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Abstract

The prediction of clad surface temperatures is important to the design and the safety
anlaysis of nuclear reactor. The accurate prediction requires the detailed knowledge of the
flow structure and heat transfer, which is complicate due to anisotropic turbulent phenomena.
A two-equation model including anisotropic eddy viscosity model is applied to forecast the
velocity distribution. And the temperature field is calculated with uniform wall heat flux. The
Galerkin’s weighted residual finite element method has been used to calculate the turbulent
quantities right up to the wall. The numerical results show good agreement with available data
and that turbulence anisotropy strongly affects on the mean flow and thus the temperature
field. And Nu-P/D correlation is established for sodium coolant in close-packed equilateral
triangular bundle in the P/D range of 1.05 to 1.30.
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temperature field in subchannels bases on the pre-

1. Introduction cise analysis of the flow and heat transfer, which is

difficult to describe quantitatively due to the com-

It is very important to predict the clad surface plexity of the turbulence phenomena and the flow
temperature for the design and the safety analysis geometries. And the anisotropic turbulent phe-
of nuclear reactor. The accurate claculation of the nomena greatly influence the flow and heat trans-
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fer structure in the complex geometry such as nu-
clear subchannels.

To analyze such a complex turbulence phe-
nomena, the two-equation model is adopted as
turbulence model, which is known to be k- €
model with turbulent kinetic energy equation and
turbulent energy dissipation rate equation. And
the results of two-equation model are compared
with those of one-equation model which uses
only the turbulent kinetic energy equation. The
effect of anisotropy can be considered by intro-
ducing different length scales for the eddy viscosi-
ties normal and parallel to the rod surface for the
purpose of predicting hydro-dynamic behaviors
accurately.

The purpose of this work is to predict the veloc-
ity and the temperature profiles for steady, fully
developed turbulent flow in subchannels of bare
rod bundle. The secondary flow is neglected. At
rod surface, the constant heat flux boundary con-
dition is used, which is more reasonable than the
constant temperature assumption. To solve the
nonlinear governing equations, the finite element
method has been introduced using the Galerkin’s
weighted residual method (WRM). This numerical
technique is known to be suitable to provide an
accurate description of such complex geometries
as the nuclear fuel bundle. The numerical results
are compared with available experimental data
and shown to be in good agreement. Finally, with
this model, the Nusselt numbers have been calcu-
lated according to the wvarious P/D ratios in
close-packed equilateral triangular array having
the Na coolant. The Nu-P/D correlation is con-
structed in the P/D range of 1.05 to 1.3.

2. Modeling

2.1. Turbulence model
In order to mode! the turbulent phenomena, va-
rious models have been suggested." Among
them, the mixing length theory has the fatal short-
coming that the characteristic velocity is zero

whenever the velocity gradient is zero. Thus, the
mixing length model is not compatible with accu-
rate calculations of the complex turbulent flow
field. In orie-equation model,™ Reynolds stress can
be expressed in terms of axial velocity gradient
and eddy viscosity which is based on turbulent
kinetic energy by Kolmogorov-Prandtl turbulent
kinetic energy hypothesis. In this model, local
turbulent phenomeon is dependent on length
scale and turbulent kinetic energy due to fluctua-
tions of the turbulent flow. Thus the transport
equation for the turbulent kinetic energy equation
constructs the one-equation where the length
scale can be obtained algebraically. In practical
point of view, the length scale can be determined
more generally by transport equation than by
algebraic equation. Thus, the second equation, i.e.
turbulent energy dissipation rate equation, of
two-equation model is formulated to determine
the dissipation length scale in the turbulent kinetic
energy equation.

In this study, two-equation model is applied
through the boundary layer right up to the wall.
The inclusion of the wall region in the vicinity of
walls is made because of the following reasons;™

1) The no slip boundary condtion can be ap-
plied to solid walls, which is exact.

2) Due to anisotropy, the flow might become
more complex, even in the vicinity of the wall.

3) The wall shear stress is directly computed
from the turbulent velocity predictions.

4) Extension of the finite element mesh to dis-
cretize the wall surface region itself can be possible
to take account of the heat transport by conduc-
tion in cases of temperature predictions.

Eddy viscosities are very important parameters
to describe the turbulent phenomena in the flow
domain of such a complex geometry as nuclear
fuel bundle.™ Even though the isotropic eddy vis-
cosity model is widely used, experiments have
shown that the effects of the anisotropic eddy vis-
cosities play an important role in the flow and
heat transfer mechanism. In this study, the effect
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of anisotropy is introduted into the computational
procedure by regarding it as a function of the dis-
tance to the wal. and the direction to the wall.

According to Wolfshtein’s description® for the
length scale, 1, and |4 are expressed as,

l.=x [1 — exp(—ALR}] (1)
and
lg=x[1 —exp(—A4R)] (2)

wher A . and Ay are constants and x, is the dis-
tance from the wall. R is local turbulent Reynolds
number which is defined as,

R=px k"2 1 3)

Slagter™ has proposed anisotropic length scale
model which depended on locus as well as direc-
tion from the wall and was deduced from the ex-
perimental correlation of Carajilescov-Todreas.™
The length scale of turbulent viscosity nomral to

the wall:

1 1= [ % [1—exp(—A.RO] for x; <0.25%,
% 10.25 + 0.066sin[( = /0.55)(x,/%,) —

0.25)1 otherwise (4)

and for that parallel to the wall,
lu2 = x[1 — exp(—ALR)] ()

where X, is the profile length denoting the normal
distance from the wall to the position of the max-
imum velocity.

To evaluate the anisotropic eddy viscosities, the
eddy viscosity in the direction normal to the wall

was computed as,

#1=Cy Pkl ;. ; (6)
and for that parallel to the wall,

Hp2=Co Pkl 5 (7)

where C; and Cs are empirical constants.
2.2. Governing equations
The governing equations are constructed for
steady state, fully developed turbulent flow of an

incompressible fluid with constant properties. And

the secondary flow is neglected. The Reynolds
stress is stated in terms of anisotropic eddy viscosi-
ties.

The time averaged momentum equation can be

written as,
) Us ooy @P _
ax (# % £ uug) % =0 @8)

where the usual summation convention is used.
2P/ 3x3 is independent of x; and xp, and a con-
stant in the cross-sectional area. The quantities
P uuz are Reynolds stresses and can be represented
as

9

where g ; is anisotropic eddy viscosity. Since the
main axes of anisotropy are perpendicular and pa-
rallel to the wall, the quantities x; are zero if
i~ j.
Substituting Eq. (9) into Eq. (8) vields,
Us.  oap —0

0 Rehech
AL IR v har e

(10)

To evaluate the eddy viscosity, the Kolomogor-
ov-Prandtl turbulent energy hypothesis®® is intro-
duced. In this hypothesis, the eddy viscosity is re-
lated to the local values of the turbulence length
scale 1, and the turbulent kinetic energy k by the

formula

p=Cek", (11)

where C is constant.
The time-averaged turbulent kinetic energy is
defined as,

k=uu/2 (12)

From the transport equation of turbulent kinetic
energy for fully developed turbulent flow, the

turbulent kinetic energy equation becomes

o

ok 3/2
(e 85+ pyford 21— Cap K21
aXi MO T M/ Ok an d d
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. 9Us
—u;ug aXi =0 (13)

where o, is the turbulent Prandtl number for
kinetic energy transport. The quantity Cy4 is a con-
stant and lyq a length scale. Substituting Eq. (9) into
Eq. (13) yields the one-equation model as,

2 ok
a_Xl[(/l 6 ij+ /lij/ o k)‘a;;]"cdp k3/2/1d

oUs oU
3 3 o

BAETRET 14

However, for the purpose of the generality in the
turbulence calculation, 14 in Eq. (14) is determined
by another transport equation relating to 1y rather
than by such algebraic equation as Eq. (2). Thus
the energy dissipation rate and its transport equa-
tion are introduced. For two-equation model, by
the definition of the energy dissipation rate is de-

fined as,
€ :Cdk3/2/1d (15)
Then, Eq. (14) becomes
o 2k
8—Xi[('u Syl ¥Vt /‘ij/dk)aixj]_ O e
oUsz oU; o (16)
+ Hij axj AX; -

Fig. 1. Cross sectional area of the Case 1.

where 7 is correction factor for the compensa-
tion of the wall effect.

In the same way, the transport equation for the
dissipation rate is expressed as,

2 o €
3;[(/1 SV et pylo e)a—xj]

(17)

pe? € aUs 2aU;

~Ceem G g o

where ¢ is correction factor for the compensa-
tion of the wall effect.

If the internal heat generation does not exist
and viscous dissipation, kinetic and potential ener-
gy are negligible, the energy equation becomes

2] 8U3 —
aXi(A aXi _pCpuiT)
, oT _
~ Uy 55 =0 (18)

The turbulent heat flux, £ C,uT’, can be also
stated as the form of the Reynolds stress.

_pu‘T'z aT

or axj

Fig. 2. Cross sectional area of the Case 2.
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Fig. 3. Velocity contour U(cm/sec)

where o 1 is turbulent Prandtl number.
From Eq. (19) and the definition of Prandtl
number, Eq. (18) will be

o oT
"'axi [(,u 5ij/‘7 +/1ij/‘7T) ‘axj]

02T

o (20)

And because of the uniform heat flux from the rod

surface, the axial temperature gradient is deter-
mined by the heat flux q” and axial average
velocity Uz. Thus, the final form of the energy

equation is
o oT
3%, [( e é‘i;/d + py/ o) _8?11
Aq’Py U
SR (21)
r Cpr s U3
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Fig. 4. Turbulent kinetic energy contour k(cm?/sec?)

The boundary condtions to solve the above gov-
erning equations are

1) No slip boundary condtion at the solid wall

2) Symmetry boundary condition at the external
symmetry boundary

3) Uniform wall heat flux at the rod surface.

The heat transfer calculation of the close-pack-
ed rod array is difficult because circumferential
variation of the rod surface temperature can not
be neglected when P/D < 1.3 for a triangular

spacing. And LMFBRs will most likely be fueled
with close-packed rod bundle with P/D < 1.3 and
circumferential variations in heat transfer coeffi-
cients will be appreciable. Thus, in this study,
Nu-P/D correlation is established in P/D range of
1.05 to 1.3 and has the similar form of Lyon’s
correlation!® which is for P/D > 1.3.
2.3. Numerical Methods

To find the solution of the above equations, fi-

nite element method is introduced and integral
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formulations are constructed by Galerkin’s
WRM."! The two dimensional flow region is dis-

cretized into triangular finite elements. C¥

con-
tinuity on the element boundary is used.
Finally, the successive-substitution iteration
technique® is used to solve the non-linear gov-
eming equations. Threenon-linear equations, Egs.
(10), (16), and (17), are solved first. Next, the

energy equation, Eq. (22}, is solved independently

with obtained velocity data for uniform wall heat

flux assumption.

3. Results

For verification of this model, we analyze turbu-
lent flow and heat transfer in rod bundle geome-
tries such as Figure 1 and 2. Case 1 shown in

Figure 1 (wall-channel region) is adopted because
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there may be dominant anisotropic effect. Case 2
shown in Figure 2 (close-packed equilateral
triangular array which is common in LMFBR) is
considered for prediction of temperature profile in
the subchannel and the effects of P/D.
3.1. Velocity profile in the wall channel region
(Case 1)P
In case 1, P/D = 1.15 and W/D=1.15 when D
=139 cm. Air is used for working fluid with Re=

120,000. The results of two-equation model are
compared with those of one equation model and
also anisotropy model is compared with isotropy
model for both turbulent models.

As shown in Figure 3 and 4, the distributions of
the velocity and the turbulent kinetic energy,
which are calculated by anisotropy model, are
more uniform along the solid wall than by iso-
tropy model. Figure 5 shows that the maximum
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velocity predicted by the one-equation model is
higer than that by the two-equation model. Thus,
it has been concluded from Figure 6. that two--
equation model is more consistent with ex-
perimental data. The effects of the eddy viscosities
normal to the wall and parallel to te wall are
shown in Figure 7 and 8. The normal eddy vis-
cosities have its highest value near the half posi-
tion between wall and maximym velocity line

while the parallel eddy viscosities are proportional

to the distance from the wall. And both eddy vis-
cosities have their minimum at the maximum pro-
file length point.
3.2. Temperature profile in the equilateral triangula
array (Case 2)

In the case 2, with uniform wall heat flux, the
temperature profile calculation is performed
varying P/D from 1.05 to 1.3 for Pe > 100,
where the axial conduction can be neglected. And

a ratio of heat diffusivity to eddy viscosity is
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assumed to be one for both radial and tranential
direction. Figure 9 represents the temperature at
the rod surface and comparisons with calcuated
values by Bartzis-Todreas™ when P/D is 1.1,
working fluid is sodium, rod diameter is 0.635 cm,
wall heat flux is 2.460 x 10° erg/cm/sec, and Re
is about 90,000. Results show that, at the wall
surface, maximum temperature difference of an-
isotropic model! is smaller than that of isotropic

model, because parallel eddy viscosities have a
greater influence on heat transfer than normal
eddy viscosities.

Table 1 shows the variation of Nusselt number
at the rod surface for P/D = 1.1. Nusselt numbers
are calculated for P/D =1.05—-1.3 and, from the
results, Nu-P/D correlation with similar form of

Lyon’s is obtained as
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Table 1. Nusselt number at the rod surface
(P/D=1.1)

angle(degree) (isotropy) {anisotropy)
0 10.8 11.8
6 11.2 12.1
12 12.6 129
18 144 13.8
24 14.6 145
30 14.8 14.7

Table 2. Nusselt number to

P/D

P/D Nu Pe

1.05 14.5 993
1.10 19.6 1,318
1.15 228 1,644
1.20 255 1,962
1.25 25.7 1,899
1.30 29.6 2,525

Nu= a +0.0155(¢Pe)08¢ (22)

where,
a =90.1—159(P/D)+ 79.5(P/D)?

Table 2 shows the calculated Nusselt number

according to P/D.
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4. Discussion and Conclusions

In this study, the thermal-hydraulic properties,
such as axial velocity, turbulent kinetic energy,
turbulent energy dissipation rate, eddy viscosity
and temperature, are calculated using k- e model
in the nuclear fuel bundles where complex turbu-
lence phenomena exist. Anisotropic eddy viscosity
is used to produce more realistic results. The re-
sults of one-queation model are compared with
those of two-equation model and, moreover, ani-
sotropic effects are made comparisons with isotro-
pic effects of each model. For the verification of
this model, calculated thermal-hydraulic quantities
are compared with available experimental data
and show good agreements.

From the results of this study, it is convinced
that anisotropy has a great effect on the turbu-
lence phenomena and, especially, the rod surface
temperature variation strongly depends upon the
choice of model and anisotropy.

Therefore, anisotropic model should be recom-
mended to precise analysis of the turbulence phe-
nomena in nuclear fuel bundles. Moreover, the
Nu-P/D correlation is constructed for the
close-packed equilateral triangular array in the P/D
range of 1.05 to 1.3, having the Na coolant.
And this correlation can be used for the heat
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transfer calculation of LMFBR.
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Nomenclatures

AdvA#
Ay cross-sectional area
CdevCI)C21C1 € 7C2 €

emperical constants

empirical costants

C, specific heat
D diameter of the fuel element
k turbulent kinetic energy

kt =k/U*? dimesionless turbulent kineticen-

ergy

lg length scale for dissipation

P length scale for eddy viscosity

lplez length scales for anistropic eddy viscos-
ities

Nu Nusselt number

p pressure

P pitch

Pe Peclet number

Py heated perimeter

Tw

Tw.ave

Us

U*

U* =Uy/U*
u;ug

u; T’

S

X1

7k’7 €
Jj
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heat flux from the fuel rod surface
local turbulence Reynolds number
Reynolds number

temperature

fluctuation component of tempera-
fure

wall temperature

averaged wall temperature

mean axial velocity

friction velocity

dimensionless mean axial velocity
turbulent shear stress

termrelating to turbulent eddy diffu-
sivity

wall pitch

for i=1; coordinate normal to the
wall

for i=2; coordinate parallel to the wall
for i=3; axial coordinate

distrance from the wall

profile length

correction factor in k- € model
Kronecker delta

turbulent energy dissipation rate
thermal conductivity of the coolant
laminar viscosity

tensorial eddy viscosity

eddy viscosity normal to the wall.
eddy viscosity parallel ot the wall
dimensionless eddy viscosity
density

laminar Prandtl number

Prandtl number for turbulent kinetic
energy

turbulent Prandtl number

Prandtl number for turbulent kinet-
ic energy dissipation rate

ratio of heat diffusivity to eddy diffu-
sivity



