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Abstract

Difficulties are encountered when the behavior of complex systems (i.e., fuel failure probability)
that have unreliable deterministic models is predicted. For more realistic prediction of the beha-
vior of complex systems with limited observational data, the present study was undertaken to
devise an approach of combining predictions from the deterministic model and actual observational
data. Predictions by this method of combining are inferred to be of higher reliability than sepa-
rate predictions made by either model taken independently. A systematic method of hierarchical
pattern discovery based on the method developed in the SPEAR was used for systematic search
of weighting factors and pattern boundaries for the present method. A sample calculation was
performed for prediction of CANDU fuel failures that had occurred due to power ramp during
refuelling process. It was demonstrated by this sample calculation that there exists a region of
feature space in which fuel failure probability from the PROFIT model nearly agree with that

from observational data.
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Nomenclature

bu burnup [MWh/kgU)

dbu  burnup increase used in pattern boundary
reassumption

ddelpo transient power increase used in pattern

boundary reassumption

eps pattern description permission bound
Sfmb %(Train—kFtest)
Ftest observed failure probability of Test data

Ftrain observed failure probability of Train data

ni critical number of data point

Pi initial power level (kW /m]

Pof  failure probability of input data calcu-
lated from deterministic model

Pr 1 realistic estimate of failure probability=
(1—w) -Ftrain+w-Pof

Pr 2 realistic estimate of failure probability=
(1—w)+fmb+w-Pof

Puirt failure probability of Train data calcu-
lated from deterministic model

w weighting factor

I. Introduction

Difficulties are encountered when the behavior
of a complex system (e.g. fuel failure) with
If the
deterministic model, either mechanistic or stati-

limited observational data is predicted.

stical, is not magic for predicting its behavior,
there exist difficulties in treating the uncertainty
of the deterministic model for prediction. For
more realistic prediction of the behavior with
limited observational data, an attempt is made
to devise an approach of combining predictions
from the deterministic model and actual obser-
vational data. This method comprises deter-
mination of weighting factors for predictions of
the deterministic model relative to those of

empirical behavior patterns found in real obser-
vational data.

A systematic method of hierarchical pattern
discovery is used as a pattern discovery algori-
thm. In applying this method, weighting factors
for a determinstic model relative to empirical
data set are searched systematically. The pattern
boundary (boundary of a subset of feature* space;
pattern discriminant) function for this method
is hierarchical. Hence, the pattern boundary is
parallel to each independent variable axis.
Pattern discovery is continued until the whole
feature space is partitioned. The feature space
is defined as the multi-dimensional space, the
axes of which are the independent variables or
With

these patterns and weighting factors, realistic

functions of the independent variables.

failure probabilities of certain input data are
predicted by pattern matching calculation. The
probability of a failure event within a pattern
boundary from empirical data set corresponding
to a set of independent feature variables and
the weighting factor are used for realistic faieure
prediction.

The present study is undertaken to demon-
strate by a sample calculation based on power
ramp-related fuel failures of the CANDU reactor
(4] that fuel failure probabilities can be pre-
dicted by the method of combining a modified
PROFIT model and observational failure data.
The PROFIT model is used as the

ministic model and the probability corresponding

deter-
to a set of independent variables is predicted

by the method of combining a modified PROFIT
model and observational data.

II. Methodology Description

II-1. Method of Combining Deterministic Mo
del and Empirical Observational Data

* Feature means independent variable in pattern recognition jargon.
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The objective in modeling any physical beha-
vior is to determine a relationship between
dependent variable D (i.e., fuel failure proba-
bility) and a set of independent variables 7y,
iy, -+, in Namely, the equation on the form
D=f(i,
ministic mode!l equations. In building fuel failure

iy, +i,) is an example of deter-
pattern files with use of empirical data set, the
systematic method of hierarchical pattern disco-
very is used to partition the feature space into
regions and to determine in each pattern boun-
dary the weighting factors for the failure pro-
bability based on the deterministic model. The
failure probability assigned to each pattern
boundary is as follows:
P=(1—w)-Ftrain+w-Pvirt o))
where w is a weighting factor of a predeter-
mined failure pattern, and Ftrain is a fuel
failure frequency of the Train data of a pre-
determined failure pattern (a subset of feature
space of fuel failure) and Pvirt is the failure
probability of observational data that is calcu-
lated from the deterministic model.
As a first step in building failure patterns,

data set
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Fig. 1. Determination of Pattern Boundaries and
Weighting Factors

the set of empirical observed data is split ran-
domly into two equal-sized parts. Half the data
is termed as Train data and the other half as
Test data. This procedure is shown in Fig. 1,
The “Train’ data set is used in finding the
feature space partition and weighting factors.
Weighting factor for calculated data is high in
pattern boundaries with many data points
whereas weighting factor is low in pattern
boundaries with a few data points.

An (#+1) dimensional space is formed using
the depencent variable (i.e., fuel failure pro-
bability) and each of the z dimensional inde-
pendent variables as each axis. The space is
populated with each of the points (D, 1, iy
---i,) taken from the data set. The failure
pattern model is made by partitioning this space
into 2 number of discrete patterns.

The next step in building the failure pattern
is determination of the relative weighting factor
of the observational failure probability and the
calculated failure probability from the determi-
nistic model. The subsequent problem is iden
tifying those patterns(viz. failure pattern model)
in the array of data bits forming the independent
variables data file that reliably predict the
patterns data bits forming the dependent vari-
able data file.

For the model obtained by this process to
have statistical validity, the same relationship
found in the Train data must hold in the Test
data. The estimated true failure probability is
then a weighted average of the observed failure
probability Ftrain and the calculated failure
probability Pvirt using weighting factor w.
Next, the pattern discovery procedure is to find
the best pattern description and associated pat-
tern-by-pattern weighting factor. For pattern
discovery Train data and Test data are plotted
separately. The pattern discovery process then
tries various combinations of weighting factors

and pattern boundaries in the Train data space,
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seeking a set of conditions that best predicts the
Test data set. This procedure is continued until
the entire feature space is partitioned into a
complete set of patterns. This procedure is
shown in Fig. 2,

In general, high weighting factors result from
sparse observational data and good agreement
between calculated probability and observed fail-
ure probability. Conversely, low weighting fact-
ors result from large observational data or from
poor agreement between the calculated probabi-
lity from deterministic model and observational
probability. The boundary of a region determ-
ines which point falls in each pattern. Hence
the pattern boundary is the discriminant funct-
ion in the pattern matching procedure. This
pattern boundary function determines the belon-
ging of the data point to a certain fuel failure
pattern. For each fuel failure pattern, the failure
probability is computed {rom the observational
empirical data base.

To make a prediction using this failure pattern
model, the dependent variables corresponding
to the input data are computed through the

deterministic model. These calculated failure

probabilities with the n dimensional indepen-
dent variables of input data fall into one of
predetermined failure patterns. The pattern
boundaries and pattern failure probabilities are
actually constructed by comsidering both the
observed data and the calculated data, ie., the
output from the deterministic model.

The process of failure probability prediction
begins with the calculation of the failure pro-
bability for the input data. The features for a
certain input data are passed through the pat-
tern detection logic(pattern matching logic) that
determines which of the patterns the particular
input data matches. A failure probability from
the Train data is assigned to each pattern.
When it has been determined that a particular
pattern is matched, for instance, pattern 1,
certain input data is assigned the failure fre-
quency from Train data and the weighting
factor w associated with that pattern. The
realistic failure probability prediction may be
given by Eq. (2).
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Fig. 3. Flow Chart of Overall Calculation
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P=(1—w)-Ftrain+w-Pof (@)
where w is a weighting factor of a predeter-
mined failure pattern, Ftrain is a fuel failure
frequency of the Train data of a predetermined
failure pattern, and Pof is the failure probability
of input data calculated from the deterministic
model. Pattern matching and computation of
failure probability are described in Fig. 2. The
flow chart of the calculation of failure prediction
by this method is described in Fig. 3.

1I-2. Systematic Method of Hierarchical Pat-

tern Discovery

In the systematic method of hierarchical pat-
tern discovery the discriminant function [10] is
composed of parallel boundary with feature
axis. A failure probability of Train data in a
pattern has a weighting factor with respect to
that of the same data from the deterministic
model. The systematic method of hierarchical
pattern discovery is used for the systematic
determination of relative weighting factors be-
tween the deterministic model and empirical data
set. The pattern discovery procedure is as
follows; First, a pattern boundary is assumed.
Calculations of Ftrain, Ftest and Pvirt are
performed with preassumed pattern boundary.
Next, the following condition

Pvirt>>Ftrain ©))
is examined. If this condition is satisfied, the
next procedure is performed. If the number of
data points is below the critical, then systematic
search of weighting factors begins with w=0. 51
and the condition

| Ftest— (1 —w) «Ftrain —wPvirt| <eps (4)
is examined where eps is the permission bound
for the pattern description. If this condition is
satisfied, the weighting factor is 0,51 with this
pattern boundary. If this condition is not satis-
fied, the condition

%(Ftrain—f—Pvirt)<Ftest<Pvirt )
is examined. For this case, the condition (4) is

examined with w=w--0,01. If the condition

(5) is not satisfied, the next condition
| Ftest —Pvirt| <eps 6)
is examined.

If conditions (4), (5) and (6) are not satisfied,
another pattern boundary is reassumed and the
procedure described above is performed.

If the number of data points is above the
critical, then systematic search of weighting
factors begins with w=0. 49, Subsequently, the
condition (4) is examined. If this condition is
satisfied, the weighting factor is 0. 49 with this
boundary. If this condition is not satisfied, the
next condition

Ftest<F train<% +(Ftrain+Pvirt) )
is examined. For this case, the condition (4) is
examined with w=w—0.01. If this condition
is not satisfied, the following condition is ex-
amined;

|Ftest—Ftrain | <leps ®
For this condition, the condition
amined with w=w—0. 01. If conditions (4), (7)

and (8) are not satisfied, another pattern boun-

(1) is ex-

dary is reassumed and the same procedure is
repeated, starting from the condition (3). For

the case of the complementary condition of (3)

Pvirt<Ftrain, )
the entire procedure is the same as the case of
condition (3) except conditions (5) and (7).
For this case, conditions (5) and (7) are
replaced with the following conditions;

Pvirt<Ftest< % (Ftrain+Pvirt) (10)
and

%(Ftrain+Pvirt)<Ftest<Ftrain (1D

The pattern discovery procedure is continued

until the whole feature space is partitioned.

II1. Sample Calculation

I11-1. Deterministic Model for Power Ramp-
Related Failure of CANDU Reactor
Fuels and Observational Data [4]

As a sample calculation, the power ramp-
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related failure of CANDU reactor fuels is
treated. In CANDU reactors with on-power
refuelling the great majority of defects(ie.,
71%) have been of the power ramp-related type
[8,9]. During on-power refueling process, fuel
bundles that have operated at low power in
early life are moved to higher power locations
concurrent with the introduction of new fuel
bundles.
processed in discrete stages because of operational
Thus, fuel-
bundles destined for moderate power positions

The movement of the fuel bundles is
modes of the fuelling machines.

reside transiently in high power positions. The
major cause of defects is power ramping and
the defect mechanism is considered on the basis
of a large weight of circumstantial evidence to
be fission-product induced stress corrosion crack-
ing of Zircaloy fuel cladding.

The PROFIT model [5] (failure model for
estimating the probability of Failure In Tran-
sient increase in power) model is adopted as
The literature [5] is
referred to for more detailed understanding of
the PROFIT model.

HI-2. Assumptions

the deterministic model.

The random split procedure described in the
preceding methodology description is performed.
In this sample calculation a random number is
assigned to an observational data point in a
random number sequence. If a random number
is below the half of the interval, then the data
point to which that random number is assigned
is the family of Train(or Test) data. The
random split of data set is performed by this
method. 4P failure boundary as a function of
burnup is shown in Eq. (12).

P.=6-+1460/bu 12
The PROFIT model is modified to take the
observational propensity of failure data into
consideration. Failure probability from the deter-
ministic model is assumed as follows;

If 4P<6+1460/bu,

then Pof(or Pvirt)=0, 00

Initial power levels of observational data are
not known. Hence Pi is asumed to be 20, 0kw/
m due to the fact that the mean value of data
set used in the PROFIT model is 6. 1kw/ft
(~20.0 kw/m) and fuel failure is less sensitive
to initial power level than to transient power
increase. The dimension of the feature space
is reduced by this assumption but unreliability
is increased.

The SEAF ratio is assumed to be 1.1, due
to the closeness of probabilities from the deter-
ministic medel and from observational data,
where SEAF is strain energy absorption to
failure at a specific straining rate in the Zircaloy
fuel cladding corresponding to an observed
power ramping rate. Pattern discovery is per-
formed for the following ranges.

30<bu<170, 0<4P<50
The overall calculational procedure is shown

in Fig. 3.
IV. Results and Discussion

The factor that influences most both failure
patterns and weighting factors is the critical
number of data points that determines the star-
ting point of systematic search of weighting
factors. Examination of the propensity of power
ramp-related falure data by a large number of
the pattern discovery procedure yielded the
critical number to be approximately 10 in this
sample calculation. Good agreement between
Ftrain and Ftest in a pattern is required for an
ideal random split. A large data set yields better
agreement between Firain and Ftest in a pattern.
In case of no sufficient data for a pattern, there
is the possibility of a skewed-split of obser-
vational data set. The skewed-split patterns
resulted from a random split are attributed to
sparsity of data for the pattern. The algorithm

for an ideal split of observational data in a
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Table 1. Variations of Estimated Failure Pro-
babilities with Different Permission
Bounds of Boundary Reassumption

[Noi.(n | 0.03 | 0.05 | 0.07 | 0.00 | 0.1

Case 1
Case 2

0.102
0.228

0.194
0. 210

0.194
0.175

0.194
0.178

0.194
0.220

0.194
0. 228

! burnup (MWh/kg U) ’ Power increase

(kW/m)
Case 1 50 ﬁ 38
Case 2 120 1 21

Table 2. Variations of Estimated Fialure Pro-
babilities with Different Unit Intervals
of Power Increase for Pattern Boundary

Reassumptions
2 [ 4 ] 5 | 8 | 10
Case 1 0.166) 0.191] o. 194' 0.200/ 0.203
Case 2 0.207) 0.170] 0.178] 0.155 0.181

pattern is needed to overcome the skewness of
a random split.

Table 1 shows variations of estimtated failure
probabilities for two cases of feature variables

set with different permission bounds for pattern

It can be seen from
this Table 1 that there is a firm tendency of
about 20% probability of fuel failure in the
case 1 (burnup of 50MWh/kg U and power

increase of 38kW/m) whereas there is some

boundary reassumption.

variation in estimated failure probabilities with
different permission bounds in the case 2 (burnup
of 120MWh/kg U and power increase of 21kW/
m), Table 2 shows variations of estimated failure
probabilities with different unit intervals of
power increase for pattern boundary reassump-
tion. It can be seen from this Table 2 that there
is the propensity of increasing failure probability
with increasing unit interval of power increase
for pattern boundary reassumption in the case
1 whereas there is some variation in estimated
failure probabilities with increasing unit interval
in the case 2. If many bundles with the same
value for the independent feature variable are
tested by sipping, computed failure probabilities
represent estimates of the bundle failure fre-
quency.

Realistic failure probabilities of input data

o case| burnu arp
= P
: 1 S0 38
s - - .
:m 2 52 40
o o - 3 55 37
4 57 45
3 X B e R
R 6 120 21
T FAN.
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0 SR LN L
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Fig. 4. Comparison between 10 Characteristic Cases
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Table 3. Output from Pattern Discovery Procedure
burnup range power increase rangel . - ¢ i
10. ' Ftrain Ftest Pvirt w
(MWh/kg U) kW/m) data 7{
1 }’ 30 65 0 40 26 0.071 0. 068 0.118 0.49
2 } 30 65 40 50 10 0.248 0.215 0. 554 1 0.05
3 ‘ 65 100 0 40 6 0.125 0.154 0.092 0.51
4 ; 65 100 40 50 0 0. 000 0. 154 0. 000 0.50
5 ; 100 135 0 25 30 0. 156 0. 144 0. 062 0. 49
6 i 100 135 25 50 1 0. 333 0.179 0. 350 0.50
7 ! 135 170 0 25 0.571 0.177 0. 140 0.80
8 1 135 170 25 50 3 0. 800 0. 177 0. 497 0.50
eps=0. 05, ni=10 delpol=0  ddelpo=5  bul=30 dbu=35

corresponding to 10 characteristic cases of the
CANDU refuelling process are shown in Fig. 4,
It can be seen from Fig. 4 that the PROFIT
model is overestimated in the low burnup range
and underestimated in the high burnup range
from the viewpoint of observational data.

In general, the larger number of data points
yields better agreement between Ftrain and
Ftest. If Ftrain, Ftest and Pof are in good
agreement with one another in a pattern, it can
be inferred that failure probabilities from the
PROFIT model and from observational data are
in good agreement with each other. Hence a
region of the feature space in which failure
probabilities from the PROFIT model are in
good agreement with those from observational
data was identified from the output of the pat-
tern discovery procedure given in Table 3,
namely, the burnup range of 100~135 MWh/
kg U and the power increase range of 0~25
kW/m. It can be seen from this result that
the PROFIT model is effective in predicting
realistic failure probability of an independent
featuer set corresponding to this region of pat-
tern. It is, therefore, recommended to use the
combined model to predict realistic failure pro-
bability of the independent feature set for other
patterns except for the above-mentioned region.

As opposed to the present systematic method

of hierarchical pattern discovery, the method of

Entropy Minimax pattern discovery [1] on
which the SPEAR-BETA fuel performance code
is based has been reported as a pattern disco-
very algorithm for prediction of realistic fuel
failure probabilities by the combining method in
the case of situations with high dimensional

mechanistic model and observational data.

V. Conclusions

The systematic method of hierarchical pattern
discovery can be used as an effective pattern
discovery algorithm in the case of two or three
dimensional feature space models with the
critical number of data points that determines
the starting point for searching weighting fac-
tors.

The strategy for an ideal split of observational
data for a pattern is required to overcome the
skewness of a random split.

This systematic searching method of weigh-
ting factors can be used for any type of pattern
boundaries on the basis of the critical number
of data points that provides a starting keystone
for the assumption of weighting factors.

A sample calculation based on the PROFIT
model and power ramp-related fuel failure data
from a CANDU reactor showed that realistic
fuel failure probability can be predicted by the
method of combining the determini§tic model
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and empirical observational data.
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