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Abstract

A recently developed spatial differencing scheme, Linear Characteristic (LC) scheme is
compared with some traditionally used schemes such as Step Difference (SD), Diamond Dif-
ference (DD), and Step Characteristic (SC} scheme by analyzing the truncation error calcu-
lated numerically in slab geometry.

Those four candidate schemes are applied to one simple source sink problem and two criti-
cality problems {one is calculation of multiplication factor and the other is slab critical half
thickness). The calculated results are then examined by some equitable measures of error.

It is concluded that the LC scheme is terribly more powerful than any other candidate
scheme that has been prevalent up to the present time.

Moreover, the LC scheme estimates integral parameter such as multiplication factor and cri-
tical half thickness much more efficiently than SD or SC scheme. This is due to the fact that
the fortuitous error cancellation, which occurs when the deviations of cell average flux are
summed over the whole gamut of spatial meshes, happens much more favorably to the LC

scheme.
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L. Introduction
Increasingly, the discrete ordinates method/
codes have been the dominant means for solving
radiation transport problems for reactor core and
extensive shielding design in nuclear fission power
plants, as well as for blanket and shield design of
a fusion reactor.

In this situation, the ability to compute positive
and accurate numerical solution to the discrete
ordinates equations has been a long-standing
problem. One is usually faced with the choice of
using a relatively accurate nonpositive scheme
such as Diamond Difference (DD) scheme or a less
accurate noncentered positive scheme such as one
the Weighted Diamond Difference (WD)

schemes.!Y To avoid this unpleasant choice or to

of

improve the convergence rate, extensive studies
on various spatial difference schemes have been
made.

and his
approximated® the iterative source distribution in

Recently, Gopinath co-workers
a spatial mesh with some mathematically reason-
able linear functions. In their paper, four variants
of Linear Characteristic (LC) schemes were de-
rived and investigated, and it was concluded that
the one retaining the cell average source and gra-
dient of two cell edge sources provided much bet-
ter accuracy than any other variant.

In this study, therefore, only the most accurate
variant mentioned above is picked up and com-
pared with some traditionally used spatial differ-
ence shcemes such as Step difference (SD),® Di-
amond Difference (DD),"” and Step Characteristic
(SC)® scheme to determine whether the scheme

is more efficient than traditionally used schemes
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and if more, how much.

Only one group and slab geometry test prob-
lems are considered and all calculations are car-
ried out by VAX-8700 computer system at
Hanyang University.

II. Candidate Schemes

In slab geometry, the discrete ordinates approx-
imation to the multigroup neutron transport equa-
tion can be written as

. % & g+ & g%) ¢ gm) =S () (1)

where Sg,(x) is the source obtained from the pre-
vious iteration using the Legendre moments.®
Since we are now discussing the spatial solution
of Eq. (1), in which energy and angle do not vary,
the indices ’g’ and ’'m’ are henceforth dropped.
d
e ¢ W+ 0 (x) ¢ tx)=S(x) 2)
A general method of obtaining a supplementary
equation is to integrate Eq. (2) over a spatial cell,

say cell i, using integrating factor, to yield

Diiye=1i—1z exp(— €)

Xi+1/2 X)

1

+ n(X|+ 1/2 —

L1z X

dx S{x) exp [ 3)

xi—1/2

where €,= 0 Ax/ #, optical distance in mean
free path of the travel across cell i.

Because the exact variation of the source
through cell i can not be known, as it were, only
the pointwise sources of cell average and two cell
edges can be known, the iterative source must be
approximated using these three pointwise values.

The principal idea of LC scheme is to approxi-
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mate S(x} in cell i with a certain linear function,
St =ag+aylx—x; .1/9), for x € (x;_1/2, x; 4 1/2) (4)

The constants a, and a; can be obtained by
various selections and the one set regarded as the
most reasonable is constructed by conservating/
retaining cell average source and gradient of two
cell edge sources. Then, LC scheme for # >0 can

be written as!”

5
LC) ¢, 12= ¢i_vpexpl— €)+——

Oy

Si+1/2_si~1/2 (5)

Oy

[1—exp(— € )]+
L+ (5 +—— L —exp(— € ]
€

This LC shceme proved to be positive one and
the calculational effort to solve one cell problem is
estimated roughly twice that of DD scheme by

® In the similar way

simple hand calculation.
above, the other candidate schemes can be de-

rived as following form.

1 1 5,
[SD]¢i+l/2—m¢ivl/2+i:T;‘of; 6)
2— €, 2¢, Si
[DD]¢i+1/2=?;%¢i—1/2+ 27 ¢ o 7
i i Oy

Si
(SCl¢ iy 12=¢ _1/00xp(~e )+ J—ﬁ(l-*eXP(—%] (8)

The scheme, DD is not positive shceme, for it is
clear that even if ¢ -5 and S, are positive, Eq.
{7) can produce negative value for ¢ i+ in case
€ ;> 2. This often happens even for small mesh
size when ¢ is sufficiently large and/or 4 is suffi-
ciently small. Thus, as pointed by Lathrop, auxili-
ary negative flux fix-up is needed in conjunction
with this DD scheme to guarentee positivity of the
flux. Such negative flux fix-up schemes are suc-
cessful in one space-dimension but become ex-
cessively complicated in two dimensions. Futher-
more, this kind of fix~up is unable to correct the
oscillatory character of DD scheme except when
negative fluxes occur. This oscillatory behavior can
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interact unfavorably with convergence acceleration
divices such as synthetic method and coarse mesh
rebalance method resulting in unstable and diver-
gent algorithm.

1. Proposed Test Calculation

a) Source sink problem
A simple model of following S, one grop test
problem is considered with ¢ ,=2, o ,=1, and

Qx)=1.

d
M ma ‘)l' m(x) + oy ¢m(x) = (9)

0 3, ©mdml+ QW)

with boundary conditions, ¢ (—1)= ¢ 5(1)=0.

To evaluate the accuracy of each candidate
scheme, some measures of error are introduced.
As preliminary definitions, fractional deviation is
defined by

= (10
and deviation is
[HE]*= ] xf*=f-f= (11)

where f* is the exact/reference value and f is the
numerically calculated one. Then, following three
measures of error can be defined.

1) Edge error norm: This error norm determines
the accuracy of cell edge flux, and is the max-
imum absolute value of fractional deviations of
cell edge fluxes over all spatial cells,

max

edge Emlax ' ” ¢ II edge,i + 1/2|v

i=012,.,1L

(I
(12)

2) Average error norm: This error norm deter-
mines the accuracy of cell average flux, and is the
maximum absolute value of the fractional devia-

tions of cell average fluxes,
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Table 1. Edge Error Norm for Various Mesh Size when lteration Rumber is Large to
Converge.
\’ﬁ’"{ SD DD sC LC
Ax(cm
20 2.409x10°* 2.438x107! 6.322x 102 1.534x1072
21 1.425% 107! 4.656x1072 2.701x10-2 1.035x102
272 8.078x1072 1.093x 102 8.017x10-3 6.580x107°
2-3 4.356x102 2.675x1073 2.100x10-3 4.120x10°°
24 2282x10°% 6.683x10~¢ 5.312x10-4 2.343x1077
Table 2. Ratio(R,,*) of Error Norm.
cheme SD DD sC LC
m
1 1.69 524 2.34 14.89
2 2.14 4.26 3.37 15.73
3 1.85 4.09 3.82 1597
4 1.91 4.00 3.95 17.61
R - Edge Error Norm (Ax=2""+1)
™7 Edge Error Nom (Ax=2""7)
. 2 1
” ¢ , ::{(;; = mlax I ” ¢ ” averge,i I 1 4 2msn rgo bn pn(#)ﬁl pn(,U,) 9,’ (Xy #,)d/t’
(13)

i=12,..,1L

3) Sum error norm: This error norm determines
the accuracy of integral parameter such as colli-

sion densities and eignvalues, defined by

I3 %A%~ 2 FexdAX |
128 axl

max __
average =

I ¢l (14)

If all mesh sizes are equal, this error norm is
directly proportional to the summation of devia-

tions of cell average fluxes over all spatial cells.

b) Criticality Problem
Two criticality problems-one is calculation of
multiplication factor and the other is calculation of
critical half thickness-are considered with a trans-

port equation as

d
,ugx“,f’(X,;zH- o dix, pu)=

6%+ v o,

¢ 2

1
) et (15)

subjected to the vacumn boundary conditions on
both sides of the slab.

In above transport equation, the anisotropic
scatterer is represented by a three term Legendre
expansion and the b, of elastic hydrogen scatter-
ing were used as an example.’10

We now solve these equatjions for several
values of the secondary ratio c+¢” where c is the

anisotropic scattering ratio, defined by
c= azniso /o,

and ¢’ is the isotropic scattering ratio
c=(0° +vapo,

To evaluate the accuracy, two measures of error
are introduced as follows.

1) Absolute fractional deviation(%) of effective
multiplication factor:

ex
Ko —Kii

” Keff ” abs — ‘ Kmf(f [ XIOO(%)

(16)

2) Absolute fractional deviation(%) of critical
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Fig. 1. Calculated Edge Error Norm.

half thickness:

tc1/2—tf<,';x1/2 ‘ % 100(%)

o 17
tc1/2 an

I taare N as= |

A computer program using conventional ‘Power
Iteration Method’ is fabricated to solve the test
problems. In this program, four candidate schemes
are implemented as subprograms. Convergence
criterions of 10E-5 are used in criticality problems.
In source sink problem, however, iteration is con-

trolled simply by the number of iterations.
IV. Results and Discussion

A sequence of five uniform spatial meshes are
considered in Table 1 and 2, and each spatial
mesh is succeeded by one twice as fine. As seen
in these tables, edge error norms of SD, DD, SC,
and LC scheme decrease roughly by the factor of
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Fig. 2. Calculated Average Error Norm.

2, 4, 4, and 16, respectively. Therefore, it can be
asserted that these respective schemes are first,
second, second, and forth order of spatial trunca-
tion error. This numerical result is consistent with
a previous work made by S. M. Lee and his
co-worker who have studied on the comparison
of the orders of approximation in several spatial
difference schemes by mathematical approach.!?

Edge and average error norms are plotted in
Fig. 1 and 2 when iteration number(=100 fixed)
is sufficiently large to converge. For various mesh
size, LC scheme produces smaller error norms
than any other candidate schemes, especially than
SD scheme. As the mesh refined, this phe-
nomenon becomes more striking, that is to say,
LC solution converge more rapidly to the exact
solution as mesh size thends to zero. This is due
to the fact that LC is the highest order accurate
scheme of the four candidate schemes. In addi-
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tion, the numerical results of error norms are de-
scribed as about straight lines, and the slops de-
pend entirely upon the orders of spatial truncation
error, as we have expected so. On the other hand,
it can also be seen that SC scheme produces
somewhat smaller value than DD scheme for edge
error norm, and for average error norm by factor
of about seven times, but that the gap between
the error norms of DD and SC scheme is roughly
the same, not increase as mesh size tends to zero,
this is due to the fact that both DD and SC are
second order accurate schemes.

Sum error norms are plotted in Fig. 3 when
iteration number(=100 fixed) is sufficiently large
to converge. Again, LC scheme is substantially
accurate than any other schemes for various mesh
size. But, sum error norm of SC scheme is much
larger than that of DD scheme by factor of about

six times. At first appearance, this situation is un-
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Fig. 4. (Fractional) Deviation of Cell Average Flux as a
Function of Distance from Slab Center.

likely to be happen and seems unreasonable (re-
mind the fact that average error norm of SC
scheme is much smaller than that of DD scheme),
but if we introduce following concept of error can-
cellation, it can be explained clearly.

Spatial distrbution of deviation and fractional
deviation of cell average flux are shown in Fig. 4
for our explanation of the error cancellation. As
can be seen in this figure, although average error
norm (it is the maximum absolute value of frac-
tional deviations of cell average fluxes as defined)
of DD scheme is greater than that of SC scheme,
sum error norm (it is also directly proportional to
the summation of the deviations of cell average
fluxes under considering the sign of each value) of
DD scheme is smaller; in the case of DD scheme,

the amount of the error cancellation in deviations
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Table 3. Slab Critical Half Thickness and It’s Absolute Fractional Deviation(%) from

DTF-code Result (in parentheses).

c+c'=1.1
c SD DD SC LC DTF code
0.1 2.2285 2.1651 2.1696 2.1641 2.1631
{3.0x10% (9.2%x1073) (3.0x107 Y (4.6x1079)
0.5 2.4588 2.4126 2.4169 2.4116 2.4103
(2.0x10°) (9.5%x107%) (2.7x107Y) (5.4x10°%)
0.9 2.8112 2.7920 2.7959 2.7910 2.7892
(7.9%107Y (1.0x107 Y 2.4x10°Y 65x10"2)
c+c’'=1.2
0.1 1.3272 1.3145 1.3155 1.3140 1.3130
(1.1x10°) {1.1x107Y (1.9x107Y (7.6x107°3)
05 1.4310 1.4266 1.4275 1.4262 1.4249
(43%x107Y (1.2x107Y (1.8x107Y 9.1x1073)
0.9 1.5740 1.5815 1.5821 15811 1.5793
85x107Y (1.4x10 1) (1.8x10° Y (1.1x10 Y
c+c’'=1.3
0.1 0.9540 0.9529 0.9532 0.9526 0.9514
(2.7%107Y (1.6x107Y (2.0x10° %) (1.3x107Y
0.2 1.0119 1.0157 1.0159 1.0154 1.0140
(2.5x10 %) (1.7x107Y) (1.9x107 Y (1.4x10" Y
0.9 1.0857 1.0958 1.0960 1.0956 1.0938
(7.4x107Y (1.8x107 Y (2.0x107Y) (1.6x107Y
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of cell average fluxes is greater than that of SC
scheme. The accuracy of integral parameter is de-
termined by sum error norm, not by edge or aver-
age error norm, the result mentioned above is
thus very important. This result will have an abso-
lute effect on the following criticality problems.
Pleasantly, as can be seen in Fig. 5, LC scheme
also has this advantage of error cancellation
roughly as much as DD scheme, but SD scheme
has not so much.

Before the criticality problems are prosecuted,
some benchmark calculations are have been car-
ried out to verify the usefulness or exactness of
our program. In Table 3, critical half thickness
calculated by our program with four candidate
schemes are compared with those of DTF code, a
dicrete ordinates code which uses DD scheme, for

various ¢ and ¢’, and absolute values of fractional

devitions(%) are also given in parentheses. In DTF
calculation, seventy-five spatial intervals were
used on the interval [0,t/2] with the first 73 equal
intervals and the last two spaced by x7;4=4.95, x75
=499, and x76=5.00 {with /2=5.00). Also con-
vergence criterions on the multiplication factor
and on the spatial flux of 10E-6, and DP; quadra-
ture were used. There are some slight differences
between the results of our program and DTF
code, which is probably due to the fact that we
use somewhat coarser mesh system(16 uniform
spatial meshes) and larger convergence
criterion(10E-5) than those of DTF code.

Since the calculational effort/time to solve one
cell problem by LC scheme was proved to be
roughly twice that of DD scheme, the result from
DD scheme is compared with that from LC

scheme on a spatial grid which has 50% more
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Fig. 5. Fractional Deviation of Cell Average Flux as a
Function of Distance from Slab Center.

coarse meshes, thereby keeping computational
cost the same.

Fig. 6 provides plots of the edge, average, and
sum error norm as a function of computational
cost. This cost is proportional to the number of
clock cycles required to complete one inner itera-
tion, and cost scale corresponds to mesh size of
from 2~ ! to 27%[cm] when DD scheme is used, or
from 2° to 27 ’[cm] when LC scheme used. In this
figure, LC scheme produces much smaller error
norms than DD scheme in a given cost, therefore,
it can be pronounced that LC scheme is more
computationally efficient in this simple source sink
problem, even assuming double the computation-
al cost per cell.

Absolute fractional deviations(%) of effective

J. Korean Nucléar Society, Vol. 20, No. 3 September, 1988

{EDGE
~---- {AVERAGE
—.——iSUM

N < DD RESULT
o:Lc ¢

1(P ) \\

T

(EDGE,AVERAGE,) SUM ERROR NORM
3 3.

e,

1 10 100
COMPUTATIONAL COST
(ARBITARY UNIT)

Fig. 6. Edge, Average, and Sum Error Norm vs. Com-
putational Cost.

multiplication factor and critical half thickness are
plotted in Fig. 7 and 8. Exact/reference values are
required to perform our error analysis, and they
are obtained by using a extremely fine mesh sys-
tem; (16X200) mesh system has been used for
both criticality problems. Figure 7 shows that LC
scheme is substantially accurate than any other
candidate schemes and this advantage becomes
greater if mesh is more refined, and that SC
scheme is much less accurate than DD scheme but
this disadvantage is the same-it does not increase
as the mesh size tends to zero. This situation can
be explained well with the previous analysis of
sum error norms. Approximately the same situa-
tion comes out in Fig. 8, which indicates that if a
scheme estimates more accurately the value of
multiplication factor, this scheme also estimates
more accuratley the value of critical half thickness-
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-it is not clear to us why the situation is not true
of SD scheme when the number of spatial meshes
is less than about 8.

Figure 9 shows absolute fractional deviation of
effective multiplication factor and critical half
thickness as a function of computational cost. The
cost scale corresponds to the spatial mesh number
of from 2! to 28 when DD scheme is used, or 2°
to 27 when LC scheme is used. In this figure, it
can be seen that LC scheme produce much smal-
ler error at a given cost, therefore, it can be also
asserted that LC scheme is more computationally
efficient than DD scheme in this criticality prob-
lem, even assuming double the computational

cost per cell.
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V. Conclusions

This study shows that LC scheme significantly
outperforms DD scheme which has been tradi-
tionally used in most discrete ordinate codes even
assuming double the computational cost per cell
and the error cancellation happens much more
favorably to LC scheme.

Additionaly, SC scheme is substantially more
accurate than DD scheme in calculation of point-
wise fluxes such as cell edge flux and cell average
flux, but much less accurate in calculation of in-
tegral parameter such as multiplication factor and
stab critical half thickness.

This study is limited to only slab geometry case
and the result from LC scheme is considerably
satisfactory, therefore, it must be worthwhile to



ABSOLUTE FRACTIONAL DEVIATION{%)

---- s MULTIPLICATION FACTOR
'CRITICAL HALF THICKNESS

<:bD RESULT
o;Le 7

-
ol
-

N

-
Q)

-
of
[2)

10

100

COMPUTATIONAL COST
(ARBITARY UNIT)

Fig. 9. Absolute Fractional Deviation of Multiplication
Factor and Slab Critical Half Thickness vs.
Computational Cost.

study on application of LC scheme to other
geometries.
Study on oscillatory behavior is another impor-
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tant subject to guarantee superiority of LC scheme
to DD écheme. This oscillatory behavior can in-
teract unfavorably with convergence acceleration
devices, resulting in an unstable and divergent
algorithm; as a matter of fact, DD scheme serious-
ly suffers from this oscillatory behavior.
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