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Abstract – Two-phase flow instabilities (e.g. pressure drop oscillations (PDOs)) can affect the 
performance of the system, leads to thermal oscillations, and in turn can result in premature critical heat 
flux.  The linear and nonlinear stability analysis of PDOs in a two-phase flow system using two and three 
equations model is carried out by MATCONT software. For analysis of PDOs, steady state internal 
pressure drop of heater channel is obtained by polynomial fitting. After analyzing of PDOs, the following 
results are observed. The inlet mass flow into surge tank from main tank is almost constant during 
oscillations in three equation model; hence two-equation model is expected to be reasonably good for the 
analysis. The linear stability or local stability analysis for obtaining stable and unstable region shows that 
the results with the two models are essentially same. However, the non-linear stability analysis shows that 
the two-equation model is unable to capture the transition of the system from subcritical to supercritical 
Hopf bifurcation. It is seen that three equation model is able to capture the transition of the system from 
subcritical (hard) to supercritical (soft) Hopf bifurcation.  

 
I. INTRODUCTION 

 
Thermal flow instabilities of two-phase flow system are 

observed in many industrial systems, heat exchanger of 
chemical industries, nuclear reactors, and thermal power 
plants. These kinds of instabilities are unfavorable for 
systems operation as they may cause several problems like 
thermal fatigue, premature critical heat flux, burnout of 
heater tube, mechanical vibration of system etc. [1]–[4]. 
Thermal flow instabilities (two-phase flow instabilities) 
broadly can be classified into two categories, namely, static 
where transients are not important but in the case of 
dynamic transients are quite important. Ledinegg instability 
is a static instability which is widely researched where flow 
excursion occurs. Whereas among dynamic instabilities, 
pressure drop oscillations (PDOs), density wave oscillations 
(DWO), and thermal oscillations are most widely observed 
and investigated experimentally as well as theoretically [1]–
[5].  

PDOs (times periods are very large compared to the 
fluid particle) have been first introduced by Stenning and 
Veziroglu [14]. They have been investigated that PDOs are 
observed in the two-phase flow systems in the presence of 
negative slope between pressure drop and mass flow rate 
into the heater section, and a compressible volume which 
may be present inside channel due to flexible hose or gas 
trapped inside channel [1], [4], [5]. It may also be placed at 
upstream of the heater section using a surge tank. During 
pressure drop oscillations, mass flow rate and channel 
pressure fluctuate in a regular manner with larger time 
periods and amplitudes between sub-cooled liquid and 
super-heated vapor at the exit of the system. These lead to 
vibration and thermal oscillation in the heater wall which 
may cause pipe break down and thermal fatigue [2]. 

A few investigations on nonlinear stability analysis 
(mainly bifurcation) of PDOs are carried out by some 

authors earlier. The first report on bifurcation analysis of 
PDOs is reported by Padki et al. using lumped parameter 
integral method [6]. Analytically; they have derived the 
criteria for the occurrence of PDOs and Ledinegg instability. 
The limit cycles (PDOs) occur after supercritical Hopf 
bifurcation where heat input to fluid is considered as a 
bifurcation parameter. Another study of bifurcation is 
reported by Liu et al. using lumped parameter planar model 
in which dynamical simulations are compared to 
experimental results [7]. They have found PDO limit cycles 
by varying bifurcation parameter (mass flow rate) at 
constant heat input. The earlier studies have used both two 
equations as well as three equation models [6], [7]. 

It is noted that in the earlier studies only one parameter 
is varied to carry out the bifurcation (nonlinear stability) 
analysis. It is also pointed out that the Liu. et. al. [7] have 
mentioned that the two-equation model is sufficient for the 
stability analysis. In the present work, two parameters have 
been simultaneously varied to identify the transition from 
subcritical to supercritical Hopf bifurcation in the parameter 
space. Such transition occurs at a point known as 
Generalized Hopf point and represents Bautin (or GH) 
bifurcation. Furthermore, two equation and three equation 
models are compared and it is observed that though linear 
stability analysis is unaffected by the choice of the model, 
the non-linear stability is affected quite significantly. It is 
pointed out that non-linear stability is important as linear 
stability analysis is valid only for infinitesimally small 
perturbation and nearer to stability boundary only. 

 
II. MATHEMATICAL FORMULATION 

 
In the present study, PDOs are numerically investigated 

in a heated channel with different heat inputs as well as 
mass flow rates. The data used here is same as that used by 
Kakac et al. [8]. Since periods of PDOs is large (~1-2 
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minutes), the flow is assumed to be quasi-steady and each 
point of steady characteristics curve of the heated channel 
corresponds to pressure oscillations. The lumped parameter 
model is used for analysis of PDOs in the heated channel 
with different heat inputs. The schematic diagram for 
analysis of PDOs using three equation model is shown in 
Fig. 1 and the inset shows the two equation model diagram. 
A mathematical model of PDOs are constructed with 
assumptions described in the literature  [6], [7], [9]: 

(i) System exit pressure �� remains constant.  
(ii) Surge tank temperature is constant during 

oscillations. 
(iii) The inlet temperature is constant and  
(iv) Instant mass flow rate between the main tank to 

surge tank and surge tank and exit of the system is constant. 
 

1. Three-Equation Model of the System 
 
Continuity equation of surge tank (ST) with the presence of 
ideal gas in surge tank, 

  .
)(

)(2

lOO

S
S

VP

mM
P

dt

dP




  (1) 

 
Momentum equation between surge tank and main tank, 
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and momentum equation between surge tank and exit of the 
heater,     
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where   .
SeS PP   is steady state pressure drop or internal 

pressure drop of the heated channel from surge tank (heater 
inlet) to system exit. In the present study, 

  .
SeS PPP   is determined by polynomial fitting 

which is a function of independent variables, heat input (�) 
and operating mass flow (��) with form:  
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where a, b, c, d, e, f, g, h, i, and j are constant coefficients of 
the polynomial which are obtained by MATLAB. 
 
 
 
 

2. Two-Equation Model of the System 
 
       Several authors reported about inlet mass flow into 
surge tank from the main tank is almost constant  
(maximum variation being ±5 % of its operating value) 
which leads to the two-equation model [7] [10]. The 
schematic leading to this model for analyzing of a system 
for PDOs is shown in inset of Fig. 1. Hence, equation (2) 
can be removed from the three equation model, leading to a 
two equation model as follows: 
 
Continuity equation, 
 

  .
)(

)(2

lOO

S
S

VP

mM
P

dt

dP




  (5) 

 
Momentum equation, 
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3. Non-Dimensionalization 

 
For analyzing the stability of the system, generally, the 

equations are considered in their non-dimensionalized form. 
The steady state mass flow (�� = � = �) and �� of surge 
tank are taken as reference point for non-
dimensionalization. 

For three equations model, non-dimensional equations 
are obtained as: 
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And in the two equation model, as follows:  
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Note that the equilibrium point is at the origin ( P , M ,

m ) = (0, 0, 0) or ( P , m )=(0, 0), for three equation and 
two equation model, respectively. Non-dimensional 
parameters are given in Appendix. 

 
 

 
 

 
Fig. 1. Schematic diagram for analysis of PDOs using three 
equation model and the inset shows the schematic for two 
equation model. 

 
4. Stability Analysis of the System 

 
Stability analysis of a dynamical system corresponds to 

a perturbation to equilibrium point which may be due to 
external or internal disturbance. An equilibrium point of a 
system is considered to be stable if the system returns to its 
original equilibrium point after the introduction of a small 
perturbation. In the case of an unstable system, perturbation 
grows with respect to time and reaches a new operating 
point. In 2-D parameter space; stable region and the 
unstable region is divided by a boundary which is known as 
stability boundary (SB). 

In the present study, the linear stability analysis of 
PDOs in the system, either equations 1-3 or equations 5-6; 
is carried out to obtain stability boundary (SB). The stability 
boundary (SB) is derived by linearizing the system of 
equations (either Eqs. 7-9) or (Eqs. 10-11) depending on the 
model used, with respect to the equilibrium point (0, 0, 0) or 
(0, 0), respectively. The stability behavior of PDOs of the 
system is identified by characteristics of the eigenvalues of 
the Jacobian matrix. Analysis of PDOs in the system is said 
to be stable if all the eigenvalues are having a negative real 
part corresponding to an equilibrium point. On the other 
hand, analysis of PDOs in the system is said to be unstable 
if at least one eigenvalue is having positive real part related 
to a certain equilibrium point. 

 
 
 

 

III. RESULTS AND DISCUSSIONS 
 
1. Validation of Results 

 
Kakac et al. [8] carried out the investigation of PDOs 

and thermal oscillations using the operating fluid as Freon-
11 with constant inlet temperature (20°C). The experiment 
was carried out by varying mass flow rate while keeping 
rest of the parameters constant. The experiments were 
repeated with varying heat input while keeping other 
parameters constant. It was observed that the negative slope 
region had become steeper at higher heat input and the 
system had become more unstable. The correlated internal 
pressure drop of heated channel and stability boundary of 
the system is validated with their experimental results. 

 
A. Parity Plot for Internal Pressure Drop 
 

Parity plot of the system between experimental pressure 
drop and correlated pressure drop is shown in Fig. 2. The 
internal pressure drop of the heater channel is obtained by a 
polynomial fitting whose functional form is given by 
equation (4) and compared with experimental results. The 
correlated internal pressure drop of the heater channel lies 
between ± 15% of experimental internal pressure drop as 
can be seen in Fig. 2. 

 
 

 
 
Fig. 2. Parity plot of the system is plotted between 
experimental internal pressure drop against correlated 
internal pressure drop of the heater channel. 
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Fig. 3. Stability Boundary of system plotted between 
operating mass flow (� o) vs. heat input (� ). The two 
equation and three equation results overlap and are not 
distinguishable. 
 
B. Stability Map of the System 
 

The obtained stability boundary is compared with 
experimental data as shown in Fig. 3 and it can be seen that 
experimental and numerical results match quite well. The 
stability boundary of the given system is obtained using 
two-equation model and three-equation model. It is shown 
from stability map that stability boundaries from these two 
models are almost overlapping each other. For a given heat 
input to the system there are two stability boundary points, 
one at lower mass flow which is defined as LHS boundary 
and another at higher mass flow which is defined as RHS 
boundary. The quantitative comparison of the stability 
boundary in Table I shows that the difference in the two 
boundaries is not significant. Hence, either two-equation 
model or three equation model can be used to detect 
stability boundary of the system in the analysis of PDOs. 

 
Table I. Stability Boundary comparison between two-

equation model and three-equation model   
 

Heat input 
to heater 
channel 
(Watt) 

LHS boundary 
(gm/sec) 

RHS boundary 
(gm/sec) 

Two 
Eqn. 

Three 
Eqn. 

Two 
Eqn. 

Three 
Eqn. 

200 5.0850 5.0852 9.7139 9.7138 
250 4.7844 4.7846 11.9185 11.9184 
300 4.7058 4.7060 13.7471 13.7470 
350 4.7094 4.7096 15.3637 15.3637 
400 4.7515 4.7517 16.8342 16.8342 
450 4.8132 4.8134 18.1967 18.1966 
500 4.8849 4.8851 19.4766 19.4766 

     
 

2. Investigation of the Stability Map 
 

Fig. 3 shows the stability boundary or threshold 
boundary of the system for the present analysis. From this 
figure, the stability of the system can be analyzed. The 
stability map shows that for a constant heat supplied to the 
system, stability increases with increasing mass flow into 
heater channel. And for a constant mass flow into heater 
channel, the stability of the system decreases with 
increasing heat input to the channel. This kind of behavior 
of a system for the PDOs is reported earlier [1]. 
 
2. Characteristics of the Stability Boundary 
 

Table II shows the First Lyapunov coefficient (�1) of 
stability boundary at different heat inputs with two and three 
equations model, respectively. For (�� = 0.007), the three 
equations model shows both positive and negative (�1). At 
lower heat input to system, it shows that for both lower 
(LHS) as well as higher (RHS) mass flow stability boundary 
is having a negative First Lyapunov coefficient. The � 1 
changes sign as heat input is increased. Hence, in three 
equations model both, subcritical (characterized by positive 
� 1) and supercritical (characterized by negative � 1) Hopf 
bifurcations are observed [11], [12]. In case the of two 
equations model, the (�1) values are negative irrespective of 
heat input to fluid, hence only supercritical behavior is seen 
which is reported earlier[6], [7]. Therefore, it is clear that 
while for linear stability analysis both the models give 
almost same results (Fig. 3), the results for non-linear 
stability analysis are quite different. 

 
Table II. Stability Boundary character comparison 

 
               First Lyapunov coefficient 

Heat 
Input 

(Watt) 

Three equations 
model 

Ki=0.007 

Two equations model 

LHS  RHS LHS RHS 

500 8.77e4 1.49e3 -5.20e4 -1.02e5 

450 6.23e4 -0.47e4 -5.39e4 -9.57e4 

400 3.74e4 -2.85e4 -5.59e4 -9.07e4 

350 1.32e4 -4.05e4 -5.77e4 -8.66e4 

300 -9.99e3 -5.11e4 -5.94e4 -8.32e4 

250 -3.17e4 -6.05e4 -6.11e4 -8.03e4 

200 -5.16e4 -6.81e4 -6.31e4 -7.67e4 

 
3. Numerical Simulations   
 

The linear stability analysis is a local stability analysis 
and is valid only for small perturbation and near to stability 
boundary [13]. To verify the nonlinear characteristics of the 
system for large perturbation as well as away from the 
stability boundary predicted by MATCONT, simulation is 
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carried out by 4th order Runge-Kutta method for the Eqns. 
6-8 and Eqns. 9-10.  The Fig. 4(a-f) shows the time 
evolution of non-dimensional mass flow rate (��) of heater 
channel from surge tank and non-dimensional mass flow 
(��) into surge tank from main tank. Fig. 4(a) shows time 
evolution of mass flow (�� ) in the presence of small 
perturbation while the system is in stable region close to 
stability boundary. The perturbation dies out with respect to 
time and the system goes back to the equilibrium point. 
Similar results are also found for two equation model in 
stable region near to SB which is shown in Fig. 4(b).  The 
panel (c) of the same figure shows that time evolution of 
mass flow (�� ) in unstable region very close to stability 
boundary. The perturbation grows with respect to time very 
slowly and moves away from the equilibrium point of the 
system. Again, Fig. 4(d) shows the time evolution of mass 
flow (�� ) in the presence of small disturbance to the 
equilibrium point of the system in unstable region far from 
the stability boundary. The perturbation grows with respect 
to time very rapidly and then settles to the large constant 
oscillations of mass flow in heater channel.  
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(f) 

 
Fig. 3. Time evolution of non-dimensional mass flow (a, b) 
��  of three equation model and  two equation model 
respectively in stable region, (c) ��  of three equation model 
very close to stability boundary; (d, e) ��  of three and two 
equation model respectively far from stability boundary; and 
(f) �� of three equation model in unstable region. 
 
   
IV. CONCLUSIONS 
 

The linear and nonlinear stability analysis of PDOs in 
two-phase flow system using two and three equations model 
is carried out by MATCONT software. For analysis of 
PDOs, steady state pressure drop of heater channel is 
obtained by polynomial fitting. After analyzing of PDOs, 
the following results are observed. The inlet mass flow into 
surge tank is almost constant during oscillations; hence two-
equation model is expected to be reasonably good for the 
analysis of PDOs. The linear stability analysis shows that 
the results with the two models are essentially same. 
However, the non-linear stability analysis shows that the 
two-equation model is unable to capture the transition of the 
system from subcritical to supercritical Hopf bifurcation.  

In the case of nonlinear stability analysis, time 
evolution is shown the physically acceptable oscillations of 
mass flow which not possible to capture by linear stability 
analysis. 
 
 
APPENDIX: NON-DIMENSIONALIZATION 
 
Non-dimensional mass flow into surge tank from the main 
tank: 
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The ratio of compressible volume of surge tank to the inner 
volume of channel tube between the main tank and surge 
tank: 
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The ratio of compressible volume of surge tank to the inner 
volume of test heater channel: 
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NOMENCLATURE 
 
A = inner surface area of heater (m2) 
H = heat input to fluid (Watt)  
Ki =loss coefficient  
L = heater length (m) 
L1 = length between surge tank to main tank (m) 
m = mass flow out into heater tube (gm. /sec) 
��  = Non dimensional mass flow out of surge tank 
M = mass flow into surge tank (gm. /sec) 
Mo = Operating or steady state mass flow (gm. /sec) 
�� = Non dimensional mass flow into sure tank 
Pe = exit pressure (N/m2) 
Po = steady state pressure of surge tank (N/m2) 
PS = surge tank pressure (N/m2) 
�� = Non dimensional pressure of surge tank  
t = time (sec) 
Vo = steady state compressible volume of surge tank (m3) 
ρl = liquid density (kg/m3) 
τ = Non dimensional time 
Eu = Euler number, ∆P(M)/(M2/A2ρl) 
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