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Abstract

The state feedback optimal control techniques are used in designing the reactor control system.
The mathematical plant model with the temperature feedback effects is established from the one
delayed neutron group point kinetics equation and the singly lumped thermal-hydraulic balance
equations, and is expressed in terms of state variables. The LQR (Linear Quadratic Regulator) con-
trol system is designed, being followed by the LQG (Linear Quadratic Gaussian) design to deter-
mine the optimal conditions of rod movements for the desired reactor power responses. And two
different servo control schemes, the ordinary feedback system and the order increased regulating
system, are proposed for the purpose of input tracking. The general control characteristics such as
stability margins and output responses are discussed. Comparing each other, it is found that the or-
der increased regulating system has far better control characteristics than the ordinary feedback sys-
tem.
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1. Introduction significantly over the last decade. Although the classi-
cal PID control has been used and proved to be
The control design techniques have been changed powerful in various fields of the control application,
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new control techniques are widespread at present
with the advent of the computer aided control de-
sign.

In the nuclear field, the problem of the plant con-
trol is now one of the important issues with the ob-
solescence of the existing control system [1]. The up-
grade of the instrumentation and control is now be-
ing on its way, and the improvements are made by
degrees on the existing plants as well as on the new
plans to be
improvements have a tendency toward the mere
digitalization of the PID algorithms making use of the
digital technologies, and does not adopt the

constructed. However, such

advantages of new control techniques [2].

In this paper, the optimal control methods are ap-
plied to the design of the reactor power control sys-
tem by establishing a set of state space equations.
Contrary to the classical control systems in which
only the measured outputs are controllable, the opti-
mal control techniques permit more degrees of free-
dom since the state variables can be controlled. Par-
ticularly, on account of the nuclear limitations on the
reactor system such as flux distortions or local
peakings, it is necessary to consider the control rod
motions together with the output responses, and the
optimal techniques provide an easy way to handle
these parameters at the same time.

The contents of this study are outlined as follows.
First, the mathematical reactor model is established.
The one delayed neutron group point kinetics
equations as well as the singly lumped thermal-hy-
draulic balance equations are employed to include
the temperature feedback effects. Then the optimal
regulating control systems of the LQR (Linear Quad-
ratic Regulator) and the LQG {(Linear Quadratic
Gaussian} are designed, and adequate design
conditions of the weighting matrices are determined.
Finally, the servo system in which the output follows

the input command signal is discussed in detail.

2. Plant Modeling

To realize an efficient control system, the plant, or
the process, which is to be controlled should be de-
fined exactly to reflect the real situation. At the same
time, it is desirable that the plant be simple enough
for an easy control system implementation. In this
paper the reactor is modeled making use of the one
delayed neutron group kinetics equation with the
complementary energy balance equations to consider
the temperature feedback effects within a reactor.
The one delayed neutron group point kinetics
equation has some limitations. First, the energy de-
pendent effects should be taken into account since
the delayed neutrons appear with somewhat lower
energies than do the prompt fission neutrons. Sec-
ondly, the point kinetics equation involves the
assumptions that the flux is represented by a single,
time independent spatial mode. In accordance, the
detail local flux distribution can not be represented
by this model. However, the reactor model to be de-
veloped in this paper is a lumped one, and the over-
all dynamic characteristics can be described by the
one delayed neutron group point kinetics equation
(3]

The one group neutron kinetics equation, with

neglecting the external sources, is

gﬂ:tﬁn-f-xc

dt A

aC_ B .

'a't——An AC (1)

where, n =neutron density, C =precursor density, p
=reactivity, $ =delayed neutron fraction, A =precur-
sor decay constant, and A =neutron effective life
time.

With the assumptions of small perturbations about
no and Co, the perturbed values are én(t) =nl(t)-no,
3C(t) =C(1)-Co, and p(t) = pl(t)-po. By inserting these
relations into Eq. (1) and dividing each equation by
no and Co respectively, the reactor dynamics is de-
scribed by a set of normalized linear kinetics

equations as below.

d5n =% Bsn+ BsC
dt A A A
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dom _2sm o=
55C = A8n - 8T 2)

where and 6 = &n/no and 3C/Ce.

Since the normalized neutron density is directly re-
lated to the normalized power, if all the neutrons are
of one eneray group, Eq. (2) can again be written in

terms of the incremental power ratio of P.
d5p =% _Bsp+ BsT
dt A A A
45C = A5P - 6C (3)
dt

where 6P =P/Po= (P-Po)/Po.

The above equations do not account the reactivity
feedbacks. But in reality, there are many kinds of re-
activity feedbacks such as fuel and moderator tem-
perature effects, poison build-ups and fuel bum-up
etc., and the dynamic characteristic imes are ranging
from hundredth of seconds to years [4]. Considering
these time scales, only the temperature effects of the
fuel and the moderator are included in the plant as
in Fig. 1(a).
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Fig. 1. (b) Plant Model With Rod Speed Input
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For the complementary equations which are to be
used to estimate the temperature feedback effects,
the singly lumped model of Eq. (4) below is used
[5).

a1y 1
Mg = PO - g [Te® - T0)

dT, 1
Mo, 5 = g [ TrO - T O] -2We[T0 - To) (g

where,

M. = total mass of fuel elements, i.e., total mass of
fuel and cladding of the reactor,

M. = total mass of the coolant in the reactor,

Cpe, Cp = specific heat capacity of fuel element and
the coolant, respectively,

R = thermal resistance from fuel to coolant,

W = total coolant flow rate,

Ty, T, T =fuel temperature, average coolant tem-
perature, and coolant inlet temperature, respectively.

For the perturbed system of Tg=Tg+8T,. T =
T+ 8T, P=Py+5P.and W = W, + W, Eq. (4)
becomes of

d

Mfecfe dat

1
8Ty = Py - 5 (8T; - 8T,)

d 1 1
M, 8T, = & 8Tr - (g +2Wo ) 8T, + 2Wc, BT,

+ ch(TiO - Tco) W (5)

Taking the temperature feedbacks into account,
the reactivity is

8p = Bpex + ;8T + a ST,

or,
d. _d d d
3% = gi%Pext + arg; 8Ty + o 53T, (6)

where a, , o =fuel and moderator temperature coef-
ficient, respectively.

From Egs. (3), (5) and (6), the plant model with
the feedback effects can be put in the following lin-
ear matrix form.

x = Ax + Bu (7)
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T
where, x = (8F 8T 8T T, ).

d T
U=(5T; W a’:5°°’“) .

1
_% _R. 0 0 + 0 0 0
A -k 0 0 0 0 0 0
a 0 -b b 0 |B=(0 0 0}
0 0 ¢ -d 0 e f 0
g 0 h j 0 ea, fo, 1
Po 1 1 0
a= , b= , €= ,d=c+ , e=d-¢C
Mfecfe RM;cp, R Mccp Mc
f=ﬁ§4;ri), g=aoay, h=ca;- bag, and j=bog- da,

<

As shown in the above equation, the plant has five
state variables with input vector of coolant inlet tem-
perature, flow rate and time rate of extemal reac-
tivity. It is to be noted that the dynamic system of Eq.
{7) is MIMO or MISO, depending on the number of
measured variables. Therefore the model can ac-
count for the dynamics of the coolant flow rate for
the case of reactor coolant pump coast down, for an
example, and can reflect the effects of the secondary
system transients [6]. Actually, the coolant inlet tem-
perature varies as the power changes. However, for
the purpose of simplicity, it is assumed that the cool-
ant inlet temperature as well as the flow rate are
constant, which imposes a limitation on the contents
of this paper. Then the matrix B becomes a vector of
five by one and the input vector u is reduced to a
scala.

The external reactivity acting on the‘system as an
input is in the form of time derivative. By introducing
the total rod worth of p,. the input can be expressed
as [7]

d
Pext = Puv, ®)

where v; is the normalized rod velocity.

It should be noted that the above equation is far
from the real situation, which presents another limi-
tation. Since the differential reactivity worth itself is
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dependent on the flux distribution, the integrated re-
activity worth is not linear, contrary to the linearity
Eq. (8) implies. Particularly, if the fraction of the rod
insertion or withdrawl is large, Eq. (8} becomes
invalid.

Equation (8) indicates that the fifth state variable
would be rather §pe: than 8p, and the system input
be w instead of ‘:ij_t 6 pex. The corresponding plant
model is described in Fig. 1(b). From Egs. (6) and
(8), with the assumptions of the constant flow rate
and coolant inlet temperature, the system of Eq. (7)
has the final form of

X = AX + Bu (9)
where
_ _ T
x = (aP 8C ST, 8T, Bpeq )
u=yv, ,
B B & % g 0
A A A A A
A A+ 0 0 0 0
A= a 0 -b b 0| B=|0}
0 0 ¢ -d 0 0
0 0 0 0 0 A

Table 1 shows the summarized key parameters of
Kori Unit 2 which are used to determine the
elements of A and B {8]. It is to be noted that the
nuclear properties as well as some thermal properties
are subject to change through the reactor life cycle,
and all the data of Table 1 is for the BOL (Begin-
ning of Life) condition. Also it is assumed that only
the rod bank A moves during the transient.

Table 1. Key Parameters of Kori Unit 2

Po(Full Power) 876 MW p 0.0075
Me 5638 kg A 18.6 10 ® sec
M. 12880 kg A 0.0787 sec™?
i 2139 4°C o —37 pam/C
Wo 85554 kg/sec  Pw 1530 pcm
R 0.2221 °C/MW
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The moderator temperature coefficient varies with
the change of boron concentration and with the
coolant temperature as well. At the initial period of
the reactor cycle it has positive values. But as the
burn-up progresses, the moderator temperature coef-
ficient becomes negative. Figure 2 shows the
modetator temperature feedback effects of the reac-
tor. A unit step increase of the normalized rod vel-
ocity is applied to the reactor (See Eq. (8)). The fig-
ure shows that the larger negative value of moder-
ator temperature coefficient leads to the milder
power increase rate. Since the boron concentration
changes abruptly during the initial period, it is
assumed to be O pcm in this study. The overall tem-
perature effects, moderator temperature effects plus
fuel temperature effects, are also presented in Fig. 3.
The input conditions are the same as Fig. 2.

As shown in the figure, the power increases expo-

nentially for the case of no feedbacks while it increas-

es linearly with the presence of temperature feedbac-
ks, as expected.

With those values of Table 1, the elements of A
are found to be a=12663, b=—030393, c=
0.12068 and d=2.744. And the system eigenvalues
are [—402.68, —0.8527, —0.0573, —2.7638, 0}. It
should be mentioned that these eigenvalues are
obtained for the case of full power and they gets
smaller for the lower initial steady powers. However,

25
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Fig. 2. Moderator Temp. Effects on Step Response of
Reactor Power

J. Korean Nuclear Society, Vol. 26, No. 4, December 1994

80
o}
60.
8
-§ Without Temp~Feedback
£ 40
)
£
o
o5 5 10 15 20
Time, sec

Fig. 3. Overall Temperature Effects on Step Response of
Reactor Power

it was found that the plant always has four negative
eigenvalues with one zero valued eigenvalue for any
power level, and the reactor is assumed to be at the
steady state of full power in followings.

3. The LQR System

The LQR design is to select the optimal feedback
gains which minimize the constraint conditions
imposed on the system. The constraint, or the cost
function, is a quadratic functional of the plant states
and control inputs. Since the relations between the
states and the input energy, say, the rod speed,
could be compromised, it also has an advantage of
the compensation for the system degradation.

If 6P is the only state variable to be sensored, the
LQR design is to determine the optimal gain vector
from following equations.

Xx=Ax+Bu. y=Cx +Du .,

J= %I (xTQx+uTRu)dt (10)

where, C=[1 0 0 0 O}, p=[0], Q=positive

semidefinite matrix, and R = positive definite matrix
The optimal control problem could be solved by

various methods [9] such as Euler-Lagrange

method, Hamilton-Jacobi-Bellman equation or
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Pontriagin’s minimum principle. By employing the
minimum principle with the Riccati transformation,
the sufficient condition for the optimal control is

% =A"P+PA +Q - PBR'B'P (11)

where P is the Hermitian matrix of the same size as
A

For the case of infinite horizon, this equation
becomes the ARE {Algebraic Riccati Equation) of

A'P+PA +Q -PBR'B'P= 0,

K=R'BP u=Kx=u (12)

Since the rank condition of the controllability
matrix is satisfied, the feedback gains could be deter-
mined from the above ARE.

The LQR control scheme is described in Fig. 4.
The feedforward gain, Ki, has a function of
converting the power signal to a rod wvelocity signal
and is assumed to be unity. Since the system is a
regulating system with an input command, the steady
state value of the output becomes different
depending on the feedback gains of K, and a
nomnalizing gain K: is introduced to make the steady
state output value equal to the input signal.

Input Vi y . >
- Plant 2
Kx - X
LQR
Control
Law

Fig. 4. Reactor Regulating System With LQR Control
Scheme

The feedback controller has an effect of cancelling
the heaw plant pole of -403. By letting the plant
and the controller be Gfs) and His) respectively, the
open loop system is G(s)H(s) =K (sI-A)"B.

Since Gl(s)=C(sI- Al'B, the transfer function
of the feedback controller is

-1
Kid-4 8 (13)

H(s) = -
C(sl-A)'B

For an example, with Q of the unit matrix of five
by five and R of 500, the feedback gain vector is
found to be K=[0.0099, 19444 0.0304, 0.0028,
264.36). And it can be found that the largest nega-
tive eigenvalue of the open loop transfer function is
canceled.

The weighting matrices Q and R are constraints on
the system state variables and the rod velocity.
Further it is to be noted that their relative values
rather than their absolute ones have a sense {2]. The
larger value of R imposes a larger constraint on the
rod speed and makes the system slower with smaller
feedback gains.

Figures 5 and 6 present the output of the in-
cremental power and rod speed, respectively, for the
various values of weighting martices when the power
is step increased by 10 percent from the steady state
of full power. The simulaton was made by using
MATLAB [10]. The weighting matrices of Q and R
are assumed to be Q=q X 1(5), and R=r, where I(n)
denotes the identity matrix of size n.

As the input constraint value of r increases, the
rod motion becomes milder but the system speed
gets slower. By trading off the systemn speed and the
rod speed from Figs. 5 and 6, the weighting values
of q and r are determined as 2 X107% and 1. The

0.2

0.051

Incremental Power
o

0 5 10 15 20
Time, sec

Fig. 5. Reactor Power Responses of LQR Design for

Various Constraint Weighting Values



542

Relative Rod Speed

0.02-

0.024

Time, sec

Fig. 6. Relative Rod Speeds of LQR Design for Various
Constraint Weighting Values

feedback gains for this case are K=[0.0001, 0.1488,
0.0000, 24.2855 ].

3. The LQG System

The basic premise of the LQR is that all states be
available for the feedback. In practice, not all state
variables are available for the direct measurement. In
many practical cases, only a few state variables of a
given system are measurable and it is necessary to
estimate the unmeasured states.

An estimator, or an observer, estimates the state
variables from the control inputs and the system
outputs. The dynamics of the estimated states is

%=AX+Bu+L(y-CX) = (A-LC) + (B L)(;)

(14)
where X is the estimated state vector and L is the ob-
server gain vector.

The observer gain could be obtained from a full
order observer or a Luenberger observer, if the rank
condition of the observability matrix is satisfied. How-
ever a Kalman observer is used in this work to ac-
count for the system and measurement noises.

With the presence of process and measurement
noises, the system comes up to

x = Ax+Bu +Gw, y =Cx+v (15)
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If both noises are assumed to be white Gaussian
with zero mean stationary process and uncorrelated
each other, the estimated values of each variance is
E[wl=E[v]=0, E[ww’] =Qy andE[vv1] =R, where
Q, and R, are process and sensor noise covariances
respectively. The optimal estimator, or the Kalman
observer is to obtain an estimate of the state which
is to minimize the mean square of the estimation er-
ror, or the covariance of Jo=E|[X x|, where x=x -x.
The gain, L, is determined from the ARE of
AS+SA"+GQ,G - SC'R,CS = 0.

L=SCR' (16)
where Q, is positive semidefinite and Ro is positive
definite.

The Riccati solution of Eq.(16) turns out to be an
error covariance which has the relation of

w(S) =E[§T§] =Jy-

The diagram of Fig. 7 illustrates the control
scheme which incorporates the Kalman observer
together with the LQR control law. The converter
gain Ki and the normalizing gain Kz are the same as
Fig. 4, and the system equation is

()=( Le A.él:(l.(Lc) §)+(§)v.

X
y=(C 0 )(;) 17

">

Input A\
—>@—> Plant
Kx
CI(;S&I X| Kaiman
Law Estimator

Fig. 7. Reactor Regulating System With LQR/LQG
Control Scheme
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Similar to the case of the LQR, the optimal ob-
server gains are also dependent on the relative
values of weighting matrices. Figure 8 shows the out-
put of incremental power with an input of 10
percent step change from the steady state of full
power. The system and measurement noise
weighting matrices are assumed as Q, =qo X¥(5) and
R =R =ro. Four cases of qo/ro=0.1, 1, 10 and 100
are simulated using Eq. (17). The control law
feedback gains are fixed as those obtained in the
LQR design and observer gains are determined from
Eq. (16).

The figure explains that as qo becomes large, the
output speed increases and is saturated above qo/ro
of about 10. But the observer gain, except that corre-
sponding to the fourth variable, increases without a
bound. The large value of qo/ro has a merit of slightly
increased phase margin {See Table 2). But this ad-
vantage is masked by the undesirable high gain. On
the other hand, the low value of go/ro results in the
sluggish responses as shown in Fig. 8. By trading off
these properties, qo/ro is determined to be unity.

It is well known that the LQG is susceptible to the
model uncertainties, and the robustness as well as
the stability margins might be lost. Therefore it is
preferable to check the frequency response
characteristics of the LQG system. The gain and
phase margins of the open loop are found for vari-
ous values of qo/ro, and are summed up in Table 2.
The gain margins range from 60 to 65 dB and the
phase margins stay around 80 degrees. These
margins are sufficient for the system stability.

Table 2. Gain and Phase Margins of the LQR Design

for Various Weighting Values
qo/To GM(dB) PM(deg) w6 wp
0.1 65 8 224 021
1.0 62 78 313 0.35
100 61 81 520 041
100.0 61 83 911 043

0.15

10, 100

0.14

0.051

incremental Power

0 5 10 15 20
Time, sec

Fig. 8. Reactor Power Responses of LQG Design for

Various Weighting Values

4. The Servo System

Since those systerns of Fig. 4 and 7 are regulating
systems with command inputs without feedback, the
steady state values of the output are not the same as
the command signals and are subject to variation
depending on the design conditions. Therefore, it is
necessary to build the servo system in which the out-
put follows the command input signal. In the servo
system, it is generally required that the system have
integrators within the closed loop to eliminate the
steady state errors.

The ordinary system is outlined in Fig. 9. The out-
dinary servo system with a feedback loop and the
other is the regulating system of increased order. It
should be noted that these terminologies are not of
general use, but they are used in this study for the
convenience of comparison.

The ordinary system is outlined in Fig9. The out-
put is feedbacked to generate the error signal, which
is integrated by an integrator. This scheme has an
advantage of the simplicity. But since the overall
open loop is of non-minimum phase, there is a limi-
tation on the feedforward gain Ki. For an example,
by letting the transfer function from point A to point
B of the figure be KiM(s), the characteristic equation
of Fig. 9 is



1+KM(s) =0 (18)
where

M(s) =
822.65° +2571.95 + 853.15 + 51.6

s8 +406.75° +1633.0s* +2433.85° + 3090.95> + 885.0s + 51.6

v

i #V— R

L}

]

B—L Estimator !
Controller!

______________

Fig. 9. Tracking System With a Feedback Loop

From the root locus diagram, it can be found that
the system is of the non-minimum phase and the
.upper limit of K for the stability is about 183. The
range of Ki is large for this specific case of the reac-
tor system. But, in general, the range might be small
and there could be a possibility of becoming unstable
if the setting point drift or the system degradation
occurs. To check the sensitivity of the system to the
feedforward gain, the damping factors are calculated
as in Table 3.

Table 3. Damping Factors of Feedback Servo System

by Feedforward Gains

K1 & Ki ¢

01 082 2 022
03 0.56 5 0.14
04 049 10 0.1

05 044 50 0.03
10 032 100 0.01
15 0.26 180 0.0002

The damping factors are very sensitive to the
feedward gain, which are not desirable with respect
to the system robustness. Figures 10 and 11 show
the incremental power and relative rod speed when

dJ. Korean Nuclear Society, Vol. 26, No. 4, December 1994

the reactor at the steady state of full power is placed
to the 10 percent step increase. The output
overshooting becomes larger with the increase of Ki.
The control rod motion also becomes large. However
the maximum value of rod speed is less than that of
the regulating system.

0.5
® A
% 0.1
a. ’ ==
g
g A Ki=10
E B: K=05
96: 0.05+ C:K =04
E D K1 = 0.3
0 : . .
0 5 10 15 20
Time, sec

Fig. 10. Reactor Power Responses of Feedback System

for Various Feedforward Gains
0.08 ——
T 006
3 Ki=1.0
N 1= 1.
7]
-8 0.044 : K1=05
.
g =0
'g 0.021
s
g o
-0.02 . — -
“0 5 10 15 20
Time, sec

Fig. 11. Relative Rod Speeds of Feedback System for
Various Feedforward Gains

The other scheme, the order increased regulating
system, is shown in Fig. 12. In this scheme, the error
signal is not treated separately but is augmented to
the system as an additional state variable.

Since x=Ax+Bu. x=AX+Bu+L(y - CX).

z=r-y,andu=-Kx - K,z +K;r, the system
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dynamics is
[ ]
x A -BK  -BK; \ [x BK,
%|=| LC -A-BK-LC -BK; {|x]|+|BKi|r
-C 0 0 1
z z (19)
X
y=(C 0 o}lx
z
Input
Plant Y >
l v
Estimator

Fig. 12. Tracking System of Order Increased Regulating
System

Equation (19) indicates that the feedback kain Ki
has no relation with the system properties. Since all
the eigenvalues of the system are negative, the above
systemn is always stable with the minus values of Kz
The dynamic system of Eq. {19) is a regulating sys-
tem with the increased order and the problem is to
determine the control gain of [K Kz] by the LQR
design.

In determining the gain, the cost function is modi-
fied as

J= %LT( {x z]TQ(x z)+uRu)dt

Q- (“5’ 0 ) (20)
0 z,

The feedback effects can be controlled by z0. That
is, if zo0 is large, the feedback effect becomes more
salient and the system speed increases. Figure 13,
with the feedforward gain of unity, explains the effect
of 0 on the system responses. With z0 of 5x10°
the system gives a satisfying result of the faster speed

0.2

2

5)

a

g

£ 01

£

o Az =5x10%

[4] ° 4

< B : zy=5x10
C:2y=5x10°

% 5 10 15 20
Time, sec

Fig. 13. Effects of Feedback Weighting of Augmented
Variable

and lower overshooting.

As mentioned above, the feedforward gain Ki has
no effect on the system properties, but only has a
function of amplifying the input signal. Figures 14
and 15 show the system output and control energy
for various feedforward gains. As the feedforward
gain increases, the initial speed becomes fast, but
only at the expense of a large overshooting. Also the
settling time is independent from the feedforward
gain.

Although the feedforward gain Ki boosts the initial
speed, it is not desirable with respect to two criteria.
The first one is the unfavorable output responses,
and the second one is the transition of the rod mo-
tion. Particularly, the larger feedforward gain leads to
the rapid rod motion, which resuits in the adverse ef-
fects such as rapid flux distortions. Therefore, taking
these problems into considerartion, it would be better
to drop off the feedforward gain to get the more de-
sirable responses. These are explained in Figs. 14
and 15.

5. Conclusion
The optimal control techniques are used in de-

signing the reator contro! system. The mathematical
plant model with the temperature feedback effects is
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Fig. 14. Reacor Power Responses of Order Increased
Regulating System for Various Feedforward
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Fig. 15. Relative Rod Speeds of Order Increased
Regulating System for Various Feedforward
Gains

established from the one delayed neutron group
point kinetics equation and the singly lumped ther-
mal-hydraulic balance equations. The LQR control
system is designed, being followed by the LQG de-
sign. Finally two control schemes, say, the ordinary
feedback system and the regulating system of
increased order are proposed for the servo system.
The general characteristics of the control system such
as stability margins and output responses are dis-
cussed.

Comparing those two schemes each other, it is
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found that the regulating system of increased order is
superior to the ordinary feedback system in tracking
the command signal. The output responses and the
rod motions of the order increased regulating system
are much better than those of the ordinary feedback
system.

Although the order increased regulating system
has an additional control law gain, the feedforward
gain could be dropped, making the total number of
gains be equal to those of the ordinary feedback sys-
tem. Further, since the augmented gain is not so
sensitive to the state weighting matrix, it is more ro-
bust than the ordinary feedback system which has a
sensitive feedward gain.

Related to this study, a further
incorporating other systems might be proposed.

work of

Since the reactor model developed in this study is of
multi input system, the pump transients as well as
the secondary dynamics could be included to make a
larger control system. In addition, the problems such
as the non-linear elements of speed programmer,
and the dynamics of the various initial power levels
should be studied in future works. Finally, for the
case of a large commercial reactor, there is no actual
problem in the power control because of a large
thermal-hydraulic feedback and small neutron leak-
age. Therefore, for the verification, it is desirable to
apply the control model developed in this study to a
small experimental reactor.
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