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Abstract

This paper provides a comparative study on methodologies for solutions of the inverse problems

of certain basic fuzzy relational equations, with which fuzzy set is defined as mapping from sets

into complete Brouwerian lattice. Three different algorithms developed so far are discussed and

applied to fault diagnosis problem for the main coolant pump of nuclear power plants.
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1. Introduction

In 1965 L.A. Zadeh formulated the initial
statement of fuzzy set theory. ¥ Since then this
mathematical subdiscipline has gone through a
substantial theoretical development. Correspondi-
ngly there has been a florescence of applications
of this basic mathematical framework to a variety
of fields such as management science, process
control, artificial intelligence, decision making,
languages, biology, systems engineering, man-

machine studies, and more. However, there are
only a few papers in the field of nuclear engin-
eering, but research results begins to appear for
the topics such as fuzzy diagnosis and fault tree
analysis.

Ordinary set theory principle underlies modern
mathematics. Fundamental to this basic set
theory is the notion that an item is either a
member or not of a set like “true or false” of
the two-valued logic. However, the fact is that
in the real world membership in a set is not

always so crisp. Fuzzy set theory is based on a
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recognition that certain sets have imprecise bou-
ndaries. Fuzzy sets or subsets are those ill-spec-
ified and not distinct collections of objects with
unsharp boundaries in which the transition from
membership to nonmembership in a subset of a
reference set is gradual rather than abrupt. This
concept is more appropriate for real environment.

Typically we speak of tall men and efficient
women. Membership in such sets cannot be
characterized definitely, but be more adequately
considered in terms of -degrees of believing. A
fuzzy set is characterized by a membership fun-
ction, defined as a real number in the interval
[0, 1). For example, a membership measure g,
(x) =0. 8 defines that = is a member of set A
to a degree of 0.8 on a scale where zero is no
membership at all and one is complete member-
ship. It is clear that fuzzy set theory can be
reduced to ordinary set theory by constraining
membership to the extremes of the range zero
(false) or one (true).

It has been pointed out that the estimation of
causal relationships between the initial damage
and the end effects in radiation biology based
on fuzzy target theory may be considered as a
problem of fuzzy inference, or fuzzy reasoning
in fuzzy logic. The relations between the causes
and the symptoms used in medical diagnosis are
also treated as more or less fuzzy relations, bec-
ause of the complex nature of human judgement
and the medical, physiological and psychological
factors involved. Such an approach can be ext-
ended to the failure diagnosis of complex indu-
strial systems. Basically, even in a fully autom-
ated plant, the critical diagnostic changes must
be done by the human operators who wusually
express their control and diagnostic strategies
linguistically as a set of heuristic decision rules.
It turns out that for most of the time it is diffi-
cult to convert such qualitative diagnostic strag-
egies into quantitative rules due to the imprecise

nature of such rules. The imprecision is assoc-

iated with the complexity of the system under
consideration. In fact as far as fuzzy control of
comprex industrial processes is concerned, this
matter is now well established that the process
operator may control a complex process more
effectively than an automatic system; when the
operators experience difficulty this can often be
attributed to the rate or manner of information
display or the depth of decision evaluation. In
fact only recently Tsukamoto and Terano®,
Terano, et al.®, Shahinpoor and Wells¥, and
Pappis and Sugeno® have applied the notion of
fuzzy logic to fault diagnosis problems. The
notion is to use all available information inclu-
ding the fuzzy ones obtained by the human
operators to initiate a failure diagnosis. In com-
plex industrial systems, the early detection of
any abnormal state, the diagnosis of the cause
and the suitable treatment are necessary for
efficient operation and preventing from initiating
accidents. Shahinpoor and Wells® have initiated
the fuzzy diagnosis methodology development for
nuclear power plant. They give numerical exa-
mple for realistic reactor plant situations and
specific results of the failure diagnosis for a main
coolant pump.

Before continuing to next section, a fundam-
ental clarification should be made for the reader
that concerns how the imprecision of fuzzy set
theory or possibility theory differs from the imp-
recision dealt with by probability theory®. Ba-
sically the difference is that probability theory
deals with randomness of future events, whereas
possibility theory deals with the imprecision of
current or past events. Randomness deals with
the uncertainty regarding the occurence or non-
occurence of some events, while the imprecision
of fuzzy set deals with the membership or non-
membership of an object in a set with imprecise
boundaries.

A typical probabilistic statement is “there is
a 10 percent chance that the next person in the
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room will be less than five feet tall.” A typical
possibilistic statement is “that man is short.”
The probabilistic statement refers to a precise
set of people under five feet tall. The imprecis-
ion in this case has to do with the event relat-
ing to the next person in the room. The fuzzy
statement is not imprecision here and has to do
with the vagueness of the concept of “short”
itself linguistically.

There is the possibility of combining these
two concepts; for example, “there is a ten pere-
ent chance that the next person in the room
will be short.” Indeed the theory involved here
has been a subject of considerable interest, but
that theory is beyond the scope of this paper.
The point is that the fuzzy concept deals with
a dimension of uncertainty that is quite distinct
from that of probabijity theory. This form of
uncertainty is significant in its own right.

II. Fuzzy Diagnosis Methodology

In order to analyse, prevent, and diagnose an
impending failure in any components or areas in
complex industrial systems, steps should first be
taken to find a relationship matrix between the
causes and the symptoms. In order to clarify
this situation consider a driver of an automobile
cruising 55 mph on a highway, and assume that
he at some time senses a burning smell while
all pertinent logical indicators on his automobile
showing no signs of impending failure. Intuiti-
vely he asserts linguistically as the followings:

(1) A temperature rise; where?; why?

(2) Something is burning; why?; where?

(3) A dangerous situation is developing;how?;
when?,

and he may command linguistically as the
followings:

(a) Slow down the automobile; carefulty

(b) Stop the automobile; immediately

(¢c) Turn the engine off; as soon as possible.

Similar situations may occur for complex ind-
ustrial plants and thus certain linguistic asserti-
ons and commands might be initiated by the
plant operators. Furthermore, where the known
relationship are vague and qualitative, a fuzzy
logic diagnosis may be initiated to implement
the known heuristics. Thus, in such diagnostic
situations the variables are set equal to nonfuzzy
universes which render the possible range of
measurement or magnitudes of actions to be
taken. As discussed and llustrated before, these
variables take on liinguistic values which are
then expressed as fuzzy subsets of the universes.

In the present paper, we intend to elaborate
on the relevance of fuzzy logic in the failure-
diagnosis of industrial plant as a whole or com-
ponents. Below, we present basic idea for fuzzy
diagnosis methodologies that have been developed.
Three different solutions of the inverse probems
of certain basic fuzzy relational equations are
described, and then the results of the solution.
for sample problems are followed.

IL1. Basic Legic for Fuzzy Diagnosis

Let U={z} be a universe of events and let a
fuzzy subset of U be F such that F is a mapping
pr(@) : U=[0,1] by which each z is assigned
a number in a closed interval [0,1]). These
numbers indicate the extent to which z has the
properties or characteristics that are attributed to
F. Therefore, if z is the magnitude of the
reactor core temperature, then very large, VL,
may be considered as a particular fuzzy value
such as the variable core temperature and such
x is then assigned a number vy (z)={(0,1]
which indicates the extend to which z is consi-
dered to be very large. Basically, ps(x) is con-
sidered as the degree of membership of element
x to set A. Thus, ps(x) itself is a set called
the membership set accompanying the fuzzy
subset 4 of U.

The grade of membership indicates the level
of believing on specific symptom. Here, we pos-
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tulate a set of prime formula of basic logic which
is used to derive the basic relations between
causes and symptoms. Let A, B, and C be pro-
positions with the truth values of 2, 5, and ¢,
respectively. We set the following operation rules
for negation, disjunction, conjunction, implicat-
ion, existential, and universal quantification as;

C=not 4

e=l—a

C=A4Aand B :c—min(a,b)

C=A or B : c=max(a, b)

C=A implies B : c=min(1, 1-—a+b)
C=3JkA : e=sup{a’)
C=VkA : c=inf(a’)

where, a’ is any substitution instead of a element
of A, and 3 and V signify “there exits at least
one” and “for all,” respectively.

The prime formula cited above are taken as a
sort of quantified Lakasiewicz infinite logic.
Notice that the definition of implication has the
property that c=1<a<5, in other words, ¢ is
equal to 1 iff (if and only if) a is not greater
than b. However, we have to deal with the case
in which the implication itself is not precise. It
will become apparent that this case is very im-
portant from view point of application. If the
lower limit of the truth value of the implication
itself as ¢=1, then the rule of inference by

modus ponents is given as follows;

ALEE  max(0,a- 1-9<h,

where the amount of (1—¢) may be taken as
the decreass in the truth of the consequent due
to fuzziness in the implication itself. In this
paper, our cconcern is to determine the truth
value of antecedent from consequence and imp-

lication. This will be formally written as;

ﬂB—D—B— ta<min(l, &+ (1—c)),

where ¢ is the lower limit of the truth value of
the implication. The above rule of inference is
taken as the inverse problem.

II.2. Inverse Problem of Fuzzy Relational
Equation

Almost all reports concerning the inverse pro-
blem are fundamentally originated from Sanchez’s
study® on fuzzy relational equation. Before we
state the inverse problem, we define following
definition.

(Definition 1] o —composition.

“Given two fuzzy relation QCUxV and
SCUx W, find RCVx W such that R Q=8"
where o denotes sup-min composition, and Ux ¥V
denotes cartesian product of the fuzzy sets U
and V.

Sanchezs hows an existence condition of the
solutions by giving the least upper bound, lub,
of the solutions. In general, the set of all the
possible solutions for the above problem forms
an upper simi-lattice”. Therefore, the greatest
lower bound, glb, does not always exist.

The inverse problem denotes “given a fuzzy
relation RCUX V and a fuzzy subset BCV,
find all ACU such that A - R=B". Although
it is a special form of Sanchez’s equations, this
fuzzy relational equation is widely used because
of its simplicity and its usefullness in practical
appications.

The problem is stated using sup-min compos-
ition as follows:

Ao R=B; b;)=\/(a;/\rij), for 1<j<n,

D
where b;, r;; and a; are the real numbers which
take the values in the interval [0, 1), and B
and A4 are the row vectors and R is mXn
matrix. In Eq. (1) the symbols “\/” and “A”
signify “disjunction of P and Q such that v
(P\/Q)=max(»(P), v(Q))” and “conjunction
of P and Q such that v(PAQ)=min(v(P),
v(Q)), respectively. The problem to find a; for
1<i<m satisfying Eq. (1) giving r;; and b; for
1<i<m and 1< j<# is called the inverse problem
of fuzzy relational equations.

We first discuss three different algorithms that
solve the inverse problem, and apply these algo-
rithms to diagnose the main coolant pump.
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Algorithm-1%
[Definition 2] w-composition.

q if p>q
pogl { (g, 1], if p=gq
¢, if p<lq.

{Definition 3] @-composition.
s [ (0L, i 5>g
Lg, if p<b,

In the above two definitions, p and g are the
real numbers in the interval [0, 1) and ¢ is a set
characterized by the only two operations as foll-
ows;

¢9N¢p=¢ and $NG=G
for an arbitrary subset G included by the interval
{o,11.

Now, let us show the algorithm to obtain the
sloutions of the inverse problem, For given ry
and b; in Eq. (1), we can obtain the matrices
U and V whose elements #;; and v;; are derived
respectively, as follows;

u;=rio b; and v;;=r;;aob; 2
for each i and 5. Let W (%) be one of the mat-
rices derived from all the different compositions
such that the elements of the j~th column are
defined as;

S for Jlie (7] inf(u;;)=b;}

v, for other i's,
where, in the case of ;=0, simply, w;;=v;;=0
for all #. By % is denoted an index representing
one of the different combinations. Then, the
existence conditions of the solution of the inverse
problem for Eq. (1) are described as follows:

Nu;=¢ for all j (3)

JE(Nwi;(k)=¢ for all i, @

where ¢ is an empty set. Let K be the index
set consisted of all the k’s satisfying Eq. (4),
Then, the solutions of the inverse problem are
written as follows;

a.-(k)Zf;Iw;,-(k), for 1<i<m, VksK. (5)

In general, the above solution - has an upper

bound solution and a number of lower bound
solutions.

The relationship between failures and sympt-
oms could be taken as that of causes and effects.
Let X and Y be the the universal sets of the
kinds of failures and symptoms, respectively as
follows;

X={X;|icM) and Y=[Y,|;=N),
where
M=(i|1<i<m} and N={j|1<j<n).

Let F and § be fuzzy sets characterized by

membership function as;

ke X—[0,1] and As: ¥Y—[0,1]
where the grade of membership of X; and Y;
are assumed to represent the intensity of the
i-th kind of failure and the exactitude of the
j~th kind of symptom, respectively. Further,
assume a fuzzy set denoted by R which is cha-
racterized by membership function as;

ket XX Y-[0,1)
with the understanding that the grade of mem-
bership of (X;, Y;) represents the degree of the
causational relation from the i-the failure to the
j-th symptom.

The values of the membership functions &g
(X:) and As(Y;) could also be interpreted as the
grades to which the statements “the i-th item
is at fault” and “the j-the symptom is observed”
are true, respectively. Similarly, k.(X,, Y, is
corresponding to the statement “the i-th kind of
fault is causationally related to the j-th sympt-
om.” Let these statements be denoted by 4;, B;
and T;;, respectively, and let the truth values
of the statement be a;, &; and ¢;, respectively.

Note that the statement B; says about the
observation or perception of the j-th symptom
by operator, but not about the objective existence
of the j-th symptom. So, the truth value of the
statement “A; implies B,”will depend highly on
the observational conditions. On the other hand,
the causational relation between X; and Y; is
considered to be less fuzzy than that of A; and
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B;.
By ¢#; is denoted Tw(4,DB;), that is, the
truth value of the implication is as follows; if
the i-th item is at fault, then the j-th symptom
is observed. Let us assume that ¢; takes the
value(0, 1] and r; is in the interval(0, 1J.

This simply means that there is possibility that
a symptom will not be perceived when the fault
having relation to it takes place.

Now, let us consider the following two kinds
of compound progositions, P; and P;;, concerning
the relationship between causes and symptoms
as;

P;: B, implies(Ji(R; and A)), 1<j<n,

P;; . A; implies B;, 1<i<m, 1<j<n.
What P; means is that if Y; is observed, then
at least one kind of fault among ones relating
to Y; has occured. Consequently, the truth value
of the proposition P; might as well be equal to
1 for each j. On the contrary, it is doubtful
that the proposition P;; is true. The truth value
will be different depending on the various sorts
of things, for instance, according as a mechan-
ical sensor has the alarming system or not.

Under the assumption, all Tv(P;;)’ s, for icM
and j=N, are specified as follows;

Tv(Pi;) Ztij.
Now, we can formulate the basic relations by
means of the prime formula of fuzzy logic as
follows;

Pj—’OSbjSSEP(min(tii, a)), 1<j<n, (6

P;j—0<a;<min(l, b;-+1—ry) )

% .

for all i=M and j=N, where “>” indicates
one of the logical symbols of implication. ©®
The problem is to find a; for all i=M which
satisfies the inequality relations just formulated
above for given r;;, ¢; and b;, In order to solve
this problem, the following algorithm for the
inverse problem of fuzzy relational equation is
applicable. The lower bound solutions of a; are
obtained by solving Eq. (6) while Eq. (7) will
determine the upper bound of a;. The solution

is obtained as follows;
max (inf (w;; (R"))) Sa;Sn}in (sup(e:)), (8)
for
J e (k] mjax (inf (w;; (&) gmjin (sup(eis))
and k=K) ©))
for 1<i<m, Here ¢;;=[0, min(l, b;+1—7i)].
The relation, Eq. (9), stands for the existence
condition of the solution for this problem. In
general, we will have some different set-valued
solutions which bring about available information
about the possible abnormal state.
Algorithm-2®
[Definition 4] r-composition.

g, it p>q
pra={ (g, 1], if p=¢
@, if p<gq,

for Vp, Ve=[0,1). Where ¢ is a set defined as
the following property,
SNE=E for Ex¢.

Given a matrix B and a vector b, we can
obtain a matrix denoted by W whose element
w;; is given as follows;

w;j=r;; v b, iEM and jeN.,
Let w; and w’ be the i~th row and the j-th
column of the matrix W, respectively. Let ¢ be
an empty set and w¥ be the i-th row of W (%),
where K is the universal set consisting of all
the indices # representing one of the possible
combinations. The matrix w*(%) is one of the
matrices derived from all the different combina-
tions by modifying the column of W as follows;

(w)*=(w)¥, -, HHT, for 1< <,
such that

(w)*=(wh),, for Jlic (i| (w).*¢)

(w) ¥=[0, max((w’)p)], for Ixi.

Then, the existence conditions of the solution of

the inverse operation are written as follows;

N@w)xp, for VieN (10)

Nw¥ (k) x¢, for ViEM and JkeK. (11)
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When the existence conditions are satisfied, the
solution of the inverse operation can be obtained
as follows;

max (inf/ (w* (k) ) ;) <a; (k) <min(sup(w})) ),

for icM 12
and

max (inf (w} (%)) ;) <min (sup(w¥)) . (13)

When the existence condition, Eq. (11), is
not satisfied, fuzzy numbers should be introduced
in order to obtain approximate solutions.

[Definition 5) A fuzzy number Z in L=(0, 1)
is a fuzzy set characterized by membership func-
tion Az as;

hz : L—(0, 1].

A fuzzy number Z may be expressed as

7 A
22 [ 2@/,

where f denotes the union of kz(x)/x’s.

Considering the w;; given in y-composition as
a fuzzy number that is normal and convex, we
can obtain an approximate solution of the inverse

operation in the absence of the exact solution.
Let ;; be

17’:?::_[%0 (z+1—wi)/z+

[L (a+14wy/a, a9
then, an approximate solution denoted by & is
defined as follows;

4= {xifgf(f’)(waj)}, vieM. (15)

Moreover, we define an index representing the
degree of approximation as,
a;=2(1—sug(ﬂ, (wdj), VieM. (16)
x€ j

When ¢;=0 for all i&M, it means the case
where the solution exists for the original inverse
problem. On the contrary, ¢;%( means that there
is some inconsistency in the calculation process
of the inverse operation. Therefore, when this is
the case, the obtained approximate solution &
should be under-estimated. In the context of

fault diagnosis, this means some errors caused by

the detection of symptoms. It should be noted
that the introduction of fuzzy numbers is to be
based on fuzzy set theory dealing with fuzzy set
of type 2,10

In fault diagnosis problem we should consider
that a human operator will very often fail to
detect some of symptoms appearing.

In this case, the use of the complements of
fuzzy sets is necessary to avoid an erroneous
diagnosis.

Denote the complements of the fuzzy sets F
and S by

Feoyai=1—a;, 1<i<m,
Sebi=1—5;, 1<j<n,
respectively. We consider the following equation;

b=\ (@Arij), for jeN. an

Assume that at least one of the symptoms
appearing can be detected when a failure is
caused. Then, in order that we obtain as a sol-
ution of the inverse operation

ai=0, YicM,
it is sufficient that
bi=0, for Jje {j|ri;=0}.
On the contrary, if
b=0, for j=N,
then
ai=0, Vie{i|r;=0}.
Therefore, the inverse operation of Eq. (15) will
be useful to list the possible kinds of failure.

Algorithm-3%

[Definition 6] a-composition.

1, if p<¢q

g, if p>¢
[Definition 7] B-composition.

PP {0, 1f <q

g, if p>¢

{Definition 8) @P-sets.

Given a column vector d@={(ay, as, *--, am)7,
such that a;=d or 0, i=1,---,m, the set @ (a)

pagl {
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of column vectors ¢(a) is defined as follows:
o (@)= (P(a)},
where,

¢(a):(iﬁ19 2529 "t ?M)Ty
¢:=0 or &, 1<i<m, S=a.

Thus, if there are £ nonzero elements in a,
there are & vectors in ¢(a). Note that @ (a) is
defined iff ;=0 or @, Vi.

Given an mXxn matrix R=(r;;], let r; be its
Jj-th column vector and assume that @ ;) is
defined for 1<j<n. Then the set ¢ (R) of mat
rices ¢(R) is defined as follows:

O(R)=¢(R),
where,

O(R)=(p(r), ¢ry), -, drn].
Note that if there are 2z matrices in @ (R),

n
z=[]lz;
j=1
where,

elements in r; if r;20
1 if r;=0.
[Definition 9] 8-composition.

number of nonzero
z =

Given an mX#n matrix R=[r;;] and a row
vector b=(b,, ...b,), then,
R56= [S,‘jj,

;= (k;:ll(rikabh) ) B(ri;pb;), 1<i<m and

1<ji<n,
With given a-, -, and &-compositions and
@ set, the solutions of the inverse problem are
obtained as follows:

235

Given the fuzzy relation R and the fuzzy
subset B, all ufzzy subset A such that A - R=B
are given by

V(¢ (R3b))T<a< A\ (Rab)T,

Y ¢ (Réb) =0 (Rsb), 18)
provided that there exists at least one such A,
where R is the matrix corresponding to R, and
a,b are the vectors corresponding to A, B,

respectively.

III. Applications of Fuzzy Algorithm
to Main Cooant Pump Diagnosis

In order to verify the applicability of three
fuzzy logic algorithms discussed in the previous
section, we present simple problem analyses on
how the failure vector, @, can be estimated when
a symptom vector, b, is given. A computer code,
FUDIA (FUzzy Dlagnosis Algorithm), is devel-
oped for VAX-11/780 computer based on the
previous algorithms. Listed in Taktle 1 are the
definitions of the failure and the symptom vec-
tors @ and b, respectively ™,

The truth value of the above propositions
varies between 0 to 1. The operator constructs
the symptom vector, b, by attributing a number
from 0 to 1 to each categories or components of
the symptom vector, b.

The observation and the relationship matrices
ri; and &; are constructed by the experienced
plant managers and operators. In our case we
assume the following structures for f; and ry;
matrices as follows;

Table 1. Definition of a; and b; for Pump Diagnosis

a;, failure vector

b;, symptom vector

1-blocked flow

2-broken impeller or blades

3-worn bearing

4-foreign objects

5-pressure instruments error, malfunction.

A-high differential pressure
B-low differential pressure

C-high pump noise

D-high bearing temperature
E-high power demand
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(1.0 0.00.01.010

10.01.01.00.00.0
t;=10.00.0 .0 1.0 L.O
0.01.01.00.0 1.0
1.0 1.00.00.00.0
0.80.00.00.6 0.4
0.00.40.00.00.0
ri;=0.0000.40.40.2
0.00.20.40.00.2
0.40.40.00.00.0

Let us recall that ¢;=1 for some i and j

implies that a definite causational relationship
exists between the i-th failure and the j-th
symptom. For example, a blocked flow could be
responsible for a high differential pressure, i.e.,
t;;=1, however it could not create a low diffe-
rential pressure, i.e., £;,=0. On the other hand
the values of r;; for each given set of 7 and j
imply the possibilities or the chances of observ-
ing partially the j-th symptom if the i-th failure
has occured.

In order to apply the three fuzzy algorithms,
three options are available in FUDIA code. The
result of developing a computer code will be
reported separately ™. We select low symptom
vectors and computed causational vectors for the
following two cases.

Case-1: 5=(1.00.0 0.0 1.0 L.OT

In this case, the operator notifies a high diff-
erential pressure, high bearing temperature, and
high power demand with grade of membership
of 1.0 for all symptoms. We get the results
using FUDIA code as follows:

The above results show that each algorithm
gives different indications. In Algorithm-1, all
failure modes are possible with different grades

Algorithm-1
1.0 a; 1.0
0.0 a 0.4
0.0 |<|as <] 0.6

0.0 a, 0.6
0.0 as 0.6

Algorithm-2

0.0\ (@) (L0
0.0 aJ 0.0
0.0 |<| a \s 0.0
0.0 |a | 0.0
0.0/ \as ) \0.0

Algorithm-3
0.0 a; 1.0
0.0 a, 0.0
0.0 |<) a3 0.0

0.0 a, 0.0
0.0 54 0.0

IA

of membership while ;, blocked flow, is definite.
However, in Algorithm-2 and -3, only g4, is
possible with grade of membership between 0.0
and 1. 0. Therefore, combining the results, one
can say that the symptoms are caused by bloc-
ked flow.

Case-2: =(0.10.4 0.5 0.2 0.2)7

In this case, low differential pressure and high
pump noise are identified with 0.4 and 0.5
grades of membership, respectively.

The computational results using FUDIA code
are as shown below.

Algorithm-1

0.1 a, 0.3

0.5 (az 0.9
0.5 |<| a5 1<| 0.8
0.5 La,,, 1.0
0.4 as 0.7

Algorithm-2
0.6 a; 0.6
0.5 a 0.5
0.2 <l as <] 0.2
0.5 ag 0.5
0.1 as 0.4

Algorithm-3
0.1 a; 0.1
0.4 a, 0.5
0.0 |<| a3 [Z£]0.1
0.2 a, 1.0
0.0 ag 0.1
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The above results indicate that the symptoms
are possibly caused by failure modes of a, and
a,, broken impeller and foreign objects, respecti-
vely. This conclusion is based on following facts.
In Algorithm-1, failure modes of a,, a;, @, and
as are identified with about equal grades of me-
mbership. In Algorithm-2, a;, a,, a,and a; are
possible while only a, and a, are highly possible
in Algorithm-3. Combining the results, one can
conclude that failure modes of a, and a; cause

the symptoms.
IV. Conclusion

Three approaches for the inverse problem of
fuzzy relational equation which can be used for
complex technological system fault diagnosis are
discussed. Based on the approaches, a computer
code, FUDIA, is developed for present study. In
order to apply these algorithms to the diagnosis
of nuclear power plants some refinements of
FUDIA are necessary because three algorithms
give some what different results for the example
problems. The set-theoretical approach for the
inverse problem will be reported in the succeed-

ing paper®V,

V. Acknowledgement

Present study is financially supported by the

Ministry of Education. Author like to express
his sincere thanks to referees for their valuable

advices that are critical to reforming this paper.

References

1. Zadeh, L.A., Inf. Control, 8, pp.338-353(1965).
2. Tsukamoto, Y. and T. Terano, Proc. 16th Symp.
Adaptive Process, 2, pp.1,390-1,395 (1977).

3. Terano, T., et al.,, IFAC 7th World Cong., pp.

1,621-1, 628 (1978).

4. Shahinpoor, M. and D.]J. Wells, NE&D, 61, pp.
93-100 (1980).

5. Maiers, J. and Y.S. Sherif, IEEE Trans. SMC-
15, pp.175-189 (1985).

6. Sanchez, E., Inf. Control, 30, pp.38-48 (1976).

7. Rutherford, D.E., Introduction to Lattice Theory,
Hafner Publ. (1965).

8. Pappis, C.P. and M. Sugeno, Fuzzy Sets and
Systems, 15, pp. 79-90(1985).

9. Dubios, D. and H. Prade, Fuzzy Sets and Syste-
ms: Theory and Applications, Academic Press
(1980).

10. Mizumoto, M. and K. Tanaka, Inf. Control, 31,
pp. 312-340(1976).

11. Won-Gok Hwang, Fuzzy Diagnosis Algori thm
and its Application to Nuclear Power Plantt Di-

agnosis (in preparation).



