -831 233 400 168 0.5 

 
B-het (Bz) flux ) 1.09876 1.08919 -800 586 785 199 0.6 

 
B-het (Bz) moments 1.09272 1.08095 -996 83 85 2 0.0 

 
B-het (Bx) moments 1.09375 1.08300 -908 169 260 91 0.25 

          APOLLO3 

Traverse 
no flux ) 1.10145 1.09089 -879 808 928 119 0.3 

no moments 1.09864 1.08626 -1037 576 537 -39 -0.1 

 

 

V. RESULTS ON THE CFV-V1 CORE 

 

The first version of the ASTRID core [Ref. 11] 

presented Figure 9 combines many geometric features 

(fertile, plenum sodium, absorbing plate, reduced core 

height) in order to obtain a negative void reactivity 

coefficient (-0.5$ at the end of Fuel Cycle). The accuracy of 

deterministic core calculations to predict the void effect is a 

key point of safety studies. The new homogenization 

techniques described and validated on simple configurations 

are now applied to the fissile assemblies of the larger and 

strongly heterogeneous CFV core.  

 

Absorbing protection

Sodium plenum

zone

Outer 

fissile

zone
Inner fertile zone

Upper inner fissile zone

Lower inner fissile zone

Fertile blanket

Reflector /  Neutron shield

Radius 215 cm

Absorbing protection

Sodium plenum

zone

Outer 

fissile

zone
Inner fertile zone

Upper inner fissile zone

Lower inner fissile zone

Fertile blanket

Reflector /  Neutron shield

Radius 215 cm

 
Fig. 9. Section of the ASTRID CFV-V1 core (1500 MWth) 

 

 

Table III presents the results obtained for the more 

relevant choice of options. ;  

- the APOLLO3® k-effectives using the B-

heterogeneous leakage model associated with the flux-

moments homogenization are in good agreement with 

TRIPOLI4® for the three configurations (nominal, 

voided and rodded) with small overestimations: +140, 

+240 and +165 pcm respectively (red lines). 

- the sodium void effect is significantly improved when 

compared to the B1-homogeneous model and 

homogeneous fundamental current homogenization or 

when no leakage and scalar flux homogenization are 

used: the bias is reduced: 0.3 $ instead 0.6 $ in these 

two last cases. 

- the control rod worth is also better estimated with an 

underestimation of only 1.4%, against 2.4 and 3.2 % 

respectively. 

- the worst results regarding the sodium void effect are 

obtained with the B1-homogeneous model. 
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Table III. CFV-V1 core - Keff and Sodium void reactivity with different leakage and homogenization techniques for 

generating the fissile assemblies XS  

 

Configuration 
Leak. Mod. 

Homog. 
Nominal Voided Inserted control rods 

Neutronic 

parameter 
 keff keff Na (pcm) keff CR (pcm) 

TRIPOLI-4®  

(std. dev)  
1.05408 

 2 pcm 

1.04533 

 2 pcm 
-794  3 

1.02836 

 2 pcm 
-2372  3 

APOLLO3® 

 AP3-T4 (pcm) 

  

no leakage 

flux 

1.05536 

+150  3 

1.04867 

+305  2 

-604 

+190  3 

1.03040 

+193  2 

-2295 

+77  3 

B1-homog. 

homLeakage 

DB
2
 

1.05645 

+213  3 

1.04999 

+425  2 

-582 

+212  3 

1.03115 

+263  2 

-2322 

+51  3 

B-hetereg. 

(B2z) 

moments 

1.05564 

+140  3 

1.04792 

+236  2 

-698 

+96  3 

1.03020 

+165  2 

-2339 

+33  3 

 

 

 

VI. CONCLUSION 

 

In the present work, homogenization techniques have 

been compared for the generation of cross sections for SFR 

transport core calculations with APOLLO3


. The flux 

moments weighting requires the description of a large 

pattern, representative of the core configuration, to get a 

relevant current for condensing transfer cross section for 

orders superior to zero. This method gives good results but 

is costly because of the size of the pattern and not very 

practical when dealing with fissile sub-assemblies with 

different environments in the core (absorbers, structure 

materials, reflector …). A more common modelization for 

these latter is to simulate an infinite lattice and use a leakage 

model. 

A B1-homogeneous and a new B-heterogeneous 

leakage model are available within the TDT/MOC solver of 

APOLLO3


. Whatever the leakage model used, the scalar 

flux homogenization of the transfer cross sections of 

different orders gives poor results, both on Keff and sodium 

void effect, when dealing with a simplified SFR core with 

or without reflector. So, by analogy with the ECCO current 

weighting method and the flux moments weighting method, 

a new formula has been implemented to collapse transfer 

cross sections using reel (even orders) and imaginary (odd 

orders) parts of the complex periodic flux moments 

calculated within the B-heterogeneous leakage model. 

Under the fundamental mode assumption, this 

homogenization technique is rigorous if the calculated 

assembly possesses a central symmetry. If not, the formula 

can still be applied but we are clearly out of the validity 

domain of the model and the results have to be checked 

carefully. 

In the case of our simplified SFR core, using the B-

heterogeneous leakage model in combination with the flux 

moments weighting method provides thus homogenized XS 

that give satisfactory results at the core calculation level 

when compared with reference Monte Carlo ones (error less 

than 0.2 $ on sodium void reactivity against 0.5 $ when 

using the B1 homogeneous leakage model). 

This good result is confirmed when this methodology is 

applied to fissile assemblies of the heterogeneous CFV core 

selected for the ASTRID design studies: sodium void 

reactivity is overpredicted by only 0.3 $ and k-effectives by 

at most 240 pcm. Possible improvements will now come on 

the way to homogenize subcritical media (fertile assemblies, 

structure materials, reflectors, etc.). The use of 3D MOC 

solvers among other advanced techniques is now being 

investigated. 

The B-heterogeneous leakage model and flux moments 

weighting homogenization is currently being applied to 

transport calculations of Light Water Reactors but this will 

be the topic of another paper. 

 

ACKNOWLEDGMENTS 

 

APOLLO3


 and TRIPOLI-4


 are registered trademark 

of CEA. We gratefully acknowledge CEA, AREVA and 

EDF for their long term partnership and their support. The 

first author would like to thank the APOLLO3


 

development team for their efforts in implementing the 

models described here. 

 



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 

Jeju, Korea, April 16-20, 2017, on USB (2017) 

REFERENCES  

 

1.  V.C. DENIZ, “The Theory of Neutron Leakage in 

Reactor Lattices,” CRC Handbook of Nuclear Reactor 

Calculations, Vol.2, p. 409-508, CRC Press, Boca Raton, 

Florida, 1986 

2.  R. SANCHEZ, “Assembly homogenization techniques 

for core calculations,” Progress in Nuclear Energy, 51 

(2009) 

3.  J-F. VIDAL et al., “New Modelling of LWR Assemblies 

using the APOLLO2 code Package,” Proc. M&C+SNA 

2007, Monterey, California, USA, April 15-19, 2007, 

American Nuclear Society (2007) (CD-ROM) 

4.  A. HEBERT, “A Reformulation of the Transport-

Transport SPH Equivalence Technique,” 7th Int. Conf. on 

Modelling and Simulation in Nucl. Science and Eng. 

Ottawa, Ontario, Canada, October 18-21, 2015, Canadian 

Nuclear Society (2015) 

5.  J-F. VIDAL et al., “An Improved Energy-Collapsing 

Method for Core-Reflector Modelization in RNR Core 

Calculations using the PARIS Platform,” Proc. PHYSOR 

2012, Knoxville, Tennessee, USA, April 15-20, 2012, 

American Nuclear Society (2012) (CD-ROM) 

6.  G. RIMPAULT et al, “The ERANOS Code and Data 

System for Reactor Neutronic Analyses,” Proc. PHYSOR 

2002, Seoul, Korea, October 7-10, 2002, American Nuclear 

Society (2002) (CD-ROM) 

7.  D. SCHNEIDER et al., “APOLLO3


: CEA/DEN 

Deterministic Multi-Purpose Code for Reactor Physics 

Analysis,” Proc. PHYSOR 2016, Sun Valley, Idaho, USA, 

May 1-5, 2016, American Nuclear Society (2016) (CD-

ROM) 

8.  G. RIMPAULT, J-F. VIDAL, W.F.G. VAN ROOIJEN, 

“Neutron Leakage Treatment in Reactor Physics: 

Consequences for Predicting Core Characteristic,” Proc. 

PHYSOR 2014, Kyoto, Japan, September 28 – October 3, 

2014, American Nuclear Society (2014) (CD-ROM) 

9.  D. SCIANNANDRONE, S. SANTANDREA, 

R. SANCHEZ, “Optimized tracking strategies for step 

MOC calculations in extruded 3D axial geometries,” Annals 

of Nuclear Energy, 87, 49-60, 2016.  

10.  G. CHIBA, W.F.G. VAN ROOIJEN, “Diffusion 

Coefficients for LMFBR Cells calculated with MOC and 

Monte Carlo Methods,” Annals of Nuclear Energy, 38, 133-

144, 2011 

11.  F. VARAINE et al. “Pre-conceptual Design Study of 

ASTRID Core,” Proc. ICAPP 2012, Chicago, USA, June 

24-28, 2012 

12.  G.I. BELL, S. GLASSTONE, Nuclear Reactor Theory, 

Van Nostrand Reinhold Company, New-York, USA (1970) 

13.  J. TOMMASI, “Heterogeneous BN equations and 

symmetries,” Annals of Nuclear Energy, 85, 145-158, 2015 

14.  E. BRUN et al., “Overview of TRIPOLI-4 version 7 

Continuous energy Monte Carlo Transport Code,” Proc. 

ICAPP 2011, Nice, France, May 2-5, 2011 

15.  P. ARCHIER et al., “New Reference APOLLO3


 

Calculation Scheme for Sodium Fast Reactors: from Sub-

Assembly to full Core Calculations,” Proc. PHYSOR 2016, 

Sun Valley, Idaho, USA, May 1-5, 2016, American Nuclear 

Society (2016) (CD-ROM) 

16. G. RIMPAULT, “Algorithmic Features of the ECCO 

Cell Code for Treating Heterogeneous Fast Reactor 

Subassemblies.”, International Topical Meeting on Reactor 

Physics and Computations,  Portland, Oregon, May 1-5, 

1995 

17.  J-Y. MOLLER, J-J. LAUTARD, “MINARET, a 

Deterministic Neutron Transport Solver for Nuclear Core 

Calculations,” Proc. M&C 2011, Rio de Janeiro, Brazil, 

May 8-12, 2011, American Nuclear Society (2011) (CD-

ROM) 

 


