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Abstract

Albedo-type boundary condition is incorporated into the finite element formulation of the cubic
Hermite polynomials for the two-dimensional solution of the two-group diffusion problem. Two
modifications are introduced with respect to the conventional expression for the weak form of the
group diffusion equation with the zero flux or zero current boundary condition and the cubic
element functions over the boundary nodes. The finite element formulations obtained from those

modifications are tested with the two-dimensional ZION problem. The numerical effectiveness of

the modifications are examined.
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I. Introduction

Kalambokas and Henry proposed an albedo-
type boundary condition’? applicable along the
core-reflector interfaces for the solution of the
two-group diffusion equation. Their boundary
condition enables one to reduce the number of
unknowns in discretizing the group diffusion

equation by excluding the reflector region from
the explicit computational mesh grid, which in
turn reduces the computer storage as well as
the computer time required for solving the group
diffusion equation. They demonstrated? that the
use of the albedo-type boundary condition could
save the computer memory and computing time
in two-group diffusion computation of the 2-D
ZION reactor with the finite difference diffusion
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theory code, CITATION. They further sugges-
ted using their boundary condition in the coarse
mesh methods like finite element and nodal
methods.

Motivated by the suggestion, we attempt
herein to incorporate the albedo-type boundary
condition into the finite element formulation of
the cubic Hermite polynomials®* for the two-
dimensional solution of the two-group diffusion
problem. In doing so we introduce two modifi-
cations. First, the weak form of the group diff-
usion equation which usually applies to the
group diffusion problem with the boundary
condition of the zero flux or the zero current is
modified to conform itself to the albedo-type
boundary condition. Second, the element functi-
ons of the cubic Hermite polynomials as speci-
fied in refs, 3 and 4 are also modified over the
boundary nodes, e.g., the nodes which are in
direct contact with the core-reflector interface.

The finite element formulation obtained from
these modifications is applied to the two-dimensi-
onal ZION PWR problem. The computational
effectiveness of the modification is then exam-
ined and discussed with regard to the reference
results of subassembly power distribution and
the effective multiplication of the ZION reactor.

I1. Formulation

The problem to be solved is the two-group

diffusion equation,

—p- (DI +(E308) - Lz Ag=o

€))
with the albedo-type boundary condition,
[¢(rs>]:[a] [Jn(rs)]: (2)
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The notation in the above is conventional. The
age- are the albedo constants? which relate the
normal outward group current J,, to the group
fluxes at the core-reflector interface r,.. The
finite element solution to Eq.(1) starts with
the trial expansion of the group fluxes by the
piecewise continuous element functions, Ugi(r),
which are suitably defined over the spatial mesh
grids of the problem domain,

¢g(’)=zj:¢legl<") : (4)

The expansion coefficients ¢, are then determ-
ined using the variational principle (see Appe-
ndix A),

f”(V (8¢*(r)] (DIplgl+(6¢*1((2,]
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+3 [ B rBIBE=0, (5
for the arbitrary variation [8¢*]), with []=
[a(ry)]"L. Putting

5¢§(r)=ZJ5¢§JUg1<r) (6)
and noting that 8¢*, are components of the

completely arbitrary vector [3¢*], we obtain a
system of algebraic equations for [¢)=column

vector (¢g],

=10, )

where
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where 8, is the Kronecker delta function and
2 ge the macroscopic scattering cross section
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from group g’ to group g. Equation (5) is the
variational expression for the weak form of the
group diffusion equation. It is noted that Eq.
(5) differs from the conventional weak form of
the group diffusion equation with the zero-flux
or zero-current boundary condition in that it
contains an additional term arising from the
boundary condition of the form, Eq. (2).

The weak form of the group diffusion equat-
ion, Eq. (5), is based upon an tacit aésumption
that the trial solution satisfies the condition of
the flux and current continuity across all the
internal interfaces. Therefore, the element fun-
ctions must be chosen to satisfy the condition
of the flux and current continuity at least across
the internal interfaces. In conjunction with this
requirement, we make use of the cubic element
functions constructed from the piecewise Hermite
interpolation®#* as the basis functions for the
flux expansion over all the core-interior nodes.
As for the element functions over the boundary
nodes, we construct them in the following way.

Consider the boundary node, ze {zy_;, zn},
in the one-dimensional mesh grid shown in
Fig.1. Since the flux and current at z—zy are
interrelated to each other by the boundary cond-
ition of Eq. (2), we assume the element fun-
ction over = {zy_;, xy} is of the form,

Upn(z)= UY (@) +7en UV (@) ze {2y, 24)

0 otherwise
®
are the piecewise cubic

where U~ and U}

Hermite polynomials.

Requiring that the trial expansion for the
1-D group flux,

B = $uU3(@) + Tl (2))
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Fig. 1. One-Dimensional Mesh Grid

+éanUgn (),
satisfy the boundary condition, Eq.(2), we
find the 7,y is given by
Ten="—PBeat P1205:Cns Cn=1n/¢on 9
The 1-D element function U,n(z) can be used
for constructing the two- and three-dimensional
element functions over the boundary nodes.

‘With the 2-D application in mind,we note that

three types of the boundary nodes are identifi-
ed according to the way the boundary nodes
contact with the reflector, as shown in Fig. 2.
The 2-D element functions associated with the
boundary nodes of Fig, 2(a) are

0 x,ye1
[lﬁﬂx)lwﬂw z,yell
UXB(z,y)= 110 —,
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Fig. 2. Rectangular Elements at the Boundary
Node in Two-Dimensional Space.
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z, ye=I1

x, ye=IIT (11)
otherwise
z,y=IIT
z, ys1V (12)

otherwise

The element functions associated with the boundary nodes of Fig. 2(b) are

(r@ +—f- v @) Ul zyell
Ugii(z, 3)= (UO—($)+ 7'A”H Ul- (;;)) U-(y) z, yeIII (13)
0 otherwise
(Ur @+ Ur @) 4 U 7 yell
Usis(z, 9)= (U° (z)+— “’ L UN (2 )) —%-I U (y) z,yeIIl
0 otherwise

Finally, the element function associated with the boundary nodes of Fig.2(c) is

Ugii(xy y)={ (
0

(10)~

(15) are constructed such that the trial flux

expansion, Eq. (4), satisfy the boundary con-

The 2-D element functions in Egs.

dition, A special feature of these element func-
tions is that they depend on the expansion
coefficient ¢,y which is priori unknown. In
this sense they may be called the implicit
type. On the other hand, the variational prine-
iple, Eq. (5), accepts the arbitrary flux expa-
nsion as the trial solution of the group diffusion
equation so far as it satisfies the condition of
the continuity across all the internal interfaces.
It doesn’t matter whether or not the trial solution
satisfies the boundary condition.This fact allows
us to construct the element functions over the
boundary nodes in the explicit way. We cons-
truct the explicit type of the element functions

simply by putting yev=— B (rx).

Uy @)+ U @) (U5 o) g U )

z, ye=IIT

otherwise

II1. Numerical Results and Discussions

The finite element formulation as described
above is applied for the computations of the
two-dimensional gross power distribution and
the effective multiplication in the ZION reactor.
The ZION reactor is a checkerboard-loaded
PWR, and representative of the medium-sized
reactor of its kind. Fig. 3 depicts the geometri-
cal arrangements of the reactor components.
Table 1 lists the two-group cross sections of the
material composition.

The finite element computation for the 2-D
power of the ZION reactor is performed with
two types of the boundary-node element functi-
ons; the implicit type and the explicit type. As
for the parameters, s, the composite slab alb-
edo values',? are utilized to represent the bou-
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Fig. 3. Geometry of the Two-Dimensional ZION
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reactor. Table 2 compares the normalized suba-
ssembly power of the finite element computati-
ons with various other calculations. These resu-
Its indicate that the finite element computations
compare fairly well with the results of other
methods. With the CITATION 7575 compu-
tation taken as the reference, the 1-node-per-
fuel-assembly finite element computation with
the implicit type of element functions results
in the core-mean relative errors of 1.02% in
the subassembly power ratios while the same
computation with the explicit type of element
functions gives rise to the corresponding error
of 0.85%. The computation with the reduced
mesh width, e.g., 2x2 nodes per fuel assembly,

f _

Fil‘ﬂt Core 16368 | Logant | 1SR | tadh 0.7 u.‘;‘)gﬂ
EAE I g L
141, . 1.5%616 | 1. 1.3856 1,5510 0,84 0.5191
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1.2453 0.7232 | 0.2961
numerical integration.’,? In this application,’ 12 T
0.5349
however, an empirical factor 1.3 is applied to Vs | ouains | 15k
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the neutron reentrance effects. T e =
. ¢ | re o =
Figure 4 shows the results of the present 5| Fereis e 2
finite element computations for the normalized Fig. 4. Normalized Subassembly Power Distribut-
subassembly power distribution of the ZION ion of the ZION PWR
Table 1. Macroscopic Cross Sections for the Two-Dimensional ZION Problem
Region Group D(em) Za(cm™1) v3(em™1) Sz (em™)
1 (2.259% enriched fuel) 1 1. 41760 0. 02597 0. 00536 0.01742
2 0. 37335 0. 06669 0. 10433 —
2 (2.8% enriched fuel) 1 1. 41970 0. 02576 0. 00601 0. 01694
2 0. 37370 0. 07606 0.12472 —
3 (3.3% enriched fuel) 1 1. 42650 0. 02560 0. 00653 0. 01658
2 0. 37424 0. 08359 0.14120 —
4 (baffle) 1 1.02130 0. 00322 0.0 | 0o
2 0. 33548 0. 14596 0.0 | —
5 (reflector) 1 1. 45540 0. 02950 , 0.0 0. 02903
2 0. 28994 0. 00949 0.0 —
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Table 2. Comparison of Finite Element Computation for the Normalized Assembly Powers
With Other Computations
Present Computation
Method CITATION*| PDQ-5* CHD*
Implicit Type Explicit Type
No. of unknowns 5625 1936 348 227 775 227 775
per group (75%75) (44 x44) A0x10) 9™ x97) (16~%x167) (9™ x97) (167 x167)
Assembly Number Average Assembly Power
1 1. 6271 1. 6361 1. 6524 1. 6368 1. 5647 1.6106 1.5616
2 1.7590 1. 8002 1.8108 1.7951 1.7120 1.7702 1.7090
3 1. 5320 1.5387 1.5524 1. 5400 1.4915 1.5244 1. 4896
4 1.5519 1. 5856 1. 5918 1.5824 1.5419 1.5739 1. 5410
5 1. 2537 1. 2560 1. 2623 1. 2582 1. 2510 1. 2576 1. 2511
6 1. 1587 1. 1758 1.1742 1.1772 1.1781 1.1812 1.1787
7 0. 8039 0. 7904 0. 7896 0.7991 0.8141 0. 8033 0.8146
8 0.5115 0. 4954 0. 4871 0. 5098 0.5197 0. 5083 0.5191
9 ‘, 1. 5800 1.5873 1. 6025 1. 5886 1.5290 1. 5692 1. 5266
10 ) 1. 6563 1.7051 1.7038 1.6911 1.6308 1. 6765 1.6290
11 1. 3945 1.3990 1. 4087 1. 4001 1. 3768 1. 3942 1.3761
12 1. 3556 1.3818 1.3841 1. 3801 1. 3659 1. 3806 1. 3661
13 1.0372 1.0318 1. 0339 1. 0359 1. 0460 1. 0400 1. 0466
14 0. 9166 0. 9230 0.9186 0. 9296 0. 9389 0. 9347 0. 9395
15 0. 4790 0. 4786 0. 4705 0. 4913 0. 5038 0. 4904 0. 5033
16 ! 1. 4452 1. 4490 1. 4603 1. 4499 1.4195 1.4417 1. 4186
17 [ 1. 4664 1. 4966 1.5023 1.4932 1. 4681 1. 4907 1. 4679
18 1.1831 1.1813 1.1859 1.1821 1. 1863 1. 1850 1. 1868
19 1.0779 1.0903 1. 0878 1. 0901 1. 0983 1.0961 1.0992
20 0.7262 0.7092 0.7078 0.7150 0.7337 0.7198 0.7344
21 0. 4455 0. 4285 0. 4206 0. 4367 0. 4502 0. 4364 0. 4499
22 1.2447 1. 2439 1. 2493 1.2432 1. 2445 1. 2453 1. 2449
23 1.2123 1. 2255 1. 2257 1.2224 1.2311 1. 2287 1.2321
24 0.9001 0. 8872 0. 8869 0. 8869 0.9101 0. 8936 0.9111
25 0.7216 0.7123 0.7067 0.7183 0.7338 0.7232 0.7343
26 0. 3233 0.3013 0.2911 0. 2942 0. 3153 0. 2961 0. 3153
27 1. 0777 1.0749 1. 0747 1.0730 1. 0963 1.0814 1. 0975
28 0. 8526 0. 8401 0.8379 0. 8350 0. 8674 0. 8440 0. 8685
29 0.5340 0.5104 0.5019 0. 4894 0.5349 0. 4945 0.56354
30 0. 6682 0. 6516 0. 6462 0. 6584 0. 6816 0. 6649 0. 6822
31 0.3277 0. 3042 0. 2947 0. 2936 0. 3259 0. 2965 0. 3261
* data from ref. 4
reduces these errors further to the order of adopted for the boundary nodes. From the sta-

0.4%. As for the k., the present computations
predict it with the mean relative deviation of
less than 0.05% regardless of the mesh width
and the type of element functions.

The computational accuracy did not show any

dependency on the type of the element functions

ndpoint of the computational time, however,
the explicit type of element functions have the
slight advantage over the implicit type of elem-

ent functions.This is because the latter contains
the
nodal points along the core-reflector interface and

the Cy, the fast to thermal flux ratio at
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Table 3. Summary of the Results for the Two-Dimensional ZION Problem
CITAT- Present Computation
Method TON* PDQ-5* | CHD*
Implicit Type Explicit Type
5625 1936 348 227 775 227 775

No. of unknowns per group (75%75) | (44x44) | (10x10) | (97x97) |(16”X167)| (97 x97) (16~ X 167)
Effective multiplication factor Fkess 1. 27508 1.2749) 1.27469) 1.27486f 1.274520 1.27456] 1.27449
% deviation in kats — 0.014 0. 031 0.017 0. 044 0. 041 0. 046
Maximum relative errors in power

density (%) — i 7.171 | 10.07 10. 41 3.835 9.521 4. 026
Core-mean relative error in power =

density (%) — 0.906 1.375 1.018 0. 342 0. 832 0. 358
Convergence criteria 4x107Y  4x107% 1.7x1074 107 4x107¢ 1074 4x107¢
Number of iterations — — — 124 111 89 109
Computing time (sec) — — — 298 926 200 907
Computer system — — — | CDC6400] CDC6400] CDC6400] CDC6400

* data from ref. 4

this ratio must be updated repeatedly during
the course of the outer iteration. The difference
of the computing time shown in the 7th row of
Table 3 is due to the additional computation
required for updating the Cu’s in using the
explicit type of element functions.

IV. Conclusion

The major advantage of the finite element
formulation presented in this paper stems from
the fact that it involves the relatively fewer
number of the unknowns in comparison with
the usual formulation which includes the refle-
ctor region into the explicit computational mesh.
Since it involves the fewer unknowns, the lower
computer memory and the less computing time
is required for the gross power computations.
In the case of the ZION reactor, it is observed
that the present formulation saves the computer

storage requirements by roughly one-fourth and

the computing time by more than 10%.In view
of this saving as well as the good computational
accuracy, the present finite element formulation
remains promising as an efficient computational
method for the multi-dimensional power comp-

utation.
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Appendix A. Variational Expression for the Weak Form of Group

Diffusion Equation

Consider a functional Fa((¢l, (¢*]))

Fy= J2dv{(¢*37(2,1($]+7(¢*1(DI7 (4]}
$o ()T 0w Z ] (¢]dv

%}Isds[gﬁ* (rs)) [13:] [¢ (rs)])
51T (02 ,] (9] dv.

-
(A-D

Taking an arbitrary variations in argument func-
tions of Fs, we can show that the Ist order variation
8Fy is given by
8Fy=F4(($+3¢), [p*+9*)) —Fa((g], ("D

={[ wormrama)”
{§ ,wsrr{—r- D+ ca1-F 0wz, 3}8dv
+3 { g* 01 (DI Tp(r) nt
(I (roNds
+ { pyr{—r- D+ (a1—Lrnz gt
+5 {, GHTUDINF* ) nt (BT (9 (r))ds

+0(?}.
0(9%) denotes the second order term in the arbitrary
variation in d¢, or d¢F. The stationary value of
Fy is denoted by A
From Eq. (A-2), it is clearly seen the condition

that the first order variation d6Fs vanishes for a

completely arbitrary variation in (¢) and [¢*] leads
to the original group diffusion problem with the

albedo-type boundary condition and the adjoint

problem alike. Finally, noting
(6¢*)77- (DI () =r-[8¢*)T(DIF (4]
—p6¢*IT(DIr(p]

and
§, 7w dv
=3 | puos D) nds,
we find
oFa=0= | ((ap)7 (41— S (w2 (9)
+7(5¢*)7(DIr($l} dv

+5 j oI (BI$(r)) ds (A-3)

+ | (BT (Ca-Fw2A") %)
+r (3417 (DI (¢*]}dv
+5 { (0pr237 (1T (r))ds.

Eq. (A-3) is the weak form of the group diffusion

equation equivalent to the original group diffusion
problem with the boundary condition specified by
Eq. (2).



