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We investigate the concurrent solution of differential equations by the waveform relaxation (WR)
method, an iterative method for analyzing linear and nonlinear dynamical systems in the time do-
main. The method, at each iteration, decomposes the dynamical system into several subsystems,
each of which is analyzed for the entire given time interval. The method, when efficiently imple-
mented, results in algorithms with a highly parallelizable concurrent fraction. In this paper, the wav-
eform relaxation method is introduced and applied to two types of reactor dynamics problems. It is
concluded that the WR method can be applied to reactor dynamics equations, but that its parallel
performance on the KMRR dynamics is only modest.
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1. Introduction

In the numerical solution of large dynamical
systems it has turned out to be advantageous to use
iterations in time domain with the aid of parallel com

puters. In such a method the system is decomposed
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into smaller subsystems, each of which is integrated
numerically with its own processor reading inputs
from other subsystems from the earlier iteration. If
these subsystems are loosely coupled and a good
starting value for the iteration is available, then the

computing time may decrease significantly. The back-
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ground of the method appears in electrical network
simulation, and it is known there as waveform relax-
ation (WR) or dynamic iteration[1-3].

The objectives of this study are to investigate the
waveform relaxation method by applying the method
to the reactor dynamics in order to improve the com-
putational efficiency. Two test problems are con-
sidered : one is the point kinetics equations with six
groups of delayed neutron precursors equations, and
the other is the Korea Multipurpose Research Reac-
tor dynamics.

In this paper, a parallel computer network compos-

ed of four T-800 transputers is used to solve the re-
actor dynamics. T-800 transputer(4] is a message-pas-
sing type MIMD (multiple instruction multiple data)
architecture. The transputer is a microprocessor with
four serial links to be used in communicating with
other transputers.

Speedup factor (S) is used to describe the perform-
ance of parallel processing. In a multi-processor sys-
tem, the paralle] speedup (S) achieved when using P
processors to solve a problem of size N is defined by
S(N) =T1{N)/TP(N), where TP(N) is the time requir-
ed to solve the given problem size N using P proces-
sors. This quantity represents how much faster the

problem is solved by using P processors.
2. Waveform Relaxation Method

The basic idea behind the dynamic iterative met-
hod or waveform relaxation method is analogous to
the standard Jacobi and Gauss-Seidel iterations used
to solve linear systems of equations[5]. First we dec-
ompose the system into several lower-order sub-
systems. As an inevitable consequence, these sub-
systems have coupled variables one after another.
The results of the WR method rely on a splitting or
decoupling of a given system of differential equations
into a set of weakly coupled subsystems, It is very im-
portant to know which set of variables will be solved
by each subsystem. Then the global iteration process
starts with an initial quess of the solution of the orig-
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inal systern and is carried out repeatedly until satis-
factory convergence is achieved. However, in each
subsystem, waveform relaxation operates on groups
of function approximations (waveforms) rather than
on groups of real values. During an iteration, each
decomposed subsystem is solved for its assigned un-
known variables in the given time interval by using
the approximate waveforms of its neighbor subsystem-
s.

Therefore the general structure of a WR algorithm
for analyzing the system in a given time interval {to, t]
consists of two major processes, namely the assign-
ment-partitioning process and the relaxation process.
In the assignment-partitioning process, each un-
known variable is assigned to a subsystem in which it
is involved. Then the system is partitioned into P sub
systems of equations, each of which may have only
differential equations or only algebraic equations or
both. The relaxation process is an iterative process.
For simplicity we shall consider two most commonly
used types of relaxation, namely the Jacobi and the
Gauss-Seidel relaxations. The relaxation process star-
s with an initial guess of the waveform solution of
the original dynamical equations in order to initialize
the approximate waveforms of the decoupling vector-
s,

Let us consider a dynamical system which can be
described by a systern of differential equations of the
form,

Fty y.w) = 0, 2.1)

y(t) =
where F:RXR"XR'XR—R" is a nonlinear func-
tion, y(t)ER" is the vector of unknown variables,
v €RVis the vector of the time derivatives of the un-
known variables, and u(t)€ R is the input vector.

Without loss of generality, we can rewrite Eq.(2.1)
as follows :

Ft.yi, yi.di,w)=0, y{t)=yip. (22
where, for i=1, 2, ---, P, yy€R" is the subvector of
the unknown variables assigned to the ith partitioned
subsystem, F: RXR"XR™ #x R —R" and d. is the
decoupling vector which contains all the unknown
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components of y which are not in y; and all time
derivative components of y not in y . Now, if we
consider the decoupling vector of each subsystem in
Eq.(2.2) as an input vector, we can solve Eq.(2.1) for
a given time interval by solving iteratively P indepen-
dent subsystems.

Let the superscript k denote the iteration count.
Then the general structure of a WR algorithm for a
given subinterval 7o =[ts, t4+1] is formally described as

follows.

Step 0 : (Assignment-partitioning process)
Assign the unknown variables to Eq.(2.1)
and partition Eq.{2.1) into P subsystems of
equations as given by Eq.(2.2).

Step 1 : (Iitialization of the relaxation process)
Set k=1 and guess an initial waveform and
neighbor waveforms.

Step 2 : (Solving the decomposed system at the kth
iteration }
Solve Eq.(22). For iterations like Gauss-
Seidel, the waveform solution obtained by
solving one decomposed subsystem is im-
mediately used to update its approximate

waveform used by other subsystems. For Jac-

obi iterations, all approximate waveforms are
updated at the beginning of the next iter-
ation.

Step 3 : (keration Process)
Set k=Fk+1 and go to Step 2.

3. Applications and Results

3.1. Test Problem 1

Suppose we want to solve the following equations:

x =1, (3.1a)

% ==x, (3.1b)
where

=0,

X =1. (32)

Any ODE integrator can be used to solve Eq.(2.2).
To solve Eq.(3.1), we use the well-known Crank-Nic-
olson method.

This problem is a typical example solved by paral-
lel waveform relaxation. When we solve Egs.(3.1a)
and (3.1b) concurrently, we can use two fransputers.
Since the problem is simple but has highly coupled
variables, serial WR can solve the above equations
faster than parallel WR.

The results are shown in Fig. 1 and Fig. 2. Both
figures show that as global iteration goes on, ap-
proximate waveforms converge to the exact solution.

3.2. Test Problem 2 (Reactor Point Kinetics
Equations)

The second test problem is reactor point kinetics
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equations with six groups of delayed neutron prec-

ursors[6).
dan _ p—8 C. ‘
P 7| n+ g:,"'c'» (3.3
ac; _ Bi g
5 =—A;C;t+ 7" i=1,2,--,6 . (34)

Reactor parameters are shown in Table 1.

Table 1. Reactor Parameters Used for Numerical Tests

i B A
1 0.000266 0.0127
2 0.001491 0.0317
3 0.001316 0.115
4 0.002849 0311
5 0.000896 14
6 0.000182 3.87
! 2x1075% sec
B 0.007
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For solving Eqs.(3.3) and (3.4), as an example, we
construct integrator as follows. We reurite Eq.{3.3) as

% =gq;x;(¢)+b;(¢t) i=1,2,,7. (35)

For a given time interval At, we assume bi(t) in Eq.
(3.5) as follows :

bl(t) =bm+b"t+blzlz+bl3f1 R (363)
bi(t) = b,‘o"'b ;|f+b i2t2+b ,~3t‘+b,-,,exp(a,t) ,
{3.6b)
i1=2,,7, te b, ty+41
Integrating Eq.(3.5) analytically,

(D= exp(a; N[ [ exp(—a;Db{t)dt+D; ]
(3.7
So using Eqs.(3.5), {3.6), and (3.7), we obtain the
following solution for the neutron density equation
and delayed neutron precursors equations,

- _[(bw by 26, 66y
0n(H= ( 2, + a% +—a-fl;—+ a,: )

_(21_1 + 2o Sbp )t
a, a a)
N i o B A e
a, & a,
(38)

—(—13'%’ +§§{i)t2—(%'1)t’+ bit— exp(ay)

i a),—a;
i=2,....7. (39)

where D, can be calculated from initial conditions.

We use four transputers to solve Eqs.(3.3) and
(3.4} concurrently. Transputer No. 1 calculates Eq.(3.3),
and No. 2, 3, and 4 calculate Eq.(3.4) (one transput-
er calculates two delayed neutron precursors equa-
tions, respectively).

Three reactivity insertions are considered : two
p=0.003 and
p=0.0055, and one prompt supercritical case with
p=0.008 and £¢=107° The values of nft) obtained
with WRM are compared to those obtained with

prompt subcritical cases with
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Fig. 3b. The Waveform of C; of Test Problem 2 :
p=0.003, 4t=1.0sec
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Table 2. Comparison of WRM with ADM with p=po

Po Method At n(t)
t=1sec t =10sec t=20sec
Exact 2.2098 8.0192 28297
0.003 ADM 10 22098 8.0190 28.296
WRM 0.01 22098 80192 28296
WRM 01 2.2099 8.0192 28.297
WRM 1.0 22099 8.0194 28.298
t=0.1sec t=2sec t=10sec
Exact 52100 43.025 1.3886E5
0.0055 ADM 01 52100 43.025 1.3886E5
WRM 0.01 52100 43.025 1.3886E5
WRM 0.1 52127 43.028 1.3887E5
t=0.01sec t=0.1sec t=1sec
Exact 6.2029 1.4104E3 6.1634E23
0.008 ADM 0.01 6.2029 1.4104E3 6.1633E23
WRM 001 6.2029 1.4104E3 6.1636E23
WRM 0.05 1.4148E3 6.3571E23
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Adomian’s decomposition method (ADM)[6] in T-
able 2. In Table 2, WRM with a large time step gives
less accurate solutions compared to ADM. This is
due to the characteristics of ADM that in ADM the
solution is represented in a higher order polynomial
within a time step. Figure 3 shows the waveforms of
n and C; for p=0.003. At a given reactivity, com-
puting time and speedup in various numbers of wav-
es are presented in Fig. 4.

3.3. Test Problem 3 (KMRR Dynamics)

The waveform relaxation method is applied to the
dynamics of Korea Multipurpose Research Reactor
(KMRR, or Hanaro), and Runge-Kutta method is
used as integrator. KMRR is an open-tank-in-pool
type research reactor of 30 MWih, operating at Kor-
ea Atomic Energy Research Institute. The plant mod-
el used in this paper consists of 39 first-order nonlin-
ear dynamics equations developed as a simulator cal-
led KMRRSIM[7]. The plant model includes 2-point
kinetics model for core and reflector regions with
6-group delayed neutrons and 9-group photo-neut-
rons. The thermal-hydraulic model includes flow loop
and pump characteristics.

We use three transputers to solve the KMRR mod-

Transputer No. 1
y(1)=y(11), y(14), y(15)

Transputer No. 2 Transputer No. 3
¥(12), ¥(13), y(16)-y(27)

y(1) Normalized reactor power

¥(12) Iodine

¥(13) Xenon

¥(15) Coolant temperature passing through the reactor channels

¥(27, ¥(30), y(33) Temperatures in the intermediate pipings
from the reactor to the exchanger

Fq  Fuel power including decay heat

Fig. 5. Schematic Diagram of Variable Communication
in Parallel Computation
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el, that consists of 39 nonlinear differintial equations.
Transputer No. 1 solves 13 equations, that consist of
2-point reactor kinetics model, fission product and
fuel power, fuel temperature and coolant tempera-
ture through the reactor channel model. Transputer
No. 2 solves 14 equations, composed of iodine and
xenon model and primary coolant heat exchanger
model. Transputer No. 3 solves 12 equations, com-
posed of temperatures in the intermediate pipings
from the reactor to the heat exchanger, reflector cool-
ing system and reflector heat exchanger. The sche-
matic diagram of variable communication is shown in
Fig. 5.
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Fig. 6a. Reactivity pi(t) of Test Problem 3 (KMRR)
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Three reactivity insertions are considered : p(t)=
pilt) (a series of step functions), p.ft) (sine function),
and pslt) (constant, ie, p(t)=po). Since the heat
transfer model is not stiff in comparison to the neu-
tron kinetics model, time steps of Transputer No. 2
and 3 are larger than that of Transputer No 1. The
time step and error criterion used are At=0.001sec
{Transputer No. 1), 4t=0.01 {No. 2 and 3), and ¢
=107, respectively. The results are presented in
Figs. 6, 7, and 8. The three methods give practically
the identical results.
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Fig. 7a. Reactivity p:(t) of Test Problem 3 (KMRR)
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4. Conclusions

In this work, the waveform relaxation method was
implemented on a transputer network and applied to
three test problems. Qur numerical results show that
computing time strongly depends on the number of
decoupling vectors, because if decoupling vectors in-
crease then more global iterations are needed to con-
verge to the error criteria.

In Test Problem 2 of reactor point kinetics, since
the system is partitioned into four subsystems but
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Fig. 8a. Reactivity ps(t) of Test Problem 3 (KMRR)
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Table 3. Comparison of Computing Time for Test Prob-

lem 3 (KMRR)
plt) Method time(sec) speedup
ptP  RungeKuta  4.869 3
Serial WR 7.817
Parallel WR 4526 1.076"% 1.727¢
palt?F Runge-Kutta 5262
Serial WR 8.603
Paralle]l WR 5312 0.991°, 1.620°
psltF Runge-Kutta 4.838
Serial WR 7.756
Parallel WR 4464 1.084% 1.737¢
® see Figs. 6, 7, and 8.
® with respect to Runge-Kutta
< with respect to Serial WR

these variables are highly coupled, many global itera-
tions are needed. If we solve the equations using ser-

ial WR algorithm, we do not need times that are con-

sumed in communicating updated decoupling vector-
s from one subsystem to other subsystems. But in
using a parallel WR algorithm, communication times
are consumed in order to update decoupling vectors
and solve independent subsystems concurrently. So
in solving the equations, if we communicate decoup-
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ling vectors too frequently, the parallel WR solver req-

uires a little longer computing time than the serial
WR solver. The results of the test problems show that
there is an optimal number of waves, so to speak,
optimal number of communication frequency.

If we decompose a system into several subsystems,
we can allocate different time steps in each sub-
system. In Test Problem 3, since the heat transfer
model is not stiff in comparison to the neutron kin-
etics model, a large time step is used and contributed
to speedup. This is a special feature of the WR met-
hod, which cannot be applied to conventional Run-
ge-Kutta method. Thus, the WR method is a general
method that can be flexible and implemented on a

parallel computer system. However, the example res-
ults on the KMRR dynamics indicate that its parallel
performance is only modest.

We should note the following if we solve large dy-
namical systems using WR algorithm. First, we should
consider the kind of integrators, altthough WR algor-
ithm allows any integrators. Second, the number of
transputers, which is the same as that of subsystems.
Using more transputers does not necessarily mean
higher speedup. Third, the method which divides a
large system into subsystems. If we divide the system

. inappropriately, then the variables related between

subsystems are highly coupled, so we cannot get
good speedup.
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