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Abstract

The point-kinetics reactor system which is subject to feedback effects may have multiple
steady-state solutions for some operating conditions. A necessary and sufficient condition for mul-
tiple steady-state solutions of the point-kinetics reactor feedback system for an external input reac-
tivity is obtained through their theoretical approach. If and only if the steady-state feedback reac-
tivity of the reactor system is not strictly monotonic on some values of the feedback variables, then
the reactor system has multiple steady-state solutions for the equilibrium operating conditions corre-
sponding to the values of the feedback variables. Also, if and only if the steady--state feedback reac-
tivity is strictly monotonic on all the feedback variables, then the reactor system has only one stead-

y-state solution for all the operating conditions.
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1. Introduction system. Some design philosophies of the operating

system are based on the stability analysis of these

Feedback effects of an operating system may have
significant influence on the dynamic stability of the
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feedback effects. The mathematical model that des-

cribes a real 5ystem considering reactivity feedbacks
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usually becomes a nonlinear system, which defies an
easy analysis. To simplify the analysis of a system
one neglects, in many cases, the nonlinear phenom-
ena and linearizes the nonlinear system around a ref-
erence point. Then, the linearization theory will be
valid only within a limited range of the system vari-
ables, and can not be applied beyond the limited ran-
ge, probably infinitesimal around the reference point.
However, the physical system with specific design par-
ameters may be governed by the nonlinear phenom-
ena ; jumping, oscillations, chaos, and etc. due to lar-
ge perturbations from the reference point. It is, in
this case, required that the original nonlinear model
of the physical system, without any assumptions, be
analyzed.

The analysis of nonlinear system begins with the
steady-state analysis of the system, the purpose of
which is to find steady-state solutions for given con-
ditions. It is well known that the nonlinear reactor
system with positive feedbacks may have multiple
steady-state solutions at some reactor parameters
[1~4]. Moskalev [1] showed that a reactor model
with a positive power coefficient and xenon absorp-
tion might have two solutions for a range of paramet-
ers. Dean and Chamble [2] analytically obtained mul-
tiple solutions for several types of reactors with cool-
ant temperature, void, and xenon effects, and inves-
tigated the stability of each solution. They were con-
cermned with multiplicity itself, not its theoretical bases.
Cho and Grossman [5] developed a one-dimension-
al nonlinear feedback model, and Yang and Cho [3]
numerically examined the multiplicity of steady-state
solutions of the feedback system. Recently, Yang and
Cho [4] performed a steady-state analysis and a dy-
namic-stability analysis of a point-kinetics model incor-
porating both coolant and fuel temperatures. They
also numerically showed that when the coolant tem-
perature coefficient is less than a certain critical val-
ue, the number of steady-state solutions is always
one, but, when the coolant temperature coefficient is
greater than the critical value, the number of solu-

tions may be more than one.
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Most of the studies laid emphasis on finding nu-
merical solutions of the feedback models under con-
sideration and then on analyzing the results for their
purpose, but not on investigating for what reason the
systems have multiple steady-state solutions. This
study aims at examining the theoretical basis for the
multiplicity of steady-state solutions of the point-kin-
etics reactor feedback systems. The reactivity of the
core can be typically classified by the external reac-
tivity for control of core power and the intemal (feed-
back) reactivity due to feedback effects. For a given
external reactivity, the steady-state characteristics of
the system, such as the multiplicity of steady-state sol-
utions and their stability, are dependent on the beh-
aviors of the feedback variables and feedback reac-
tivity. Therefore, we can find the design conditions so
that the' systems avoid operating under the multiple
steady-state solutions, by examining the dependency
of the intermal reactivity on the power levels.

2. Steady-State Solutions of a Point-Kinetics
System with Feedbacks

Our basic model for this study is the point-kinetics
theory that neutron flux, delay-neutron precursor con-
centration, and feedback variables are solutions to
the equations. Typical feedback variables are fuel and
coolant temperatures, and fission-product poisons.
The product of reactivity and neutron, p - %, in the
the point-kinetics equation is the main cause for non:
linearity if reactivity is dependent on system variables.
Note that steady-state solutions stated in this study
signify positive steady-state solutions, except a trivial
solution.

2.1. Point-Kinetics Reactor Feedback System

The point-kinetics model considering one-delay
-group neutron is written as

dn p(t)-B
— =t AC
dt A" +Acs
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i B _
7{ —-An AC. (1)

The reactivity p(t) is determined through changes
in specified composition (external control) and/or
through changes in coolant and fuel temperatures
and fission-product poisons, etc.

A variation of the point kinetics scheme for separ-

ation of external and feedback reactivities can be con-

sidered. Using separate shape functions, components
of reactivity are obtained as [6]

p(t) =p(t, Z(t))
=po(t) + p£(Z(t)), (2)

where golt) is an external control reactivity, e.g,, due
to control and/or soluble boron, and p{*t)) is a
feedback reactivity (or internal reactivity) produced by
changes in feedback variables. ¥ is a vector consisting
of feedback variables, such as fuel and coolant tem-
peratures, fission-product poisons, etc.

Dynamics of the feedback variables is generally giv-

en as
ia‘c(t) = F(n,Z). (3)
dt

The feedback dynamics system Eq. (3) is coupled to
the neutron dynamics equation Eq. (1) by the reac-
tivity equation Eq. (2).

In order to calculate the feedback reactivity p; at a
specific time, we should include the thermal-hydraulic
model and the fission-product poison model into the
point-kinetics equation. However, even though the
thermal-hydraulic model or fission-product poison
model is obtained, it is very difficult to find out tem-
perature and fission-product poison behaviors from
the models, because of the strong nonlinearity of sys-
tem parameters such as thermal-hydraulic paramet-
ers. In this study, we deal with a p itself, not using
feedback dynamics equations for p;.

2.2. A Necessary and Sufficient Condition
for Multiple Steady-State Solutions

Some studies [1, 4] numerically showed that the
point-kinetics system may have multiple steady-state
solutions for some operating conditions. We, in this
section, investigate the theoretical bases so that the
system equation, Eqgs. (1) and (3), has multiple stead.
y-state solutions for a constant external reactivity,

We consider an equilibrium core where Egs. (1)
and (3} are in equilibrium, i.e., p=po+ pd®,) =0 and

C, n,, having a steady-state solution {7, C, ).

=B

Al
Total reactivity p becomes O, only if a constant exter-
nal reactivity po is equally balanced by the feedback
reactivity — p{¥:). That is,

po (a constant value) = —p¢(Z,). @)

Eq. (4) indicates that the number of steady-state sol-
utions of the system for a given po is entirely depen-
dent on the steady-state characteristics of the feedbac
k reactivity p{:). Furthermore, the number of cross-
ing points of pd%) function and the constant value
— po is the same as the number of steady-state solu-
tions of the system for the external reactivity po.

As an example, consider a typical nonlinear feed-
back reactivity about feedback variables at steady stat-
e, pd%.} such as Figure 1.

When —po is less than the p; or greater than the
p2 (Case I), the — p, crosses the pd¥:) function at one
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Fig. 1. Functions of pdX,) and — o
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point in a state space, i.e., X (or ¥«a). This means
that, for the po, the number of steady-state solutions
of the system is one. When — pq is equal to the p; or
equal to the ps, — p, crosses the p(%:) function at two
points. This means that, for the po, the number of
steady-state solutions is two. When —p, is greater
than the p; and less than the p, (Case Il), the —po
crosses the p{%) function at three points in a state
space, i.e., ¥s1, %, X This means that, for the po,
the number of steady-state solutions is three.

From the abowe results, we obtain the following
necessary and sufficient condition for the multiplicity
of steady-state solutions of the point-kinetics reactor
feedback system for an external reactivity. If and only

if the steady-state feedback reactivity pd%:) is not stric-

tly monotonic {1-t0-2, 1-t0-3, ---) on some % [7), the
systen has multiple steady-state solutions for a range
of reactor parameters. Also, if and only if the
steady-state feedback reactivity pd®:) is strictly mon-
otonic (1-to-1) on all ¥, the system always has one
steady-state solution for all the values of the reactor
parameters.

3. Applications to Some Reactor Models

We are primarily concerned with temperatures and

fission-product poisons as feedback variables. For sim-

ple reactor types, feedback models were used for
analysis, such as temperature feedback models for

short-time behavior of the reactor and xenon feedbac-

k models for long-time behavior of the reactor. This
section provides the applications to two reactor feed-
back models from the earlier studies.

3.1. Point-Kinetics Model

Yang and Cho [4] used a point-kinetics model
coupled with moderator and fuel temperature feed-
back dynamics as follows :

i’z _p(Tfsvat) -p

7 1 n+ AC,
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@ "1t G

dT

— =en=m(Ty — Tn),

dT,,

= =ny(Ty ~ Tm) = 13(Tm = Ta), (5)

where € is the product coefficient of energy and #/'s
are the reciprocal constants for heat transfer. The
temperature dynamics are coupled to the neutron
dynamics by reactivity feedback such as

P(Tf)Tm’t) =

Ty Ton
po(t) + / apdTy + /_ amdTm. (6)
T, T

In reality, the temperature coefficients of reactivity
are dependent on the temperature itself and hence
on the power level. They used the fuel and moder-
ator temperature coefficients given by

4x107*

af(Tf) = - ——= (/°F),

1(Ty) 0T T, (/°F)

am(Tm) =(—0.167T2, + 66.7T,, + k)

x 1078 (/°F), 7)

where k is a design parameter representing the mod-
erator temperature coefficient. The greater the value
of k is, the larger the moderator temperature coef-
ficient becomes [4].

The steady-state feedback reacfivity is expressed as

Pf(TfasTma) =

TIJ Tons
/ af(Tf)de +/ am(Tm)dTm
T, T

= — 8 x 10*,/460 + T},
—0.167 66.7

+ 8 x 10%1/460 + Ty

_ (—0.167 66.7
3 2

T2, + kTms)

T2+ T2 + kT,), 8)
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where Ty and Tws are a pair of fuel and moderator
temperatures at steady state. Then,

a/’f (Tfa’ Tma) -
0T,

—4 x 10%(1 + 22)
2
V(1 + 22) T, + (460 - 22T,)

+ (—0.167T2, + 66.7Tms + k). (9)

From Eq. (9), we can analytically obtain the critical
value of k at which 0pd{Ts, Twms}/0Tms=0 has only
one solution. When k is less than the critical value,
Eq. (8) is strictly monotonic for Tms (or Trs). As an
example, when the parameters are given as A =0.1, f
=001, A=15x10"5 € =0.051, 7 =0.194, 52 =0.
108, 3 =2.163, and T-=560 [4], the critical value of
k is 3.948 < 10%

If the value of k is less than the critical value, then
piTys, Tme) is strictly monotonic and increasing on all
the values of the steady-state temperatures, and thus
the number of steady-state solution of Eq. (5) is
always one for all p. However, if the value of k is
greater than the critical value, then pd Ty, Tms) is no
longer strictly monotonic and thus the number of the

-p¢ (in units of 10°)

k=3.900E4 | ..

L k=3.948E4 T
.......... k=4.000E4
-1 . I " 4 " A A
60 580 600 620 640

Steady-State Value (where T )

Fig. 2. Feedback Reactivity for Some k

solutions is more than one for some range of po.
Temperature dependences of p; for several values of
k are plotted in Figure 2. These results are consistent

to the numerical results given in Reference 4.

3.2. Space-Dependent Reactor Feedback Model

In this section, we consider a space-dependent
model. Cho and Grossman [5] developed the
space-time-dependent reactor dynamics equations
considering moderator and fuel temperatures, xenon,
and soluble boron feedbacks into one-group diffusion
equation coupled with the xenon-iodine dynamics
equations and energy balance relations in the core.
They obtained the steady-state nonlinear reactor
equation of the following :

d*u(z) /z Nyt
F‘*‘XE—AU o u(x)da:
+Bul+C i 0<z<l1
1ta’ ’ (10)

with boundary conditions

u(0) =u(1) =0,
where #(x) is dimensionless flux at a dimensionless
core height x. Feedback constants A, B, and C, and
eigenvalue A are defined in Reference 3.

The right side of Eq. (10) is produced by feedback
effects. The first term is a nonlinear term due to the
moderator temperature, fuel temperature, and boron
feedbacks. The second term is due to the fuel tem-
perature feedback only. The third term is due to the
xenon feedback.

Yang and Cho [3] numerically solved Eq. (10) for
some sets of A B, and C. They classified the sol-
ution diagrams into three types. Type 1 is a solution
diagram consisting of one bifurcation point and two
limit points. The solution diagrams show that the sys-
tem has up to three solutions for some 4. Type 2 is
a solution diagram consisting of one bifurcation point

and one limit point. The solution diagrams show that
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the system has up to two solutions for some 1. Type

3 is a solution diagram consisting of one bifurcation

point. The solution diagrams show that the system

always has only one solution for all the values of A.
Eq. (10) can be rewritten as

A =g(z,us(z))

=A/ uy(z')dz’ + Bu,
0
v _14& (11)
+ C1 i us(z),

where #.(x) is a steady-state solution of Eq. (10). The
function g(x, #:(x)) can be expressed by the feedback
eigenvalue A{x, #(x)) and the extemal control eig-
envalue Jolx, #(x)) such as

9(2,15(z)) = A(z,14(2) + do(®> us(2)), (12)
where

z
U
Af =A/c; u,(z')dx’ + Bu, + Cl n ua,
1 g2
/\0 = - ;;wﬂ,(l‘).

If and only if g{x, #s(x)) is not strictly monotonic
on some #(x), Eq. (10) has multiple steady-state sol-
utions for some values of 1. Also, if and only if alx,
us(x)) is strictly monotonic on all ul{x), Eq. (10)
always has only one solution for all the values of 1.

It is more meaningful to examine the characteristic-

s of the solutions in the eigenvalue space, which is a
plane consisting of Ao and Ai. Define the relationship
of Ao and s in the Ao— As plane for given u(x) as the
Ao— /i function. If the system has three steady-state
solutions for a range of A, then the lo— At function is
necessarily given as Figure 3 in which the Ao— s fun-
ction crosses the straight line at three points for the
range of 1. As a result, the number of the crossing
points of the Ao— s function and the straight line is
equal to the number of steady-state solutions for a
given A.

For u(x), we consider a solution diagram for
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(A2, L02)

Ao {us0)

(As1,201)

=
A (Ug())

Fig. 3. A Jo-4; Function for Multiple Solutions For a Giv-
en 4; (ln+20)=(ig+i02)

Ao{ug(x))

-60 ——— ——— 1
300 320 340 360 380 400
Ap (ug(x)

Fig. 4. A Jo- i Function at x=0.5, and A=—90, B=10,
C=509

A=-900, B=100, and C=509.0, plotted in Fig-
ure 8 of Reference 3. The solution diagram shows
that the system has three steady-state solutions for
326.696 ¢ 4 (329.912. For the #,(0.5), the o— A fun-
ction is given in Figure 4.

4. Conclusions and Recommendations

We obtained a necessary and sufficient condition
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for the multiplicity of steady-state solutions of the
point-kinetics reactor feedback system for an external
reactivity. The reactivity of the core can be typically
separated into two components : external reactivity for
control of the core power and the internal {feedback)
reactivity due to feedback effects. The multiplicity of

steady-state solutions of the system is entirely investig-

ated by examining the behaviors of feedback vari-
ables and feedback reactivity. If and only if the stead-
y-state feedback reactivity is strictly monotonic for all
values of the feedback variables, the reactor system
always has one steady-state solution for all the oper-

ating conditions. However, if and only if the

steady-state feedback reactivity is not strictly monoton-

ic on a range of the feedback variables, the reactor
system has multiple steady-state solutions for the
operating conditions corresponding to the values of
the feedback variables.

The multiplicity of steady-state solutions for an
operating condition is caused to the hysteresis effect
in system [8]. As a result, it is desired that the feed-
back reactivity pd¥.)} be strictly monotonic on all the
values of the feedback variables, .. This is entirely
dependent on the design values of moderator tem-
perature coefficient a. and fuel temperature coef-
ficient o For example, if the value of «,, for a given
ay is less than a critical value, pd7:) is strictly mon-
otonic on all ¥, but if a,, is beyond the critical value,
p(%.) is no longer strictly monotonic on ;.

The reactivity p(t) in the pointkinetics equation,
which is from the transport equation, is an integrated
value of cross sections about the core size. As long
as it is known that the point-kinetics reactor feedback
equation has multiple steady-state solutions at some

operating conditions, the transport equation may also

have multiple steady-state solutions for the condi-
tions. We recommend that the multiplicity of the
steady-state solutions for the two or three dimension-
al model of the commercial reactor core be exam-
ined for several design values of the temperature-de-
pendent cross sections.
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