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Abstract

The mathematical adjoint solution of the Analytic Function Expansion (AFEN) method is found
by solving the transposed matrix equation of AFEN nodal equation with only minor modification to
the forward solution code AFEN. The perturbation calculations are then performed to estimate the
change of reactivity by using the mathematical adjoint. The adjoint calculational scheme in this stud-
y does not require the knowledge of the physical adjoint or the eigenvalue of the forward equation.
Using the adjoint solutions, the exact and first-order perturbation calculations are performed for the
well-known benchmark problems (i.e., IAEA-2D benchmark problem and EPRI-9R benchmark prob-
lem). The results show that the mathematical adjoint flux calculated in the code is the correct
adjoint solution of the AFEN method.
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1. Introduction reactor core analysis, the need for the corresponding

perturbation methods becomes evident. For reactor

The adjoint solution is widely used for estimating analysis, perturbation methods require the accurate

the effects of changes in reactor systems for a range solutions of the forward as well as the adjoint equa-
of reactor characteristics such as reaction ratios and tions.

fuel bumup. As nodal methods become powerful for The usual perturbation formula that results, how-
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ever, involves dot products of gradients of the for-
ward and adjoint fluxes, and finding such gradients

leads to a great error. To avoid this difficulty, the per-

turbation theory is derived from the matrix equation
that is obtained from the nodal formulation of dif-
fusion problem rather than from the differential
equations from which the nodal formulation has
been derived. The resultant perturbation theory req-
uires so-called “the mathematical adjoint” that is
obtained from transposing the nodal formula and
then solving the transposed formula. On the other
hand, the perturbation theory that is derived from
the differential equation requires so-<alled “the
physical adjoint” that can be obtained by reordering
the input cross sections without significant modifi-
cation of the nodal program, but it is not consistent
with the perturbation theory of the nodal formu-
lation.

The two adjoints are generally different from each
other because of the asymmetry of the nodal formu-
lation of the diffusion operator, whereas they are the
same in the finite difference diffusion operator be-
cause of the symmetry of the finite difference dif-

fusion operator. [1] Since the perturbation theory req-

uires the mathematical adjoint to eliminate the first
order error, the mathematical adjoint must be found.
But it was believed that a considerable modification
of the forward solution scheme needs to be made for
the calculation of the mathematical adjoint. In par-
ticular, when the nodal equivalence theory is used,
the neutron fluxes are allowed to be discontinuous at
the nodal interfaces and the discontinuity factors are
used to relate the heterogeneous and homogeneous
fluxes. Lawrence[2] discovered that, in certain situa-
tions (that is, in the case of flat transverse leakage
approximation), the mathematical adjoint is obtained
by a similarity transformation of the physical adjoint

which is, in turn, easy to calculate. However, this tran-

sformation method has fundamental problems. First,
it is dependent on the transverse leakage term, which
is only approximate and problematic, particularly in
non-rectangular geometries. Secondly, the physical
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adjoint is not well defined or cumbersome, if not im-
possible, to calculate in the presence of discontinuity
factors that are the very corner-stone of the modem
nodal methods.

Several attempts have been made to use pertur-
bation theory for modem nodal methods to obtain
reactivity changes. Taiwo[3] calculated the math-
ematical adjoint of the QUANDRY code by directly
solving the transposed matrix equation of the QUAN-
DRY formulation (direct solution scheme). But the
forward equation was solved first to find the eigenval-
ue before the adjoint equation. Yang, Taiwo, and
Khalill4, 5] calculated the mathematical adjoint of an
interface current nodal formulation both by a simi-
larity transformation of the physical adjoint for flat
transverse leakage approximation and by a direct sol-
ution scheme for both flat and quadratic transverse
leakage approximations.

The objective of this paper is to show that it is pos-
sible and quite easy to calculate the mathematical
adjoint in the AFEN formulation[6] (no transverse in-
tegration) by a direct solution scheme. Unlike Taiwo,
the forward equation is not necessarily required to be
solved before the adjoint equation. The transposed
matrix equation is solved by the same scheme as in
the forward solution. The physical adjoint is also
obtained for only comparison purposes with the mat-
hematical adjoint. The reactivity changes are estim-
ated and computed by the exact and first-order per-
turbation methods to verify the mathematical adjoint
calculated in the AFEN method.

2. Review of AFEN Method

In this section, the AFEN(Analytic Function Expan-
sion Nodal) method is briefly reviewed to facilitate lat-
er presentation. This method directly solves the mul-
tidimensional diffusion equation instead of the trans-
verse-integrated one-dimensional diffusion equations.
It is accomplished by expanding the solution in terms
of nonseparable analytic basis functions satisfying the
diffusion equation at any point of the node. This ex-
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pansion consists of eight basis functions and one ad-
ditional constant term per node per group (for rec-
tangular nodes). The nine coefficients are expressed
in terms of nine nodal variables per node per group
{i.e., one node-average flux, four node-interface fluxes,
and four corner point fluxes). These nodal unknowns
are then obtained by solving the nodal balance equa-
tions, current continuity equations, and corner-point
equations. It is reported in several papers[6—10]
that the above aspects of the AFEN method give hig-
hly accurate solutions even in the vicinity of the inter-
face and corner point between assemblies having
quite strong heterogeneity.

The two-group two-dimensional static diffusion
equations for a homogenized square node 7z with
node side £ can be written as follows:

—D'V: 3 (x, )+ 2" 3"(x, )

- ?t;yz}' Gy . Q

This equation is rewritten in more compact form

as follows:

—v? 3N+ (DN z”—;‘;/;uzﬂ

3" (x, =0 . (2

If /2 are defined as the eigenvalues of the matrix
(D) (2" kel// vZ} ] and matrix R” as the 2x2
matrix with corresponding eigenvectors, and if a new

unknown ¢ defined by the relation

E'(x,»)=(R"' $™(x.3) , 3)
Eq.(2) is decoupled as follows :

Vi8N x, ) —ALENx. W) =0, g=1, 2. ()

Then, the general solution of Eq.(4) is expanded
in terms of nine basis functions (of which each term
satisfies Eq.(4) exactly) as follows :
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where
x: =(laz) "

o [sinhxgu , AZ>0
SN [sinx;:u , A0

. _ [coshxzu ,AZ>0
Cox g {cosx,:lu ,Ag<0

=x, y. {6)

The nine expansion coefficients can be expressed
in terms of nine nodal unknowns but the details are
omitted here (Ref. 6). The first nodal coupling equa-
tion imposed on the nodal unknowns is a nodal bal-
ance equation that is obtained by integrating Eq.(1)
over the node volume:

U o= T+ T = 1)
+ 37 ¢;= %ﬂ vI} 6. (1)

The surface average currents in Eq. {7) can be
expressed in terms of other nodal unknowns (ie.,
interface fluxes z, node average flux ;, and cor-
ner point fluxes ¢) and Eq.(7) is rewritten as follows :

[ %( a®w’>+( DY) 139 $,=
%( a’wy ( FO) 7N i+ $5+ Sl + #)
+ % <O (FHTL (@it dinyt i
+¢i+li+1)"( $:+li+ $;+ z’t;'+l+ 33)]

%ﬂ (D WEig. . (8

where F¥ is the diagonal matrix whose elements are
the discontinuity factors of the node, and a?, b9, w?
and p¥ are diagonal matrices with elements also giv-
en in Ref. 6.

The symbol { - ) on a matrix denotes similarity
transformation as

Bi(x,9) = Cl+ADSNeI+ALCSxix+ A SNely+ARCSt iy + BuSNL x2xSN 2 x2y

+BSNIZ x3xCS 2 w2y + B Y2 xixsN L2 gy

+B;C532@ x;xcsizz xgy ,

(5)
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The second nodal coupling equation is an interfac-
e current continuity equation that is derived by ap-
plying the continuity condition of the neutron curren-
ts across each node interface:

nE T at left surface of if’ th node =

]‘ at right surface of i—17 th node - (10)

Since the currents can be expressed in terms of
the node average fluxes, interface fluxes, and comer
point fluxes, this equation leads to the following bloc-
k tridiagonal matrix equation:

T5" $iy+ T5C 5+ T5F $ivy= 05, (11)
where
T;,"L —_ Di—li< ai—lj(I_ wi—li)>(Fi—li)-1
I\:i.c _— Di—li< ai—lj(I+ wi—li)>(Fi—li)—l
+ D% a¥( I+ w¥)y (F7) !
Ty® =— D¥a™(I-w")>(F9™,
and
p: = Di—li< bi—li( I— vi—li)>
(Fi—u)—l% (Picrj1+ di-1)
_[ Di-lj< bi—li( I+ vi—li)>(Fi—lj)—l
+ DY BT+ ) > (FTH ™ % (fi+1+ &

(12)

+ DI~ 0" (F) 5 ($irijra + birn)
42D Y aT YV w' Yy, +2DCa w?> §;
+Dl"-ll'< bi—ljvi—1j>(Fi-U)—l( 3?—1,'4-1*‘ 3?_”)
+ DB T (FH T PG+ 0 . (13)
Finally, the corner point balance equation is de-
rived on the basis of the neutron balance within a
small box around the comer point that is shared by
four adjacent nodes. The equation is given as follows:
TG+ Tibi1i+ Thdbirys
+Tibs5 1+ Tibse= g5, (14)

where
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T,Cj = ugl-":ODi—ui—u< AL RUNG Sl b
T8 = u‘?;:o% DimWTI( oy (i1
TS = B3 DTSR, )
and

i—uj—v . . %
+ A (T (Bt )

+ DT g Ty (FTY T
1 x
7( Pivt-2ui-et Pi-sirt—20)

_Di—ﬂi—v< Cl'—ui—u+di—w—v> zi—m-::]
In the above equations, ¥ and g¥ are diagonal mat-

(16)

rices whose elements are given in Ref. 6.

The above equations {ie., Eq.(8), Eq.(11), and
Eq.(14) are solved by a conventional iteration method
that consists of inner and outer iterations. At each in-
ner iteration, the set of nodal coupling equations is
solved sequentially by fixing the fission source and
coupling coefficients to its values from the previous
outer iteration. If the inner iteration converges, the
multiplication factor and the fission source are updat-
ed by using the node average fluxes converged from
the previous inner iteration. Also, the nodal coupling
coefficients are updated by using the updated multi-
plication factor. Then a new inner iteration is perfor-
med. This procedure is continued until the relative
errors of node average fluxes and multiplication fac-
tor satisfy the given criteria of convergence.

3. Adjoint Solutions of AFEN Method
3.1. Physical Adjoint
The starting equation is the continuous adjoint

equation that is obtained by transposing the continu-
ous diffusion equation (i.e., Eq.(1)). The equation is
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given as follows:

— DT (e + I M (%)

uT ”,
% vZ; ™ (x,3) . (7)

where @™ represents the physical adjoint flux, T den-

otes the transpose operation, and k‘,?,, represents the
eigenvalue of the physical adjoint equation.

This equation is discretized by the same procedure
as in the forward equation in the AFEN formulation.
Therefore, the nodal coupling equations of the
physical adjoint equation have the same forms as
those of the forward equation (Eq.(1)), while the

coupling coefficients are very different from each
other. So, the nodal coupling equations of the physi-

cal adjoint equation are solved by the same scheme
as that of the forward equation. But the eigenvalues
of the forward and physical adjoint equations are
generally different from each other and the physical
adjoint solution is mathematically not similar to the
mathematical one. Also, the formulation of the physi-
cal adjoint equation is possible currently only for
uncorrected nodal models (i.e., unit discontinuity fac-
tors) as mentioned in Introduction. Therefore, the
physical adjoint cannot be generally used for pertur-
bation theory.

Here, the physical adjoint flux and the eigenvalue
are calculated so that these results are compared
with those of the mathematical adjoint equation. In
calculating the physical adjoint, the AFEN code is di-
rectly used, with minor modification.

3.2. Mathematical Adjoint

To derive the mathematical adjoint equation, the
nodal coupling equations of the forward formulation
(ie., Eq.(8), Eq.(11), and Eq.(14)) are put into a sin-
gle super-matrix form with matrices M and F, where
M consists of the nodal coupling coefficient matrices
and F the fission matrices:

MT= kl F@, (18)
eff
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where
F=cl([ ¢l .[ 1.0 1.0 1),
[ Mo [ Myl [ Myl [ M,
M|l Mol [ M) [ M, [ M,
[ Myl [ M, [ M, [ M,
[ Myl [ M) [ M, [ M,)
and
LBl [0 [0] [0]
F=| L0 [0] [0 [0]
[o] [0l [0 [ 0]
[ol [0 [0 [0]

The mathematical adjoint equation is obtained by
transposing Eq.(18). The equation is given as follows:
M= Ty (19)
keff
where P* represents the mathematical adjoint flux
vector.

This equation is solved by the same iterative
schemes as those of the forward equation, in con-
trast to the mathematical adjoint of the QUANDRY
code where the forward equation is solved first to cal-
culate the eigenvalue to be used in solving the math-
ematical adjoint equation.

It must be noted that Eq.(19) was not directly de-
rived from the continuous equation and its solution
does not necessarily have obvious physical meanings.
This solution is “mathematically” adjoint to that of
Eq.(18). Since the matrices are transposed, the eig-
envalue that is calculated from the mathematical
adjoint equation should be the same as that of the
forward equation.

4. Perturbation Theory for Reactivity

Since the perturbation theory provides the estim-
ates of integral quantities without exact information
for perturbed states, it has been widely used to esti-
mate the effect of changes in nuclear systems.

The forward equation for an initial state is given by



Mathematical Adjoint Solution --- N.Z. Cho and S.G. Hong

Eq.(18) and the corresponding mathematical adjoint
equation given by Eq.(19). To derive the perturbation
expression for reactivity, now consider the introduc-
tion of a reactivity perturbation (e.g., material sample,
control element, change in fuel temperature), which
changes M, F, k,;, and ¥ by M, OF, Sk 4, and
& W respectively, to

-~

M = M+oM

F = F+6F
ke = kot Skegy

T =7+57 . (20)

The forward equation for the perturbed state is giv-
en as follows:

Fo. (21)

Y 1
MP=—
Rty
To obtain an expression for the change in the crit-
icality eigenvalue, first the perturbed forward equa-
tion {(21) is premultiplied by the transposed math-
ematical adjoint flux:

v -1 v FT. (22)
ke//

Next the initial mathematical adjoint equation is
premultiplied by transpose of the perturbed forward
flux:

M= k%/ Ty (23)

Subtracting Eq.(23) from Eq.(22) and rearranging
leads to an exact expression for the change in reac-

tivity :

T 1 ~
r (sM— F) ¥
6p = 6ke£/ =— ( T keff )
ko Regr v F7U

(24)

In the above expression (24), the forward solution
for the perturbed state is required but it cannot be
obtained without solving the forward equation. Ther-
efore, to estimate the effect of perturbation without
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solving the perturbed state, an approximate ex-
pression is needed. For small perturbation, by insert-
ing Eq.(20) into Eq.(24)
second-order terms, a first-order perturbation formula
for reactivity is obtained :

and eliminating all

7 (sM— klﬂ ST -
8og=— “ . 25
° 7 Fu

It can be easily shown that the error in dpo is of fir-

st order with respect to8 ¥, ie.,

7 (M- kI” SF)ST
do—3d8py = e~
0 ' Fw
r (oM--L- P T r
_ Tke// TTF6¢'
r FU v Fy
+XTTSP) . (26)

Therefore, the formula Eq.(25) provides the
first-order estimate of the reactivity change.

5. Application and Results

To verify the adjoint solution that is calculated in
the AFEN method, two benchmark problems were
selected. The first is the International Atomic Energy
Agency (IAEA) two-dimensional (2D} benchmark
problem where the core consists of fully homogen-
ized fuel assemblies. The configuration of this bench-
mark problem is shown in Fig. 1 and the macro-
scopic cross sections are given in Table 1. The sec-
ond is the Electric Power Research Institute (EPRI)
9R benchmark problem where the core consists of
heterogeneous assemblies with different types of
15 x 15 homogenized pin cells. This benchmark prob-
lem was selected for consideration of the nodal mod-
el with discontinuity factors not equal to unity. There
are two configurations in the EPRI9R benchmark
problem:one is unrodded, and the other is rodded
at the core center assembly. Here, the latter was sol-
ved. The configuration of the EPRI9R benchmark
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problem is shown in Fig. 2 and the homogenized

macroscopic cross sections are given in Table 2. The

discontinuity factors for surfaces and corner points

are given in Table 3.
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- Qur strategy that calculates the change of reactivity
by perturbation theory given in Section 4 consists of
two steps. The first step is to calculate the adjoints
{physical adjoint or mathematical adjoint) by solving

Table 1. Macroscopic Cross Sections{cm™?) of the Homogenized Assemblies for the IAEA-2D Benchmark

Problem*
Assembly type group D 2 Y12 vis
fast 1.500 0010 0020 0.000
type 1 thermal 0400 0.080 0135
fast 1,500 0010 0,020 0.000
type 2 thermal 0.400 0,085 0.135
fast 1500 0010 0020 0.000

type 3 T e
thermal 0400 0013 0.135
fast 2.000 0.000 0,040 0.000

type 4 Y
thermal 0300 0010 0.000

* Fast group axial buckling: 8.0 1075, Thermal group axial buckling:8.0x 1073

Table 2. Macroscopic Cross Sections(cm ™) of the Homogenized Assemblies for the EPRI-9R Benchmark

Problem
Assembly type group D 2a iz vis

fast 15133400 00121010 00211238 0.0060130

type 1 themal 03948540 01681400 02181040
fast 15133300 00093259 00211340 00046255

type 2 themal 03950120  0.1411600 0.1640890
fast 14657600 00147702 00189548 00046336

type 3 themmal 03850950  0.1754670 01729620
fast 13509500 00018526 00214356  0.000000

twpe 4 thermal 03482930  0.0605073 0.000000

Table 3. Discontinuity Factors for the EPRI-9R Benchmark Problem

Assembly type group SDF PDF
type 1 fast 1003040 1.003753
(F-1(W)) thermal 0.928806 0912237
type 2 fast 1.003640 1.004826
(F-2(W)) thermal 0.938578 0922818
type 3 fast 1.016150 1.029787
(F-2(CR) thermal 1.139440 1.189693
type 4 fast 1.159790 1.159790
(Reflector) thermal 0.289747 0.289747
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the adjoint equations. In the case of physical adjoint,
the adjoint is obtained by using the AFEN code with
minor modification, but for the mathematical adjoint
a new program was Written through a modification of
the AFEN code. The second step is to estimate the
change of reactivity by the perturbation formulas with
the results of the first step. Here, exact and first-order

n

J=0

/4

J=0

type 1 type 2

{control rod)

type 4
(reflector)

type 3

Fig. 1. Configuration of the IAEA-2D Benchmark

Problem
I1=0 —=| 21.0 cm |~
!
Assembly 1] Assembly 2| Assembly 3
F-2 F-2 F-1
(CR) W) w)
Assembly 2 [ Assembly 4
F-2 F-1
. w) w) o
0 1l
- - =
Assembly 3 |Assembly S £
F-1 F-1 °
W) =
Al Water -
Reflector
L
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perturbation calculations were performed for com-
parison of the results.

For IAEA2D benchmark problem, the physical
adjoint, mathematical adjoint, and their eigenvalues
were calculated within convergence criteria of 108
for both eigenvalue and node average flux. These res-
ults were compared with those of the VENTURE
code. The fine mesh calculation of VENTURE, which
uses the mesh-centered finite difference method, is
used as reference values. These results are given in
Table 4.

To estimate the change of reactivity by the pertur-
bation theory, the macroscopic absorption cross sec-
tions of type 2 assemblies are changed from 0.085(¢
) to 0.086(cm™"). This perturbation is a relatively
global change rather than a local one, since the type
2 assemblies are distributed widely over the core.
The results of the perturbation calculation are given
in Table 5. The exact and first-order perturbation cal-
culations were performed to estimate the change of
the reactivity. As expected, the forward and math-
ematical adjoint eigenvalues were equivalent to each
other but these were slightly different from the physi-
cal adjoint eigenvalue. This equivalence demonstrates
that our mathematical adjoint flux is the correct sol-
ution of the mathematical adjoint equation of the
AFEN method. Further, the result of the exact per-

- I '} H
aT< (o | W]
ii[ ]
- T £
47} c S Wi W,
IRRERE =] I
I;' . T
€ i€} 1 | — W W]
_:Ft;# gqﬁ_._ ™ I W
-l I T
(SARERCL I S ] | W]
tdooi }‘J‘ \ 1 I
. — 1

.
ja— 21.0 cm =]

s

water
controlrog  Unrodded Fuel

fuel Assembly
ejected rod for perturbation

Rodded Fuel
Assembly

BOOE

Fig. 2. Configuration of the EPRI-9R Benchmark Problem
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turbation calculation exactly coincided with that of
the direct forward calculation by solving the pertur-
bed state. Also, it is noted that the first-order pertur-
bation calculation provides a quite accurate estimate
of the reactivity change.

To consider the nodal model with discontinuity fac-
tors not equal to unity, the adjoint option in the
AFEN code was applied to the EPRI9R benchmark
problem. First to verify the result of the mathematical
adjoint flux in the AFEN code, the eigenvalues were
calculated by the VENTURE code, the AFEN code
{forward option), and the adjoint option in the AFEN
code solving the mathematical adjoint equation. The
results are given in Table 6. Table 6 shows that the
forward and mathematical adjoint eigenvalues were
equivalent to each other as before. But the physical
adjoint of the AFEN method has not been defined.
To estimate the reactivity change, the initial state is

Table 4. Comparison of Eigenvalues for the IAEA-2D
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perturbed by withdrawing four control rods (marked
as shaded rods in Fig. 2) in the most central as-
sembly. This perturbation results in a change of the
homogenized assembly cross sections and the dis-
continuity factors. These perturbed data are given in
Table 7. The results of perturbation calculations are
given in Table 8. As in the IAEA-2D benchmark prob-
lem, the forward and mathematical adjoint eigenval-
ues were equivalent to each other and this result
demonstrates that our mathematical adjoint flux is
the correct solution of the adjoint equation in AFEN
with discontinuity factors. But, it is noted that the fir-
st-order perturbation calculation provides more or
less a poor estimate of the reactivity for this bench-
mark problem of which core size is quite small.

As a note, there may exist many different math-
ematical adjoint solutions for a given forward sol-
ution but these adjoint solutions are not independent

Table 6. Comparison of Eigenvalues for the EPRI-9R

Benchmark Problem Benchmark Problem
Methods Eigenvalues  Relative error(%) Methods Eigenvalues  Relative error(%)
to VENTURE to VENTURE
Forward 1.029570 0.0017 Forward 0.8891072 012
Physical adjoint 1.029370 0.0014 Mathematical adjoint ~ 0.8891072 0.12
Mathematical adjoint 1.029570 0.0017 VENTURE 0.8901810 ref.
VENTURE 1.029552 ref. ** Mesh size in VENTURE : 0.7cm (2x2meshes/pincell)

** Mesh size in VENTURE: 0.625cm
*+* Mesh size in AFEN: 20cm (assembly size)

** Mesh size in AFEN: 21cm (assemnbly size)

Table 5. Results of Perturbation Calculations for the IAEA-2D Benchmark Problem

Methods Perturbed eigenvalues Reactivity changes
Forward 1.019874(a) —0.009234
Mathematical adjoint 1.019874(a) —-0.009234
VENTURE 1.019845(a) —0.009245
First-order perturbation theory 1.019668(b) —0.009432
Exact perturbation theory 1.019874(c) —0.009234

(a) obtained by solving the perturbed state
(b) obtained by Eq.(25)
(¢} obtained by Eq.(24)
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Table 7. Perturbed Homogenized Cross Sections and Discontinuity Factors

group D pI pyme

vy SDF PDF

fast 148393E+00 1.37262E-02
thermal ~ 3.93053E-01 1.67338E-01

1.94802E-02

4.61796E-03 1.03623E+00 1.04195E+00
1.70009E-01 1.08405E+00 1.11826E+00

Table 8. Results of Perturbation Calculation for the EPRI-9R Benchmark Problem

Methods Perturbed eigenvalues Reactivity changes
Forward 0.8929865 0.004886
Mathematical adjoint 0.8929865 0.004886
VENTURE 0.8943962 0.005294
First-order perturbation theory 0.8967582 0.009596
Exact perturbation theory 0.8929865 0.004886
of each other, that is to say, these adjoint solutions Acknowledgment

are related with simple linear transformations. There-
fore, all these mathematical adjoints are equivalent
and can be used in perturbation calculation with their
consistent perturbation formula.

6. Conclusions

Since it is well-known that the forward solution of

the AFEN method is highly accurate in most problem-

s, the corresponding adjoint solution if available will
be very useful to estimate the effects of changes in a
reactor by perturbation theory.

In this work, the mathematical adjoint flux of the
AFEN method was found for applfcation to many re-
actor analysis problems. The mathematical adjoint
solution is calculated directly by the forward solution
scheme with minor modification in the AFEN code.
The calculational scheme does not require the know-
ledge of the physical adjoint (physical adjoint itself
cannot be defined well for realistic problems) or the

eigenvalue of the forward equation, unlike some exis-

ting methods. The adjoint flux thus obtained was
used to estimate the reactivity change by the exact
and first-order perturbation theory. The results show
that our mathematical adjoint flux is the correct
adjoint solution of the AFEN method.

The authors are indebted to Jae Man Noh for help-

ful discussions during the course of this work.
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