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Abstracts

The success of coarse-mesh nodal solution metheds provides strong motivation for finding
homogenized parameters which, when used in global modal caleulation, will reproduce exactly all
average nodal reaction rates for large nodes. Two approximate theories for finding these ideal
parameters, namely, simplified equivalence theory and approximate node equivalence theory, are
described herein and then applied to the PWR benchmark problem.

Nodal code, ANMY, is used for the global calculation as well as for the homogenization
calculation. From the comparative analysis, it is recommended that homogenization be carried out
only for the unique type of fuel assemblies and for core boundary color-sets. The use of
approximate homogenized cross-sections and approximate discontinuity factors predicts nodal powers
with maximum error of 0.8% and criticality within 0.19% error relative to the fine-mesh KIDD?

calculations.
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I. Introduction

L 1. Overview

The accurate determination of the behavior
of the neutron population is an essential task
in the design and analysis of nuclear systems.
In thermal reactors, the mean free path length
of the neutrons is comparable to the scale of
the heterogeneous structure of the assemblies.
This causes a strong spatial variation of the
neutron spectrum and flux density. Therefore
it is not possible to perform a global 2- or 3-
dimensional reactor calculations taking into
account all these heterogeneity and spectral
effects explicitly. In many reactor calculations,
detailed pin-cell powers are not directly sought,
whereas less detailed quantities such as K.
and average assembly powers are of primary
importance. Consequently, nodal methods which
regard the averaged quantities directly as
unknowns become to draw keen attention.

Nodal methods generally assume that nodal
homogenized parameters (cross-sections and
diffusion coefficients) are constant in each node.
Thus the application of these methods to realistic
reactor problems requires the evaluation of
homogenized nodal parameters. Ideally, homog-
enized parameters are sought, which enable
solution of the nodal equations to match (in a
node-average sense) a solution obtained with
all heterogeneities explicitly modeled. The
success of nodal methods depends largely on
the accuracy with which these ideal homogenized
parameters can be approximated. In this re-
search, homogenization methods for the PWRs
are investigated in various aspects and then
applied to the benchmark problem.

L 2. Nodal Homogenization Method

An important advance in nodal homogeniza-
tion theory was made by Koebke®, who was
able to define a formally exact set of homog-

enized parameters. Smith® modified Koebke’s
theory somewhat by defining a simpler set of
exact homogenization parameters and inves-
tigated practical ways for approximation of
these exact parameters. A homogenized few
group neutronic description of the homogeniza-
tion area is entitled “equivalent,” if and when
the following postulates are fulfilled:

A : The integral flux and integral reaction
rates are conserved in the homogenization
area;

B : The integral net currents and integral
fluxes are conserved at each interface of
this area.

In the exact homogenization theory, additional
equivalent parameters (discontinuity factors) are
needed to the node weighting averaged cross-
sections.

I.3. Analytic Nodal Method

Earlier nodal models which are based on the
1-group or 1 and a half-group nodal balance
equations were incorporated into the FLARE,
EPRI-NODE-P/B, TRILUX, PRESTO and
SIMULATE codes, and these are widely used
by utility companies because of their economic
advantages.

In the meantime, advanced nodal methods
with stronger theoretical foundations have been
devised over the last decade. Advanced nodal
methods rely on systematic procedures for the
determination of the spatial coupling relations
which are needed between node-average fluxes
and surface-average currents without relying
on empirical adjustments. These methods derive
the flux-current spatial coupling equations by
decomposing the three-dimensional neutron
balance equation in each node into three coupled,
one-dimensional equations and solving each
one-dimensional equation with an approximate
spatial shape assumed for the transverse leakage
term. Most nodal methods assume this shape

to be quadratic. However, the manner in which
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the one-dimensional equations are solved in
each node, and the way in which the spatial
coupling relations are determined for different
nodes, differ among various nodal procedures.
These include the flux expansion method, the
nodal expansion method, the nodal Green’s
function method, and the analytic nodal method.

In this research, an analytic nodal method
developed by Henry, et al.#=® at MIT are used
as a tool of global calculation and node homog-
enization. The nodal code, ANMY, was
developed and benchmarked in comparison with
Khalil’s thesis®,

The first principle of the equivalence theory
is such that the required mathematical structure
should be applied in the same manner, genera-
ting equivalent parameters or performing suc-
For the
evaluation of calculation results, however, finite
difference method is also used in homogenization
procedure and global calculation as an imple-

ment for the conventional method solution and

ceeding global reactor calculations.

reference solution.
I1. Nodal Equivalence Theory

I1. 1. Nodal Balance Equations
In the power distribution analysis, fuel deple-
tion is assumed to be a quasi-static process.
Exact neutron balance equation can be derived
from integration of the time-independent neutron
transport equation over all directions Q.

p-] (6, B)+ 5ue, B)$(r, B
= [ 4B (S E~E)
+ LM, BB} ¢z, B) @0
where
M(z, E'~E)=LX(EW L, E)
(! apz. e B~E

An exact balance equation in node variables
can be obtained by integrating Eq. 2.1. over a

ZS« (Zy EI —')E> =

nodal volume Vi and an energy range 4E,.
h' hk (]guk j;uk) +h'hk (]g'g]k :yk)
+RR(T5— T 55 + Vi Dginbisn
G 1 -
=Vinl(Dgerint TMeg i) baie (2.2)
C.gr=1
where
b=z —2;
h=y;11—9;
K=nun—=

Vin=hihiht

Pain= ‘}ijk fvd3f¢g(r)

#e =, dE}G E)

J e =] giie (Xi®)
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Timty = [ o [ e
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flux-weighted, node-volume-

Heterogeneous,
averaged cross sections are defined as

Zgz’tuk"— fV kd3r2ag (7“) ¢g (Z')
¢gz ik Vuk

If the heterogeneous nodes are ideally charac-

2.3)

terized by the constant-homogenized cross-
sections in each node (i, 7, %) and energy range
AE,, neuiron balance equation for homogenized

problem are thus
P T @+ g ()
—Z[Zgg/uk Zhom M,mlx;k:l¢:17m(r) (2 4)

This equation can also be integrated over a
node (i,, %) into a homogenized nodal balance

equation.
hshk (]g:’-;hom jxi—j;ahom)
+huht (fg;{’-;ham__ jgi—j;ham)

+’l'h’ (];;I;;ehom ]z—-,lmm)
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hom Thom
+ Viniatn®sn

= Vil (Dt — e i $ (2.9)

where ¢l% and Ju5tom are defined in complete
analogy with their heterogeneous counterparts
as Equation (2.2).

The homogenized cross-sections are valid as
exact nodal equivalence parameters and the
equivalence between the homogenized problem,
Eq. 2.5, and the heterogeneoys (exact) problem,
Eq. 2.2, is conserved if the following equiva-
lence conditions are satisfied.

2hom=2 (2. Ga)
g&'rjkﬁrfﬁ agiitPgiin (2. 6b)
j;i'tj;ehnm jgz]k (2- 6C)

These requirements are extremely difficult to
be satisfied. For example, the value of 3 %5 in
Eq. 2. 6b requires knowledge not only of hetero-
geneous reaction rates, but also of information
on the homogenized flux distribution that results
from the use of the > %%". Thus the calculation
of these homegenized constants is a nonlinear
process.

Solution of the homogenized nodal balance
equation, Eq. 2.5, requires a prerequisite that
additional equations relating the node-average

fluxes ¢¥™ and the face-average currents Ji~

be derived. In the nodal diffusion theory model,

Fick’s law is assumed, i.e.,
Jin(x)=— Z‘iﬁ ¢§’3§'K €] 2.7
where

Zhom — 1 ¥+l z+1
¢guk(x) —W fyi dyf“ dzg.(r) (2.8)

and the diffusion coefficient D%, is spatially

constant in each node.
For direction # and node (7,7, %), the 1-D
equation for the homogenized flux may thus be

written

2 _ -
~Dig L Bl @)+ SRS @
2.9

MZ(Zhgluk Zham Mzrm;uk>¢§:j};com (‘1")

=—Syitom (z)
where

Sih ()= ¥ L} (2) +bhlz-" L (x)

2.10)
Ly () E—Flg' fy’Hd f ‘+ldz——-Jy (r)
(2.11)

I1.2. Approximate Neodal Equivalence Theory

A practical homogenization method called the
approximate homogenization method was devel-
oped by Smith®. For each unique assembly type,
a relatively inexpensive heterogeneous assembly
eigenvalue calculation with zero-net-current
boundary conditons yields a heterogeneous as-
sembly flux, ¢**(z, y, z). With this flux, approx-
imate homogenized cross-sections and diffusion
coefficients (AXS) can be calculated by wusual
flux weighting techniques.

Even if these AXSs are exactly same to the
reference heterogeneous values, the requirements
for Eq. 2.6 will not be satisfied. Nodal diffusion
equations will fail to yield a solution such that
the face-averaged currents are correctly matched.
Thus nodal equivalence model permits the flux
to be discontinuous across each node face by
defining two additonal homogenization parame-
ters per direction per group. These additional
parameters are called “discontinuity factors”,
Approximate discontinuity factors (ADF) which
are obtained from the individual assembly cal-

culation are defined as follows:
¢Z:',}"ke " (@ir1)
¢;;5‘;§m (Zip1)
daitet (z)

PRI ()

(2.12)

ADFf;,=

ADFguk“" (2 13)
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The numerators of these equations are found
immediately by calculating the surface average
of the heterogeneous assembly flux which is

Bt (=) =

3+ .
fyi dyfz: dz¢;i;’k(xﬁ y’ z)

surface-average

2.14)

However, the denominators,
homogenized” assemby fluxes, must be calculated
in a reliable nodal method which is consistent
with global calculation method. These denomina-
tors in the analytic nodal method applied in
this research are given in matrix form.

(P sbom (@)= (ALITEE™ (2]
+ [Buk] [¢5|]okm] [Fuk] [‘Si’-i‘f;",k]
— (Gl ES",’,’:"”'J CHEISERT (2.15)

where
[F ;k] [Cf]k]ax_—‘- [ka]bx—_}_ EE”;JC:-C_

(Gh)=(Cl}(1—ai"—a*)
+ (D51 (— 85— b1 ) + (Ef I (—Cf—CF)
[Huk] [C;Jk]ax++ EDl;kjbx++ EEuk CT+

Five matrices in Equation 2, 15 are defined in
the reference (6). They depend only on the
homogenized nodal cross-sections, mesh spacings
and 2" The only approximation used in the
derivation of Eq. 2,15 is that the transverse
leakage term in Eq. 2,9 is approximated by a
function of average transverse leakages of three
nodes with quadratic polynomials of x.

Using this Equation 2.15, denominators of
Eq. 2.12 and 2.13 can be calculated. By virtue
of this - calculation, the proper interface con-
ditions imposed on the homegenized fluxes can

be written as
h h
ADFgT—I KR ¢;;“?~TJ k(-’to)—“A‘DF;n,, B ::,::2(-”:‘)

(2.16)

When node homogenization calculation is per-

formed for the fuel assembies, the homogeneous
flux is spatially flat from Eq. 2,15 and thus

Pan ™ (@) = PR (T =Pph=0h (2.17)

Therefore, the assembliwise ADF can be ex-

pressed as
ADFghy=05 (%i11) /9ssh (219
and . .
DF =07 (%) [ $giss (2.19)

11.3. Simplified Equivalence Method

The simplified "equivalence theory® is an
apptéximatim to the exact equivalence theory®,
In this approximation, single heterogeneity
factor is introduced as s:mpllﬁed equivalent
parameters (SE). .

SEg= Feri (Tigs) _ daike (xi)
™ (x141) Haem (@)

This flux ratio is postulated to be equal on
opposite sides of the homogenized ‘area. There-
fore, Eq. 2.16 is replaced as

SE§i 1 07280 2 (2) =8E; ; w553 (w0
- (2.21)
It is assumed that only one pair of equivalent

(2.20)

parameters (D5, SEg) is sufficient to describe
the neutronic interaction of an homogemzatlon
area for all spatial directions.

I the equivalent cross-section library is
divided by this SE-parameters, simplified equi-
valent cross-section library is produced.

TS =T, /SE i
D=Din/SE i (2.23)
Now, the homogeneous nodal balance equation

(2.22)

becomes
DL B @)+ Skt (@)

—f(‘Z’ egrih o Zhom Mg uk)ﬁ':'ﬁf(x)

— __Sg;]szE (.‘L‘)

(2.29

where

S (@D = Lyt @)+ LpsE )
S 3 z

(2.25)
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Ly @=—gi [ [ e a0

(2. 26)

]guk(‘t):_ S d O3 () .27

Then, the SE-flux solution of above equations
is related to the equivalent flux solution by:

Ferin(®) =SEj;dhem () (2.28)
This SE-solution conserves the integral reaction
and leakage rates, but not the integral fluxes.
The discontinuity condition (2.21) can now be

replaced the continuity condition:
Bar1, 5 1 (XD = G385 1 ()

Similar to conventional cross-section libraries,

(2.29)

the heterogeneity factor is no longer needed
explicitly. This gives large benefit of using
conventional diffusion code to calculate the
homogenized global problem, compared with the
nodal equivalent methods.

II1. Application of Homogenization Method

IIL. 1. Introduction

Results of global-nodal problems are affected
by the nodal homogenization theory and baffle
treatment method, as well as by the calcula-
tional tool.

Nodal homogenization theory is treated in
two approaches-approximate nodal equivalence
method using AXS, ADF and simplified equiva-
lence method using SE-library.

The usual strategy in nuclear industry for
the presence of the core baffle and the reflector
is to preclude these regions from the nodal cal-
culation and to simulate their presence by the
imposition of albedo conditions at the core
boundaries. Obtaining the albedo values is very
expensive and also cumbersome work to carry
out. In this study, two other models are adopted
hereinafter. One is the explicit baffle method
in which the baffle region is modeled explicitly
as nodes in the nodal solution. And the other
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is the homogenized baffle method in which the
baffle is smeared with reflector material by
means of auxiliary calculations.

To perform the comparative study for various
homogenization methods, a reference solution is
required against which the accuracy of the nodal
method results will be tested. For this purpose,
fine-mesh heterogeneous calculation is carried
out by KIDD? with a two energy group model.

As a realistic, but not so complicated problem,
EPRI-9 and EPRI-9R benchmark problems are
tested.

II1. 2. The EPRI-9 Benchmark Problem

This problem depicted in Fig. 3-1, povides a
fairly accurate representation of the peripheral
regions of PWRs. The EPRI-9 probiem has
one-eighth-core symmetry, and unrodded fuel
assemblies of two different enrichments are
loaded in the core. The heterogeneous geometric
detail of each assembly is shown in Fig. 3-2,
and the cross-sectional data for the various
material compositions are given in Table 3-1.

A rodded version of EPRI-9 problem, called
the EPRI-9R problem, will also be wused for
benchmark calculations. In this problem, a

control rod is inserted into the center assembly

0 21 a2 63 84 (cm ))<

F-2 | F=1 | F—1
7
n+Jg=0 //v\ -~~~ %9=0
F=1 | F=1 baffle
|
2.8cm Z :P—""'
] B
18.2¢cm

I
$

T

X wmer: retlector
1 '

{

Pg=0
Y
* F-2% is unrodded fuel for EPRI-9 problem, but
rodded fuel for EPRI-9R problem
Fig. 3-1. Quadratic Core Layout of the EPRI-9
and EPRI-9R Problem
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| - . waoter only
2l¢ control rod for EPRI-9R
wotrer for EPRI-9
O +uel
| L] L1011
2l cm
Dimension of each cell=1.4cm by 1. 4em
Fig. 3-2. Heterogeneous PWR Assembly Geometry
Table 3-1. Heterogeneous, 2-Group Cross-section Data
Material Group D, (cm) Teglem™Y) Trlem™) v s (em~t) 2 r(em™)
Fuel-1 (F-1) 1 1. 500 0. 0130 0. 0200 0. 0065 0. 0026
2 0. 400 0. 1800 0. 2400 0. 0960
Fuel-2 (F-2) 1 1. 500 0. 0100 0. 0200 0. 0050 0. 0020
2 0. 400 0. 1500 0. 1800 0. 0720
Water (W) 1 1. 700 0. 0010 0. 0350 0.0 0.0
2 0. 350 0. 0500 0.0 0.0
Bafle (B) 1 1. 020 0. 0032 0. 0000 0.0 0.0
2 0. 335 0. 1460 .. 0.0 0.0
Control rod (CR) 1 1.113 0. 0800 0. 0038 0.0 0.0
2 0.184 0. 9600 0.0 0.0

in Fig. 3-1.
IIL. 3. Homogenization of Fuel Assembly
The calculation of homogenized parameters
for fuel assemblies is carried out for three
unique fuel types of EPRI-9 problem-F-1, F-2,
and F-2R assemblies. This is performed by a

finite difference method (KIDD) and analytic
nod@l method (ANM) as a local assembly cal-
culation with n. Jg=0 boundary.

Tables 3-2 and 3-3 show assembly homog-
enized cross-sections and SE parameters, re-
spectively. AXS were calculated by KIDD fine

Table 3-2. Result of Assembly Homogenized Cross-sections Calculated by KIDD

Assembly Group D, eg 2k Y32 fe WS
F-1 1 1. 5150 0. 12098-1 0.21127-1 0. 60117-2 0.24047-2
2 0. 39570 0. 16882 0. 21935 0. 87741-1
F-2 1 1. 5150 0. 93242-2 0. 21126-1 0. 46245-2 0. 18498-2
2 0. 39579 0. 14157 0. 16483 ! 0. 65934-1
F-2R 1 1. 4742 0. 41795-1 0. 18949-1 0. 46316~2 0. 18526-2
2 0. 39048 0.18377 0.17114 0. 68454~1
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Table 3-3. SE Parameters of Fuel Assemblies
using Fine-Mesh Finite Difference

Method
Assembly Group SE
F-1 1 1. 0029
2 0. 9304
F-2 1 1. 0035
2 0. 9395
F-2R 1 1. 0180
2 1. 1699

mesh heterogeneous assembly calculation, and
SE parameters were calculated by Eq. 2. 20 from
dividing the heterogenecous surface flux by the
node average flux which is equal to homoge-

209

neous surface flux as done in Egs. 2.18 and
2.19. Therefore we need no additional fine-mesh
local calculation for homogenized assembly.
Notwithstanding the convenience of simplified
equivalence theory, approximate nodal equiva-
lence theory is more general and reliable ap-
proach. In this method, node AXSs are obtained
by ANM, and ADFs are obtained by ANM code
package” (ANM-ANMED-ADF). These AXS
and ADF can also be obtained by KIDD and
(KIDD-HOMOS-CALAXS)
which are not theoretically consistent with
global calculation tool-ANM. Calculational re-

its subsidiaries®

sults are shown in Table 3-4 and 3-5.

Table 3-4. Results of AXS Calculated by ANM

Assembly Group D, Liag 2k v fe KX 7%
F-1 1 1. 5150 0. 12099-1 0.21126-1 0. 60122-2 0. 24049-2
2 0. 39559 0. 16855 0.21885 0. 87541-1
F-2 1 1.5150 0. 93248-2 0.21125-1 0. 46249-2 0. 18500-2
2 0. 39571 0. 14141 0. 16454 0. 65815-1
F-2R 1 1. 4742 0. 14788-1 0. 18951-1 0. 46323-2 0. 18529-2
2 0. 39153 0. 17981 0. 17201 0. 68805-1
Table 3-5. Results of ADFs Calculated by ANM N
T T T T [ V I
ADF I:Z:I:Z:S:G&,‘IO{
Assembly Group L‘"’T--T—-T*-T-- o1~ ™
center edge 3 : 4,3, _l[ 8 gg
e - - ——+——T—— - anf - ——— - G —
F-1 1 1. 0013 1. 0030 LI I
| I
2 0. 9695 0. 9289 __1_1,?_}._5_' I ;@”O -]
- 1 ) !
F-2 1 1. 0014 1. 0036 3 ! 4.7]8 _; 8 pI3
2 0. 9737 0. 9384 N N 7% 722
5165 epﬁemrls
F-2R 1 1. 0165 1.0173 — = ':‘ - ',f—" n l,; I T
2 1.1977 1. 1574 7.8, 7183 i
_V]/ZZ[ZZ/'ZA?ZZ/YJ AT T
121010 (12014115, 17
IIL 4. Treatment of Baffle and Reflector I __:_ O P A IR S
A method for solving EPRI-9(and EPRI-9R) X ] : : ; : |
1
problem is to model the baffle explicitly as nodal 1 ‘ : * ' : +

regions in the ANM solution. The nodal mesh
layout is shown in Fig. 3-3. The main drawback
is the increase in the number of nodes by a

factor approaching nine over calculation done

Fig. 3-3. Core Nodal Mesh Layout for the EPRI-9
Problem Showing Three Unique Color-
sets Consisting of Fuel, Bafile and
Reflector
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Table 3-6. Comparison of Discontinuity Factors Obtained from Two Hemegenization
Method—FDM and ANM for the haffieReflector Color-sets

Node Caleulation ADF for surface
Group

number Tool left right top bottom
1 a* 1.0882 0.8323 0. 9308 0. 9275
b¥* 1. 1824 0. 8798 1. 0550 0. 9270

13 -
2 a 0. 4953 1. 5631_ 1. 0872 0. 8802
b 0. 3094 1.7138 1. 0410 0. 9525
1 a 1.0012 0. 8536 1. 0012 0. 8536
b 1. 0916 0. 9597 1. 0916 0. 9597

16

2 a 0. 5557 1.5394 0.5557 1.5394
b 0. 3411 1.5339 0. 3411 1.5339

* a : finite difference method using KIDD-HOMOS-CALAXS like as SE parameter calculation

b : analytic nodal method using ANM-ANMED-ADF

with assembly-sized nodes. This increase results
from the necessary extension of the baffle mesh
lines throughout the core and from the need
for smaller nodes. Because of the large number
of nodes, computer storage requirements are
significantly increased when ‘the calculation is
performed for the realistic large power reactors.
An alternative to this problem is the applica-
tion of the homogenized baffle method. The
calculation of homogenized parameters (AXS
and ADF) for baffle-reflector nodes poses some
difficulty, because the usual method of homog-
enization cannot be applied to non-multiplying
nodes. For this reason, baffle homogenization is
performed by color-set homogenization method.
Color-sets are assembly-sized regions composed
of four quadrants of different assemblies. Evalua-
tion of the AXS and ADF (or SE) for baffle-
reflector nodes are performed by these color-set
local calculations with n.Jg==0 boundary con-
ditions. As shown in Fig. 3.3, necessary color
sets for the EPRI-9 problem are three types.
As done in fuel assembly calculation, homog-
enization claculations for the color-sets were

done by FDM (KIDD) and analytical nodal

method (ANM). Color set ADFs were also
calculated by these two methods, ANM code

package” and KIDD code subsidiaries®’. Table
3-6 shows paris of the results of these two
colorset ADF calculations for the problem in
Fig.- 3-3.

By the way, calculation of ADF using the
finite difference method in Table 3-6 is not
consistent with the global nodal method-ANM.

.Since SE-parameters are assumed to be equal
on the opposite surfaces, we must choose a
value from the calculated four ADFs at each
surface in order to use simplified equivalence

Table 3-7. Calculation Method for SE-library
Usage of Baflle-Reflector Nodes

Calculation Fuel node Bafile zggewater
method # AXS SE AXS SE
€1 | LFA | LFA cS | Imter.
C2. LFA | LFA Cs Avg,
c3 CS Inter. CS Inter.
C4 CS Avg. Cs Inter.
C5H cS Avg, CS Avg.
* LFA | AXSs are obtained from: local fuel assembly
calculation.
CS : AXS are obtained from baffle-reflector color-set
caleulation

Inter. . SE Parameters are chosen as a fuel-baffle
interface value

Avg. . SE parameters are calculated as an average
value of four surface ADFs.
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Table 3-8. Summary of Global Calculational
Results from Five Methods Listed

in Table 3-7.

Calculation [ % error % error in nodal power
method # in Kess Max. error | Avg. error
Cl —-0. 064 0. 657 0.332
C2 —0.014 3.416 1.523
C3 0. 100 5. 436 2. 498
C4 0.032 0. 936 0. 384
C5 0.074 3.531 1.561

theory. To establish an optimum SE-parameters
for the baffle reflector color-set, five possible
methods were tested.

As shown in Table 3-8, methods C] and C4
turned out to be appropriate from the five
possible methods. And method C] is known to
be the most desirable since method C4 needs
ineffetual efforts considering the boundary fuel
nodes by color-set. Therefore, color-set calcui-
ations are needed only for the generation of SE-
library for baffle-reflector homogenized nodes.
And SE-parameters for these nodes must be
the value of the interesting surface, i.c., fuel-
baffle inter-face.

IIL. 5. Result of the Global Calculation

To testify the benefit of the simplified equi-

valence theory, a global reactor problem with

211

homogenized baffle boundary is solved by the
fine mesh FDM and assembly
methed. As shown in Figure 3-4, SE-library

sized nodal

has stronger advantage to the relative nodal
power over the conventional homogenized cross-
section library regardless of global calculation
tool. Therefore, we can visualize that the sim-
plified equivalence theory is an excellent homog-
enization method. But this method does not
have strict theoretical basis on the modeling of
flux discontinuity and nodal surface currents.
Analytic nodal method using AXS and ADF is
a far advanced tool in this aspect. In this sec-
tion, utility of ADF is compared with SE
parameters.

Figure 3-5 shows results of nodal power and
Kese
calculation for the explicit baffle problem with

calculated by ANM, coarse-mesh nodal

four nodes per assembly. As a result, the use
of AXS/ADF (ANM package) does mot yield
better criticality and nodal power results than
the use of SE-library (KIDD and its subsidiaries),
but does than the use of AXS/UDF. However,
even the use of UDF (unity discontinuity fac-
tors), i.e., conventional homogenization method,

yields allowable results less than 0.66% error.

For problems in which baffle is homogenized

1. 4444 1.2176 0. 8480

—1.724 —1. 39 1.191
0.222 —0.115 —0.318
0. 249 —0.107 —0. 307

1. 2067 0. 6089 —

 —0.953 4.139—

—0.257 0. 657—

—0. 315 0. 640—

reference Kee:=0. 928003
% error (a)=0.064
(b)=—0.064
(c)=—0.062
(a) KIDD fine-mesh FDM calculation using conventional homogenization method
(b) KIDD fine-mesh FDM calculation using SE-library
(¢) ANM coarse mesh nodal calculation using SE-library

Fig. 3-4. Nodal Power and K.:: Results Obtained by Color-set Baffle-Reflecior Homogenization,

——reference relative power

% error (a)
% error (b)
% error (c)

average % error (a)=2.016
(b)=0.332
(¢)=0.334
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Fig. 3-5. Nodal Power and K. Results Obtained
by ANM Code for Explicit Bafile Prob-
" lem of EPRI-9 Benchmark Problem

Fig. 3-6. Nodal Power and K.:: Results Obtained
by ANM Code for Homogenized Baffle
Problem of EPRI-9 Benchmark Problem
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with reflector, the use of ADF is shown to be
necessary. This is well exhibited in Figure 3-6.
The maximum error in nodal power is reduced
to —0.823%, from 12,212%, and the average
error is to 0,324% from 2.829% by using ADF
instead of UDF. And the use of ADF is better
than the use of SE parameters contrary to the
explicit bafle problem.

AXS and ADF of the fuel nodes at the baffle
boundary were obtained by two ways; one was
by bafle color-set calculation, method (¢) in
Fig. 3-6, the other was by fuel assembly local
calculation, method (d).

Method (d) produces slightly better results
than method (c). Therefore, to get the AXS
and ADF for the boundary fuel nodes from the
color-set is needlessly painstaking, because it
requires more unique nodes than those of the
method (d) shown in Fig. 3-3.

Table 3-9 is a summary of results obtained
from the various ANM solution models for the
EPRI-9 problem. On the aspects of criticality,
analytic nodal method is less advantageous over
the finite difference method as a homogenization
tool.

When node homogenization is performed only
for fuel assemblies, ADFs are simplified by
Egs. 2.18 and 2.19. Therefore, no additional
calculation is required for homogenized node to
solve the Equation 2.15. Since ANM code

packages use this equation, predicted ADFs may
be different from the values obtained by KIDD
assembly calculation using Equations 2, 18 and
2.19. In the calculation of AXS, fine-mesh
FDM (KIDD) calculation will be more reliable
than the fine-mesh ANM (ANM) calculation
which has some inherent assumption. Because
of this reason, fuel assembly AXS and ADF
calculated by ANM are predicted with some
differences in assembly reactivity, and this leads
to a worse prediction in criticality. This trend
spreads to the nodal power prediction in the
explicit baffle problem as shown in Table 3-9.

To verify this effect, method (e) in Figure
3-6 is tested. This method is a hybrid one
in which fuel assembly homogenization is
performed by finite difference method (KIDD-
CALAXS).® However the baflle-reflector homog-
enization is done inevitably by ANM-ADF?".
As shown in Fig. 3-6 and Table 3-9, this
method gives a good result in prediction of
both criticality and nodal powers even though
this method does not keep the consistency
between the homogenization and the global
calculation.

This hybrid method has a greater benefit to
the rodded problem as shown in Figure 3-7.
By using this method, two troublesome regions
are well homogenized. For the rodded assembly,
analytic nodal method cannot carry out homog-

Table 3-9. Summary of Criticality and Nodal Power Results by Salient ANM
Solution Models for the EPRI-9 Problem

% error in | % error in nodal power
Baffle Treatment Homogenization Tool Method
Kets Max. Avg.

KIDD (UDF) (a) in Fig. 3-7 —0.008 —0.630 0.203

Explicit Bafile KIDD (SE) (¢) in Fig. 3-7 0. 002 0.228 0.097
KIDD-CALAXS (d) in Fig. 3-7 0. 002 0.220 0.090

ANM-ADF (e) in Fig. 3-7 0. 056 0.283 0.129

KIDD (UDF) (a) in Fig. 3-8 0.063 12.212 2.829

Color-set Homoge- { KIDD (SE) (b) in Fig. 3-8 —0.062 3.236 0. 605
nized Baffle ANM-ADF (d) in Fig. 3-8 —0.101 —0.823 0. 324
- : KIDD-CALAXS & ANM-ADF| (e) in Fig. 3-8 —0.043 —0.883 0. 364
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Fig. 3-7. Nedal Power and K.:: Results Obtained by ﬁNM Code for llomogemzed Baflle
Problen of EPRI-9R Berichmark Problem :

enization work well because of strong hétero-
genéity around the control rod nodes. Therefore
this hybrid method is the only effective method
to,'px;edict criticality and relative nodal powers
within a proper error bounds. ,
Inadequacy of ANM for fuel assembly nodes
is intensified by the computing time consumed,
as:shown in Table 3-10. But for the - homo-

genized baflle-problem, ANM package is indis-* -

pensable for calculating ADFs of the baffle-
reflector homogenized nodes and for lessening
the errors which may result from.

The use of homogenized color-set baffle treat-
ment needs much more calculation and com-
puting time than the explicit baffle treatment,
but on the other hand it lessens .the time for
global calculation. This effect may..-make - the
homogenized baffle method more beneficial in
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Table 3-10. Summary of Computing Time Consumed by Salient ANM Soultion

Models for the EPRI-9 Problem

(Unit in Second)

Fuel assembly node Baffle & Water node Global
Calculation Model - Total Method
AXS* [ DF*# AXS DF Calculation
Global Heterogeneous|
Fine-mesh FDM - - - - KIDD 1800 1800/ Reference
Conventional Homo- P
genization KIDD 66 — — — ANM 23 89| (a) in Fig. 3-7
KIDD 66 SE 2 — — ANM 11 79 (¢) in Fig. 3-7
Explicit Baffle KIDD 66 | CALAXS 3 — — ANM 22 91| (d) in Fig. 3-7
ANM 394 | ADF 3 — — ANM 22 419] (e) in Fig. 3-7
KIDD 66 SE 21 KIDD 136 | SE 146 | ANM 6 356 (b) in Fig. 3-8
Color-set Homoge- | ANM 304 | ADF 3| ANM 557 | ADF 4| ANM 11| 969| (o) in Fig. 3-8
KIDD 66 CALAXS 3| ANM 557 | ADF 4| ANM 11 641| (e) in Fig. 3-8

* AXS: Calculation for Assembly Homogenized Cross-sections

** DF: Calculation for Discontinuity Factors

the large power reactor problem, in which
assembly number is large but unique color-set
number for baffle homogenization is finite even
though baffle geometry is complex. The most
reliable results are obtained from the hybrid
method as shown in Figs. 3-6 and 3-7.

IV. Conclusion and Recommendation

The coarse-mesh nodal method has been shown
to provide excellent predictions of criticality and
nodal powers for PWRs. For 2-D, non-depleting
unrodded benchmark problem (EPRI-9 problem),
nodal powers were obtained within 0.8% error
and K. within 0,1% error relative to the
fine-mesh reference solution. The use of dis-
continuity factors (SE-parameters or ADF) in
the ANM calculation was shown to be necessary
for accurate prediction -of nodal powers for
problems in which the core baffle is not ex-
plicitly modeled by nodal regions.

Explicit baffle treatment gave an excelient
result regardless of calculational tool and homog-
enization method. But this method needs larger
computing expenses and memory requirement
which limit the applicability for treating large

core problems. And this cannot assure the
accurate prediction of surface average fluxes
since discontinuity factors for baffle node must
be unity. Therefore, this method induces unac-
ceptable errors in detailed flux reconstruction
calculation®.

As an appropriate procedure for the nodal

calculation, the following are recommended:

1. The core and reflector are divided into
quarter assembly nodes.

2. 2-D, fine-mesh homogenization calculations
are run with 2.Jg=0 boundary conditions
for each type of fuel assembly. These
calculations yield AXS and ADF for each
quarter assembly node.

3. 2-D fine-mesh homogenization calculations
are run for color-set regions in the core
periphery to get the AXS and ADF for
homogenized baffle-reflector nodes.

4, The ANM ccarse-mesh nodal calculation
is run to yield the global eigenvalue and
node-average powers.

In the step 2, it is recommended that AXS

and ADF be obtained by finite difference method
instead of analytic nodal method. Finite differ-

ence method offers an accuracy and time saving
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for homogenization without theoretical difficulty.

For the pratical application for the realistic
PWR problems, installation of depletion scheme
and reconstruction scheme is requisite. Evalua-
tions and applications of the depletion procedures
and the flux reconstruction (dehomogenization)
are studied at present, and will be presented in
a foreseeable future.
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