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Abstract

A successive iteration method to calculate the 2-modes of the diffusion equation was developed.
The 2-group, 3-dimensional computer code MOGEN was developed to implement this method.
The accuracy of the method was demonstrated using 2-dimensional bare homogeneous rectangular
reactor. The numerical solution shows good agreement with the analytic solution in terms of
eigenvalue and eigenfunction. As for the standard CANDU-600 reactor, the 2-dimensional modes
were generated and these represent the conventional mode characteristics well. Finally, application

of the 2-mode in reactor engineering problems is described briefly.
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1. Introduction

In many engineering problems, practical solu-
tions can be obtained by replacing the rigorous
equations that govern the system by a set of
approximate equations with reduced number of

independent variables, which is more tractable

to solve.

The higher harmonics of the steady state di-
ffusion equation (also called 1~-modes) have been
used in the modal expansion technique. A disti-
nctive feature of this technique is that fewer
terms in expansion are required to describe the
perturbed flux distributions, since the 2-modes
are more representative of physical characteri-
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stics of the reactor system than any other fun-
ctions. [3]

Although their usefulness has been appreciated
in many references, their practial applications
have been limited due to the requirement that
they be calculated numerically and due to the
lack of appropriate computer codes. One method
to calculate the A-modes has been described in
reference [4], after which the present study has
been patterned and the 2-group, 3-dimensional
A-mode generation code MOGEN was develo-
ped. ®

2. Theory

2.1, Successive Iteration Method
We define i-modes as the eigenfunctions which
satisfy the 2-group static neutron diffusion
equations; .
= Di(@Dppu(r)+(Ta ()
+ TR Ipn () =1 1 (D pm (2)

210 en(D] —7 DD pen(r)

+ Z (D n (D) =2k (D) ¢n (2D n
or in matrix form;
Rgy=f- My, (n=1,2, ) @

In this expression, R and M are regarded as the

destruction and production matrices respectively;

R=[ —P+Dip+3a+ Tk 0 ]
—2r ~F Doy +3a
M:——] Y35, vz, ]
0 0
where,

D, =fast diffusion coefficient

D, =thermal diffusion coefficient
2, =fast absorption c.x.

>.s =thermal absorption c.x.

v35 s, =fast fission production c.x.
v, s, =themal fission production c.x.

>k =removal c.x.

Note that the fundamental mode is the eigen-
function corresponding to the largest eigenvalve
21, and other higher modes are the eigenfun-
ctions corresponding to the next lower eigenva-
lues.

The purpose of this study is to find the eigen-
values 1, and eigenfunctions ¢, of the matrix
eq. (2).

The usual iterative procedure, where the fun-
damental mode is desired, starts with some
guessed distribution ¢{®,

This can be expressed by the linear combina-
tion of the eigenfunctions of eq. (2) which make
a complete set, i.e;

1(0) Ig aip; (3)

The intermediate solution after I-th iteration
can be written;

¢1(l) :R—1M¢1(l——1)
=(RTM)' ¢ @
By eq.(3);

3" =(RIM)' Sap;
i=1

=La(RM)'p,

=Tadlp;
=1
=alzi(ﬂ1+§ailf§0i
=lapr+ Sa -2 Yoo ®)
=Ailai 1_=2a,< A )‘P:
Assume that the eigenvalues satisfy;
[211>]2) > > 12, (6)

For sufficient large number of iteration L;

(L) ~
& ) = N

oy (7
As a result, one obtains the eigenfunction 1

(*) The MOGEN was developed for 3-dimensional model, but in this study the calculation is performed to
2-dimensional problem for the convenience of result drawing and to compare with analytic one easily.
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corresponding to the largest eigenvalue 1; which
is called ‘fundamental mode’. Due to the ex-
istence of a predominant mode, after some iter-
ations, convergence on the higher harmonics can
be realized by subtracting out those modes which
are already known from the unconverged mode.

For the second mode, the calculation starts
with some initial mode ¢{” as in the previous

case, ie;
z‘°’=21af¢i ®
i=

Multiplying both sides of eq.(8) by ¢¥ M,
where ¢F is the first eigenfunction of the adjoint

to eq.(2) and M is the production matrix of

eq.(2).
Integrating over the reactor volume, one
obtains;

o ar=Sa | oMoy (o)

On applying the well known bi-orthogonality
condition;

f PrMp; d¥r=0, when jxi ae

the amplitude of the fundamental mode compo-
nent in initial mode is;

f ¥ M¢¢ (0} d37‘

Qo

f o¥Medr

Upon obtaining a{” using eq.(11) and having

already calculated ¢, previously, the intermediate

second mode is now expressed as;
Al 0
PV =¢9 —a{O¢, az

With this corrected ¢4”, next iteration is ini-
tiated involving the same procedure described
above. During each iteration, the intermediate
second mode ¢, is updated by eq.(12), with
that is updated by eq. (11).

After m-th iteration where m is sufficient
number of iteration to remove fundamental com-
ponent, one obtains;

H = a0,

E;Zaigoi 13
For additive / iteration;
¢2(m+1) =R-1M¢ém+l—1)

=(RMY'9”

=(RM) 'g:a,-;o,-

=i}2a.-(R‘1M)’go.~

=Yaklp;
=2
=azlz{¢z+§a;2,’~¢i
Ai
=ZlaspatTa () ' o
For sufficient large number of iteration L;
5L 5“21’2‘902

XYy (15)

The solution shouid converge on the second
mode ¢, i.e. the harmonics corresponding to the
next largest eigenvalue A,

In general, for the n+1 the mode;

BB, =gl _élag!—l)% (16)
where,
f @F M UsD @y
R ;M¢id3r

(1—1)

an

In this manner, all harmonics can be calcula-

ted in principle.
2.2. Self-Adjoint Property of the 1-group
Flux

To calculate the amplitude of the previous
mode, one must evaluate the adjoint mode cor-
responding to the direct mode. By similar pro-
cedure described in the previous section, adjoint
mode can be generated from the adjoint equations
of eq.(1) using the precalculated direct modes
as weight functions in calculating the amplitu-
des. But this requires the same amount of com-
puting effort as to calculate the direct modes.
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To avoid this extra work, an approximate method
is presented.

Following the suggestion of reference [4], the
self-adjoint property of 1-group flux was utilized,
and it was again found that the calculated A-
modes were indistinguishable from those obtained
with the exact bi-orthogonality property stated
in eq.(10).

Consequently, the adjoint calculations was

removed and the pseudo-one-group flux;

PR=Pn,+ Ony (18
in now used in conjunction with the orthogon-
ality property;

f $iMp; dr=0, when jxi 19
to obtain residual mode amplitudes in the uncon-

verged mode.
3. Sample Problems

The calculational method described in the
previous sections was tested for 2-dimensional
bare homogeneous rectangular reactor having
zero flux boundary condition. Reactor geometry
and nuclear data are given Figure ] and Table
1 respectively.

The problem was solved both analytically and

Table 1. Nuclear Data

group ' D (em) | Zolem~Y) | vZr(cm™l) }Z’R(cm")
1 1.5 0.01 0. 007 0.01
2 0.5 0.15 0.4 0.0
v
|
{ ¢T = 0
T 1
|
|
b=30cm ¢ =0 g = 0
|
|
{
|
| ¢y = 0
e X
P———————— az3len ————— <

Fig. 1. Reactor Geometry
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numerically to compare its accuracy.
The 2-group diffusion equations for this ex-

ample are as follows;

D, (L4 00) 4 (ST

a.—cz
=71—<»zf,¢1+»zf,¢z>

o%d, | %y
—D, ( axt " gy?

This equations can be solved analytically and

+

) + Ba=Tn (20)

the solution is;
Gmsn(Z, ¥) =sin (*";lx) sin (—”b”—y) @n

rem ()4 ()

(22)

Amyn

V2 1. (DaB%mynt+ Do) V2011208
(DlB m n+2a.+2R> (DZB m,n+2a2
@23

where,

Table 2. Analytic and Numerical Mode $° apes
and Corresponding Eigenvalues

mode | designat- eigenvalue (Jmn) mode shape
& |ion (m,n) .
analytic | numerical $(x,y)=sin(8-*)sin(F y)
1 (1,1 1.00101 1.00702 +
2 (2,1} 0.62794 | 0.54039 + - l}
3 (3,1) 0.37728 0.39939 + - +
4 (1,2 0.36711 | 0.37842
Lt
4 -
5 (2,2) 0.29395 | ©.30404
- +
6 (4,1) 0.23419 0.26410 - + - +
N -
7 (3,2) 0.22653 | 0.22992
_ N -
I
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Fig. 2. Numerical Mode Shapes and Eigenvalves

o =m-th mode in zdirecti ~ )
P =m mode in w-direction and #-th 4. 2-Mode Generation for the

mode in y-direction: (m,n) mode CANDU-600 Reactor

BE ,=buckling in (m,n) mode
Am,» =eigenvalue in (m, n) mode We calculated the eight 2-dimensional modes

Seven modes were calculated by the eq. (21)-  for the CANDU-600 reactor.

(23) and the results are listed in Table 2,

For the same problem, seven modes were
calculated by MOGEN and the results is shown
in Fig. 2.

The numerical result agree to analytic one
within 4% error except the modes (3,1) and
(4,1). In deriving the 2-group analytic solution,

however, we have used the assumption that fast
and thermal mode have the same shape. In other

NORMALIZED THERMAL MODE

1-group calculation which can be solved analyti-
cally without any assumptions, the error was
reduced within 0.5%. Therefore, this assump-

tion is the source of error in calculating the

analytic eigenvalue.

) REACTOR LENGTH IN X-DIRECTION
D OMODE 1 + NODEJ o MODE 4 4 MNODE§ X MODEY

Fig. 3. Mode Distribution at Center of the
CANDU-600 Reactor
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Table 3. Properties of the 2-Dimensional 2-Modes
of CANDU-600 Reactor

1 ho. Name Eigenvalue Mode Shape

1 Fundamental 1.03120

1'st Azimuthal 1.00824
i Top-to-Bottom}

1'st Azimuthal 1.00764
iSide-to-Side)

DO

2'nd Azimuthal 0.97632

2'nd Azimuthal 0.97513

o

6 1’st Radial 0.96071

~a

i 3'rd Azimuthal 0.93734

8 3'rd Azimuthal 0.93729

<. ,

|

The reactor model and the material properties
which are evaluated by flux weighted, averaging
over the reactor length were obtained in refer-
ence [7].

Fundamental mode plus other seven higher
modes were generated and the properties of these
are given in Table 3 and the normalized mode
distribution in horizontal direction is shown in
Fig. 3.

These modes represent the conventional CAN-

DU mode characteristics well.
5. Application

1) Space-Dependent Kinetics
We can approximate the space and time de-
pendent reactor variables in a finite series of

products of unknown time-dependent coefficients,

and known space-dependent expansion function.
(7]

The calculated 2-modes of the system which
makes complete set can be used for this space
function, and this method reduce the computing
efforts.

2) Approximation for Multi-Dimensional Flux
Mapping

The A-modes can be also used to interpret
meaningfully the readings of a number of dete-
ctors when each reading depends upon the posi-
tion of the detectors.[8]

Flux value at an arbitrary position can be
expressed as a linear combination of realistic flux
shapes, called modes, which span the range of
flux distribution to be encountered in the opera-
tion of the reactor and mode amplitude which
should be determined.

The amplitudes can be calculated by the flux
level measured by many in-core detectors.

Actually, the thirteen A-modes belong to the
mode set for flux mapping in CANDU-600
system.

3) Reactor Control Study

As it is impossible to solve all the dynamic
equations describing the entire system, the com-
mon strategy used in power reactor control is
to minimize the flux deviation from some prede-
termined reference shapes during any transient.

The deviation of the state functions are ex-
pressed as a series of the system eigenfunction,
and the perturbed equations are solved.

For the stability analysis, the system eigen-
values are checked whether it lies in the left

of a complex plane.[6,9]

6. Summary

The modal expansion technique is suitable for
a broad class of space-dependent kinetic problems,
flux mapping, and reactor control studies.

The i-modes which are eigenfunctions of the



316 J. Korean Nuclear Society, Vol. 19, No. 4, December 1987

reactor system at reference condition are necess-
ary to use this technique.
The computer codle MOGEN that generates
A-modes for this purpose was developed.
Futher study should be performed to applicate

these harmonics in various reactor problems.
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