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Abstract

Computational accuracy of the modified Borresen’s coarse-mesh diffusion theory scheme is

investigated with the steady-state solutions of the two- and three-dimensional LRA-BWR bench-

mark problem. By comparing the numerical results available for the critical eigenvalue and
power distribution of the LRA-BWR, it is shown that the modified scheme is capable of

predicting the power distribution of the multi-dimensional BWR problem with an improved.

accuracy.
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I. Introduction

The previous studies on the Borresen’s 1.5
group diffusion theory scheme(™¥ indicate that
the scheme offers a simple and inexpensive
calculational method for the static LWR analysis
problems but that the treatment of the thermal
group flux ne.d be modified in order to obtain
the improved accuracy of the LWR computations
without impairing the computational efficiency

of the original scheme. The author proposed
the modified Borresen’s coarse-mesh“5 scheme
in which the fine structure effects of the
thermal flux distribution within the individual
spatial node are taken into account, and the
node-dependent thermal group weight factors
are used, for computing the node-average
thermal group fluxes. It has been demonstrated
that the modified scheme can bring about a
significant improvement in the computational
accuracy of the two- and three-dimensional IAEA
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benchmark problems.

The purpose of this article is to present a
further investigation on the computational
accuracy of the modified scheme with regard
to the multi-dimensional LRA-BWR problem ¢-7
which has become a useful benchmark problem
for testing both the static and dynamic BWR
analysis models. In the following, the brief
outline for the essential modifications incorp-
orated into the Borresen’s scheme is described.
Then the numerical results for the LRA-
BWR problem are discussed in terms of the
numerical accuracy and efficiency. Possible future
applications of the modified Borresen’s scheme

are also indicated.
II. Computational Method

The equations to be solved in the modified
Borresen’s coarse-mesh scheme are the nodal
coupling relations for the diffusion density of
fast neutron group, ¥;= v D¢,
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where the node-average fast flux, ¢;=¥:/ VD,

is enumerated using an interpolation formula,
Fi=bpi+ 26( S+ R- T, @
3] 7

with the internodal surface flux ¢/ given by
the first-order finite difference approximation,
. b4 Db
po= DR Bl ©)
The notations in the above have the same
meaning as in references (1,4,5) except g,
which is defined by
V;'Zli
‘L'ST
Solution of Eq. (1) requires a successive

updating of the node-average thermal flux. As

4
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proposed in the original method, this- is done
by assuming the interpolation formula similar
to Eq. (2) but with the node-dependent thermal

group weight factors, &,; and c;,
an‘zbn‘(ﬁu-i-2°C¢iQZ¢u"+R'ZA¢u’A> &)
45 2

The ncde-center thermal flux is determined by
using the Borresen’s assumption of the asym-
ptotic thermal flux distribution, which is equi-
valent to the relation,

ui=(2,:/Zs) @i (6)

As for the nodal interface thermal flux, ¢,/,
the first-order approximation like Eq. (3) is no
longer utilized. For in the coarse-mesh applica-
tion the first-order approximation is not likely
to provide an adequate description of the
thermal spectral effect, particularly where strong
thermal flux gradients can take place due to
the presence of rodded fuel assemblies. In the
modified Borresen’s scheme, therefore, it is
proposed to adopt the following analytical
procedure in order to obtain an improved
approximation for ¢/,

Consider a one-dimensional thermal group
diffusion equation for a two-region slab repre-
senting two adjacent half nodes;

~D,;vd%%§£L+ Zaipu(x)=S;
for —h/2<2<0

2, ;
’—Dtjﬂjé'z(ﬁ’l"zuij‘ptj (#)=38§;

for ngs—g— (7a,b)
with the boundary conditions,
$u(—h/2)=¢1i=8:/Zu;
G1j(R/2)==:j=8;/Zas; (8a, b)
and the interface continuity conditions,
0 (0)=¢,;(0) =6/
~ Dy’ (0) = — D¢, (0) (9a, b)

Solving Eq. (9) on the assumption that the
slowing down source, S, is determined by the
node-average fast flux across each node, we

find the analytical expression for the mnodal
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Fig. 1. The LRA-BWR Kinetics Benchmark Problem

interface thermal flux,

e Wit Wigh; (
¢IJ]“‘ m+ W; - \10>

where
W,=D,;K;/tanh (K;h/2)
with Ki= /D, /3.
Eq. (10) is the desired analytical expression
for the thermal group flux at the z-directed

dimensional thermal group problem in the y
and z direction, similar expressions are obtained
for the thermal group fluxes at the y- and z-
directed surfaces of the node 7.

II1. Numerical Results and Discussions

Numerical effectiveness of the modifications

surfaces of the node i. By considering the one- incorporated into the Borresen’s scheme is
Table 1. Material Properties of LRA-BWR Problem
; :
Region 1 Material ‘ Group, ¢ (Cﬁ ) 5&_1) (c”mz_'fl) { (Ci"lr_l)
1 i Fuel 1 1 1.255 0. 008252 0. 004602 0. 02533
} with Rod 2 Lop.211 0.1003 0. 1092
2 \ Fuel 1 | 1 ) 1.268 C. 007181 0. 004609 0.02767
( without Rod 2 | 0.1902 0. 07047 0. 08675
3 | Fuelz | 1 | 1.259 0. 008002 0.004663 ' 0.02617
with rod | 2 | 0.2001 0.08344 0.1021 |
4 } Fuel 2 ‘ 1 1.259 0. 008002 0. 004663 0.02617
g without rod | 2 ' 0.2001 0.073324 0.1021 |
5 reflector 1 | 1257 0. 0006034 0.0 | 0.04754
‘ 2 0. 1592 0. 01911 0.0

*Axial buckling of 10™* cm™ for all compoéiti;)ﬁs in 2-D problem
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investigated with the computations of critical
eigenvalue and power distribution of the two-
and three-dimensional LRA-BWR benchmark
problem™. Fig. 1 shows the horizontal and
vertical cross sections of the BWR. The reactor
contains a total of 312 fuel assemblies, each
fuel assembly having a width of 15cm. Table 1
lists the two group diffusion theory parameters
that represent the distinct material composition
of the fuel assemblies including the reflector.
The static computations of the LRA-BWR
problem are conducted for two different core
configurations; one with the control rods inserted
and the other with the control rods withdrawn.
Shown in Figs. 2~4 are the normalized assembly
power densities obtained from two- and three-
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dimensional computation. For the purpose of
computations available for the assembly power
densities of the LRA-BWR are also presented.
Fig. 2 shows a comparison of two-dimensional,
octant-core computation of the modified Borre-
sen’s scheme and solutions of the fine-mesh
finite difference KIDD code and the nodal
expansion IQSBOX code® for the mnormalized
assembly power densities and k.;; of the LRA-
BWR with the control rods inserted. Table 2
presents a summary of comparison of the two-
dimensional computations with the reference
solution of the KIDD code,'? which is obtained
with the width of 0.75cm. It is noted that the
modified scheme with one node per fuel assembly
predicts the assembly power densities with the

. bl 4128 0,511 0.7902 1.3824 1.658 1.,4808 0.9260
8.2%_(1)8 8.%%3 8.&16 8.2156 0.388 1.%896 1.6323 1.484 0,319
0.6295 0.4399 C.4197 0.5154 0.7688 1,3750 1.6314 1.4781 0.9588
0.6154 0.4285 0.4063 0.5048 0.7724 1.3998 1.6723 14746 0.9153

0.3992 0, Lob4 0.4900 0.6698 0,9398 1.1514 1.2802 0.8689
0.403 0.409 0.493 0.674 0.941 1.150 1.285 0.862
0.3984 0.%070 0.4861 0.6523 0.9104 1.105% 1,2984 0.8981
0.3907 0.3987 0.4818 0.6588 0.9206 1,1238 1.28382 0.8582
0.4237 0.4916 0.6176 0.7822 0, 9668 1,1721 0.8284
0,427 0.495 0.620 0,785 0,967 1.173 0.821
04214 0.4864 0.6104 0.7808 0.9559 1,2124 0.8623
0.4155 0.4833 0.6099 0.7770 0.9576 1.1878 0.8204
0.5519 0.6776 0,8428 1,0223 1.2203 0.8%5
0.555 0.680 0.845 1,022 1,221 0.846
0. 5647 0.6685 0.8409 1.0097 1,2585 0.8857
0.5541 0.6715 0.8405 1.0165 1,2611 0.8496
0.8635 1,1519 1.3398 14204 0.9341
0.866 1.150 1.334 1,422 0.924
0.8383 11154 1,2842 1,54425 0.9566
0.8569 1.1397 1.3212 1.4439 0.9340
keff
Ref. FDM Comp. 0.95640 1,8483 2.0480 1.6790 0.9735
NEM with 5th Order Polynomial 0.99636 1.857 2.0% 1,675 0.965
Modified Borresen with lnode/F.A. 0.99736 1.8376 2,0172 1.6779 0.9865
Modified Borresen with 4 nodes/F.A.  0.99751 1,8964 2,0948 1.6986 1.0030
A Ref, FDM 2,1592 1,6225 0.8504
B NEM 2.161 1.614 0.8%
c 1 Node/F. A. (15 x 15 cn) 2,119 1.6390 0.8673
b} 4 Nodes/F.A. (7.5 x 7.5 cm® 2,2040 1,6406 0.8406
1.3332
1.311
1,3916
1.3588

Fig. 2. Normalized Assmbly Power Densities for the Two-Dimensional Static LRA-BWR Benchmark

Problem with Control Rods Inserted.
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Table 2. Summary of Results for the Octant-Core, Two-Dimensional LRA-BWR Problem

Method [‘ Original Borresen Modified Borresen
Mesh width, cm é 15 7.5 15 7.5
Number of nodes per fuel assembly J 1 4 1 4
Eigenvalue, k.sf } 0. 99843 0. 99856 0.99726 0.99751
Maximum/mean® relative errors in | 9.98/3. 49 4.60/1.87 4.38/1.87 2.60/1.33

power densities, % r

Relative error® in k.rs, % ; 0.20 0.22 0.10 0.11
Execution time, sec (Computer System) i 2.4 13.4 2.7 13.4

(a) The reference power densities and k., -
0.75cm mesh width.

maximum and mean relative errors of 4,799
and 1.939%, respectively. It is also noted that
computations with four nodes per fuel assembly
brings down these errors to 2.65% and 1. 33%.
As for the effective multiplication factor, the
two computations predict almost identical results

with the relative errors of roughly 0.10%.

Figures 3 and 4 present the three-dimensional

results of the modified Borresen’s scheme and

the two-dimensional

results of the fine-mesh

ane taken from the computation of the KIDD code w;};

KIDD code for the normalized power densities,
which are computed in the octant-core symmetry
and the quarter-core symmetry, respectively.
Examination of these results indicates that the
three-dimensional computations of the modified
scheme predict the power distribution of the
LRA-BWR with the numerical accuracy similar
to that observed already in the two-dimensional
computations.

The computational accuracy of the modified

T
0.6108 0.4403 0.4123 0.5116 0,7902 1,382 | 14583 1.4808 0,9260
0.6483 C.4266 0.4043 0.5009 0.7608 14456 T ol 1,5028 0.9374
0.6238 2. hz9y 0.4069 0.5057 0.7748 1.4177 <4921 1.4813 0.5097
T
.3992 0.4064 0.4900 0.6698 0.9398 145t | 1,2802 0.86245
2.3830 0.3901 0.4692 0.6374 0.8993 1,0913 1,3083 0.8725
02,3914 0.3988 0.4819 0.6599 0.9223 1,1246 1,2924 0.8516
0.4237 0.491€ 0.6176 0.7822 02,9668 11721 0,8284
0.4032 04674 0,5912 0.7614 0.9330 1.2137 0,8338
0.4151 0.4827 0.6094 0.7764 0.9560 1,1888 0.8125
0.5519 0.6776 0.8428 1.0223 1,2203 0.85+5
0.5248 0,6489 0.821% 0.9375 1,2619 0,8576
0,531 0.6703 0.8391 1,0138 1,2409 0.8406
0.8635 1.1516 1.2393 1.4204 0.93%1
0.8225 1.1069 1.2736 1,4489 0.9320
! 0.8559 1,1383 1,3131 1,642 0.9241
1.8483 2.,0480 1.6790 0.9735
1,9385 z,1248 1.7121 0.9821
1.9121 2.1096 1.6982 0.9756
keff ~
Ref. FDM Comp. 0.9964C Z.15%2 1,6225 0.8504
Modified Borresen with 1 Node/F.A. 0.99857 2.z230 1.6674 0.8376
Modified Borresen with 7.5x7.5x15 em  0.99759 2,2162 1.6361 0.8259 |
A Ref. FDM Comp. 1.2332
B Modified Borresen with 15x15x15 cr. 1.3090
C Modifled Borresen with 7,5x7.5xi% on 1.3432

Fig. 3. Normalized Assembly Power Densities for the Three-Dimensional Static LRA-BWR Benchmark

Problem with Control Rods Inserted.



140 J. Korean Nuclear Society, Vol. 15, No. 2, June, 1983
0.1922 0.1515 0.1671 0.2385 0.4002 0.7286 0.9042
0.1857 | 0.1353 | o0.153% | o0.2227 | o0.3718 | o.7%o1 0:3165 8'3325 g
0.1876 | 0.1421 | 0.1595 | 0.2300 | 0.38%2 | 0.73% | 0.9085 | 0.8266 .
0.1456 | 0.1463 | 0.1763 | 0.2485 | 0.375% | 0.5580 | o0.721 3
0.129% | 0.1302 | ©.1593 | 0.2292 | o.%58 | 0.5218 0:2772 82%@%
0.1362 0.1381 0.168¢ 0.2389 0.3633 0. 5400 0.6979 0.84€2 |
0.1475 0.1628 C.2¢56 0.2903 0.4245 0.6008 0.8097 3E ‘;
5 C. 25 . . . .8097 | 1.03€
0:1335 | o/tuso | clism | 012649 | 034 | o.5729 | o.pven | 1lonee !
0.1398 | o.1584 | c.10m c.2800 | 0.4137 | 0.5914 | 0.7980 | 1.05%0
0.1920 | 0.2090 | o0.2641 | 0.3818 | 0.5799 | 0.851% | 1.1771 | 1.s20 1
0.1752 | 0.1883 | 0.23%6 | 0.3503 | 0.5403 | 0.8z | 1.1287 1.205:2 1.
0.1829 | 0.1993 | ©0.2537 | 0.3705 | o0.5688 | o.us2 | 1.1689 | 1.s672 | 1.
0.299%% | 0.2907 | 0.3520 | o.s224 | 0.8611 | 1.4069 | 1.980 24902 | 1 !
0.2698 | 0.2621 | 0.3229 | o0.4857 | o0.8013 | 1.3259 1.8552 2:559;4’7 1
0.2830 0.2779 6.339%5 0.5107 0.8476 1.3849 1.9484 2,5507 1
0.5210 0.4050 0.lsig 0.6789 1.2292 24327 3.4216 4.,1076 2
5 . . . . . 8074

0.5098 0,3672 0.9234 0.6474 1.1648 2.5199 3.5211 u.w&; 3 oaég
0.515¢ | 0.3856 | o.43% | 0.6683 | 1.2057 | 2.5055 | 3.5218 | 4.2816 | 2.95ce
0.6279 0,4984 0.5568 0.8152 1.4153 2,6788 3.6000 4.0418 2,617

. . . . . . 6177
0.2079 0.4478 | 0.5149 | 0.7636 | 1.3155 | 2.7269 | 3.6651 | 4.4232 z.&’s':'/-
0.6179 | 0.4722 | 0.5383 | 0.7965 | 1.3766 | 2.7363 | 3.6704 | 4.1823 | 2.70&:
0.5682 | 0.5626 | 0.6695 | 0.9418 | t.h244 | 2.0806 | 2.484 2.5888
0.52 | 0.%463 | 0.6603 | 0.9207 | 1.9885 | 2.0372 2.456(5) 2:2818
0.5485 0.5506 0.6625 0.9387 1.4231 2.0706 2.,4684 2.5606
0.3595 0.3858 0.4709 | 0.6435 0.8982 1.1% 1.18
0.3430 | 0.3663 | o.s477 | 0.6080 | 0.8435 1.0733 1:0733
0.3400 | 0.3655 | 0.9t 0.6182 | 0.8695 | 1.1139 | 1.0960

'q

Ref. FDM Comp. A 1.81;;53
Modified Borresen with 15x15xi5 cm B 1.01972
Modified Borresen with 7.5x7.5x15 cm [ 1.01763

Fig. 4. Normalized Assembly Power Densities
Problem with Control Rods Withdrawn.
Borresen’s scheme is much higher than that of
the original scheme. As summarized in Table 2
already, the core power prediction of the
modified scheme has much lower maximum and
mean relative errors than that of the original
scheme. In quantitative terms, Table 2 shows
that the numerical accuracy of the modified
scheme with one node per fuel assembly is
comparable to the computational accuracy of
the original scheme with four nodes per fuel
assembly. From the standpoint of the computing

time, the modified scheme does not impair the
computational efficiency of the original scheme.
The last row of Table 2 shows that two
schemes require about equal execution time in
computing the core power and the multiplication
factor. Table 2 does not show the computing

for the Three-Dimensional LRA-BWR Benchmark

time required for the reference KIDD computat-
ions, yet it must be noted that about 4,000
seconds are spent for obtaining the reference

KIDD solution with the mesh width of 0. 75cm.

IV. Conclusion

The chief advantages of the Borresen’s coarse-
mesh scheme stem from the fact that it involves.
the relatively fewer number of the unknowns.
What's more, the iteration matrix given by
Eq. (1) has a very simple structure in that
the off-diagonal elements are either unity or a
constant. These facts considerably reduce the
computer storage requirements and the compu-
ting time as well. With the improved computa-

tional accuracy achieved by the modifications.
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in the treatment of the thermal group flux, the
scheme offers a useful calculational method of
the LWR physics problems, particularly for
those in which the detailed 3-D computations

are essential.
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