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Abstract

We reconstruct the assembly pinwise flux using several types of boundary conditions and confirm
that the reconstructed fluxes are the same with the reference flux if the boundary condition is exact.
We test EPRI-9R benchmark problem with four boundary conditions, such as Dirichlet boundary
condition, Neumann boundary condition, homogeneous mixed boundary condition (albedo type),
and inhomogeneous mixed boundary condition. We also test reconstruction of the pinwise flux
from nodal values, specifically from the AFEN [1, 2] results. From the nodal flux distribution we ob-
tain surface flux and surface current distributions, which can be used to construct various types of
boundary conditions. The results show that the Neumann boundary condition cannot be used for
iterative schemes because of its ill-conditioning problem and that the other three boundary condi-
tions give similar accuracy. The Dirichlet boundary condition requires the shortest computing time.
The inhomogeneous mixed boundary condition requires only slightly longer computing time than
the Dirichlet boundary condition, so that it could also be an alternative. In contrast to the fixed-sour-
ce type problem resulting from the Dirichlet, Neumann, inhomogeneous mixed boundary condi-
tions, the homogeneous mixed boundary condition constitutes an eigenvalue problem and requires
longest computing time among the three (Dirichlet, inhomogeneous mixed, homogeneous mixed)
boundary condition problems.

1. Introduction

To obtain homogenized cross sections, many hom-
ogenization methods have been developed until re-
cently. Among several methods, Koebke’s “Equival-
ence Theory” [3] and Smith’s “Generalized Equival-
ence Theory” [4] are most popular. These methods
introduce the heterogeneity factor and discontinuity
factor. Such homogenized cross sections are used in

nodal calculation that is very accurate and fast. After
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nodal calculation, we need to reconstruct pinwise
flux from the nodal values, such as the volume aver-
age flux, surface average fluxes, and corner-point flux-
es. One of the reconstruction methods is to find the
boundary condition as flux or current distribution
from such nodal values and then perform fine-mesh
calculation [5, 6).

The error in the boundary condition leads to dis-
crepancy in the reconstructed flux with respect to the

original reference flux. So reducing the error in the
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boundary condition is very important in reconstruc-
tion. If the boundary flux or current is exact, then the
reconstructed flux would have no error.

The objective of this paper is two-fold. First, we

want to confirm numerically that if the boundary con-

dition is exact then the reconstructed pinwise flux is
the same with the original flux, regardless of the
types of boundary conditions used. We test four
boundary conditions, i.e., {1) Dirichlet boundary con-
dition, (2) Neumann boundary condition, (3) inhom-
ogeneous mixed boundary condiﬁoﬁ, and (4) homo-
with the

geneous mixed boundary condition,

EPRI-9R benchmark problem. We also compare thes-
e results in terms of computing time and spectral rad-

ius of the Jacobi matrix. Second, we like to assess
the efficiency of the varous boundary conditions
when used in the reconstruction of nodal results.

We reconstruct the pinwise flux with AFEN (1, 2]
results of the EPRI-9R benchmark problem and com-
pare pin flux peak error and computing time of the
boundary conditions.

In Section 2, we derive the finite difference matrix
equations when several types of boundary conditions
are used. In Section 3, we derive the nodal surface
flux distribution from the AFEN fluxes. In Section 4,
we show the EPRI9R results obtained using the exac-
t boundary condition and the various boundary con-

ditions. Finally, we provide conclusions in Section 5.

2. Derivation of Difference Equations with
Several Boundary Conditions

We calculate pinwise heterogeneous flux by
fine-mesh finite difference method with exact bound-
ary condition. Consider the following two-dimension-
al two-group diffusion equation :

=V - DV x,y) +2 b,

2
X
= L Cut3luEgee )

After differencing the above equation in mesh box (i,
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j) with standard box scheme, the difference equation
becomes

TE TR T+ B 45 g idxidy;

2 X —
= El(zgg' + -k_:f/. Vz/g‘) ¢ g'i,ijiij (2)

where agi.} denotes the average of Bg in mesh box (i,
j) and other notations are standard as used in refer-
ence 7. The surface integrated current terms (left, rig-
ht, bottom, top) are approximated as

fé =al}i.; ( Egi—l.i— -‘;gx'.;'),

]5 =d§i,1’( EgH—I.i_ Egi.i)'

]5 =af,,-,,~( zgi,j-l_ ggi.i)' @
r =ag; ( Bain— ba) g=1.2,
where

Lo —24y;
Qgij = AXi—l/Dgx’—l.)‘+Axl‘/Dg"-" '
aR» L —2[]}’,‘

gi.j Ax ;41D givy i+ Axid D i j

5 —24x; @
Qej = ij_l/Dg,'_j—]+ij/Dgi.i '

T _ —ZAX,' '

Cgj = A4y i1/ D gi iy T Vil D i

Here Ax, Ay, are fine mesh sizes of x and y direc-
tions. Rearranging all the terms, Eq.(2) becomes the
following matrix equation :

1
Fo. 5
ke// 6]

A0 =

Now we want to reconstruct the pinwise flux using
the form of Eq.(5). As a matter of principle, we want
to confirm numerically the theoretically known fact
that if the boundary condition is exact then the rec-
onstructed - flux is the same with the original flux
under the same finite difference scheme, regardless
of the types of boundary conditions used. Usually we
want to reconstruct pinwise flux from the nodal flux-
es and multiplication factor.

When we reconstruct pinwise flux, the form of Eq.
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{5) is modified. The terms containing the unknowns
are left in the left hand side and the knowns as the
boundary conditions are moved to the right hand
side of the equation. Afterall the problem changes

into a fixed-source problem. So the diagonal compon-

ents of the matrix are changed, which affect conver-
gence of the iteration system. The diagonal domi-
nance is reduced because the diagonal term of the
right term is subtracted from the diagonal term of the
left term in Eq.(5). In special cases, the spectral rad-
jus of the Jacobi matrix becomes bigger than one
and this is a serious situation in that the usual iterat-
ive schemes (Jacobi, Gauss-Seidel, and SOR) do not
work. We experienced such cases sometimes when
we use the Neumann boundary condition, so a direct
inversion scheme such as Gauss-Jordan method

must be used as a solver.
2.1. Dirichlet Boundary Condition

First, we can easily think that the surface flux can
be used as a boundary condition. In the case of no-
dal methods, we also need to consider discontinuity
factors on the surfaces of a node.

After the surface flux distribution is found. we mod-
ify Eq.(5). If we edit at the left boundary surface. the
equation can be expressed as follows :

R - J41 s T s

gy ¢g1+l_} +ag1,; ¢gx_/‘l+ay1,; qﬁgx 1l

| C -

Tdyg, ¢yz; (7)

2
X . -
- g'2=1(2§é" + —k—:// VZ/!) ¢ Q'I/Axrdyf =c <ﬂ¢ s
where

c - R B T
o= 2 &g dx4y,+c s Qg Qg " Qu,
(8)
Here c., ce are calculated from the definition of cur-

rent in a usual finite difference scheme as follows :

(¢sg,j_ ¢gx,])
Adx,/2

Z—ng(¢sg,j— ¢g:,j)v (9)

]I:e' =Dy, 4y

]

where

c. = 2D i ; 4y, (10)
& Ax; ‘
Then we can transform Eq.(7) into matrix form
which is a fixed-source problem such as

A o= ¢ (11)

As cq, ¢ are added to the diagonal term, the mat-
rix A becomes more diagonally dorninant than the
Neumann boundary condition case in the next sec-
tion. We can easily solve Eq.{11) by a standard iterat-
ive method.

2.2. Neumann Boundary Condition

Many people used current as a boundary con-
dition in reconstruction because current continuity
condition is preserved when nodal calculation is per-
formed. This formulation is very prone to ill-con-
ditioning situation. We also find in some cases that
the spectral radius of the Jacobi matrix is greater
than one and thus the usual iterative methods do no
converge. So we solve the equation by Gauss-Jordan
method, which is a popular direct inverse scheme.
The derivation of the equation is similar to that of
the Dirichlet boundary condition. The equation at
the left surface boundary is given as follows :

R - B s T =
a4y ¢g1+1,/ +am_/ ¢g1,/~l+ram,/ ¢g1_1+1
c -
+am./ ¢g1./ (12)

2 x J—
B EZ:I(ZQE + kjﬂ 1/2/5") ¢£':/'Axrdy1:jsg‘1'

where
c - R B T
Ap ;=24 giidx; Ay, — Qg ;— Qg j— Qg ;. (13)

Here J.1;, J.z;, denote fast and thermal surface integ-
rated currents (j th node), respectively.

We can also represent Eq.{12) as

A 0= S°. (14)
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We can infer that diagonal dominance of A° can be
lost or may not be so strong compared with that of
the matrix associated with the Dirichlet boundary con-
dition. This is due to the lack of the ¢y term in Eq.
{13), in contrast to Eq.{8). So we do not recommend
the use of the current boundary condition.

2.3. Mixed Boundary Condition

Kim and Cho [8] found that if a mixed boundary
condition is used, the diagonal dominance can be
maintained. There are two kinds of mixed boundary
conditions, that is, inhomogeneous case and homo-

geneous case.
i) Inhomogeneous case

The inhomogeneous mixed boundary condition is
given as follows :

a]sg+ﬂ¢ g 7g- (15)

With chosen o and B, we can derive the following

equation, e.g., at the left boundary surface :

R - B Y
Qi j ¢gr+l.i +agi.i ¢L’i.l"l

+a§l.) Egl"1+]+af7i,1 ggi,; (16)

x —
(e + _Ef/; v ) b gidnidyi=w g,

c _ - R
Qi =2 bgijdxdy;—a

_aﬂ;i.i_a;.j"}'z sg- (17)

We can derive constants z, and wy as follows.

First, we write current as

(o= i)
Je=-Dag; WZIx,-/Zd’g‘ ) dyj
_ Ye—Bb; (18)
a .
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From Eq.(18), we find the following expression for
the left surface flux :

aD gi,jij E Ivan YgAxi/z
aD g ;dy;—B4dx/2

¢Sg.i= (19)

Then, we have the following equation from Egs.
(18) and (19) :

I=Lt -8
L ( —-B dDg,",Ay,» ax,j'— YgAxi/Z
a '’ 2D 5,0y, — P2

YSD gi,)'dyj—BD gx.)ij g 1, j
aD g1, ;Ay/ - del/z

=24 Piitwy (20)

I

)

where z, and w,, are defined as

BD g, 4y,
(Bdxi/2—aDyg.))
—_ 7eD g4y,

Wae = "(Bdxf2—aD )

2 =

(21)

We have the following matrix equation that is also

a fixed-source problem :
A o= S (22)
We can adjust 2 and § to provide strong diagonal

dominance to A, so this is a well-posed problem for

iterative solution.
ii) Homogeneous case

The homogeneous boundary condition is given to
the ratio of current to flux (albedo type) :

]sg/¢ s& = Yg- (23)

In this case, the reconstruction problem becomes
an eigenvalue problem. Thus, we consider inner and
outer iterations with acceleration schemes.

We can derive the following equation at the left
boundary surface :

R - B b
a i, j ¢ gi+l.i+a &i.f ¢ gl.j—1

T C -
tagij Pejv1tag; b gij
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(o + 2208 1) B gy midly,, (29)

c - R
Qg ;= Zx‘g ¢g1./dxidyi~agx,/

‘ail.;_a;;‘Fusg. (25)

Now we can derive us; and us as follows.

First. we write current as

(Boei= bei))

1L ) s8.J gl.j )

fo =P T g P g
:7g¢ sg.J¢

Then the flux at the left surface is expressed as

_ D gi.idyz
wi= D v+ rdi D (27)

Rewrite jf
/i = 7';,45 v
- YeD ;Y5 _
T D dy, v degi e (28)
= uxg qsgx./,
where
- YeD g, Ay,
Uy ™ D Ay, +r,d%,/2 (28)
Finally. we get the following eigenvalue problem in
matrix form :
Ao~ L F'o (29)

We have verified that the eigenvalue . has the
same value as the reference multiplication factor &
if we use the ratio of exact surface current to flux as
the boundary condition. If the boundary condition
has some error, » deviates from the reference multi-
plication factor. In contrast to the fixed-source prob-
lems, we must re-normalize single assembly pin flux
using nodal power because of the nature of the eig-
envlaue problem. Thus the reconstructed pinwise flux

also contains some errors resulting from the error of

nodal assembly power. But the error of reconstructed
flux tends to be small because the nodal power is
usually more accurate than the boundary condition
and 4 adjusts itself to the eigen system.

3. Reconstruction with AFEN Results

The Analytic Function Expansion Nodal (AFEN)
method [1, 2] does not use the transverse integration
and represents the multi-dimensional flux in terms of
analytic basis functions. So the AFEN method prov-
ides good accuracy in realistic problems.

Here, we use the AFEN representation to find the
surface boundary condition from AFEN values ; the
node-average flux, the node interface fluxes, and the
corner-point fluxes. We also have the multiplication
factor ky.

With these AFEN "values, we can find &(x, y) whic-

h has the relation

E(x, )= R ¢,(x,9). (30)

and

ég(xy y) = Cg+A EISngx

+A nCSx xA »SNx y+A 4CSx,y
+BngNJ2Q xg.xSN—\ZQ Xy
+BgQSNJ2Q xngSJg Xy
+BZ3CSJ2/2 xngNJ2@- Xgy

+Bg4chZQ xgxcs%z xy (31

Here the above notation is given in reference 1.
The coefficients of &lx, v} are expressed in terms of
the node-average flux, the node interface fluxes, and
the corner-point fluxes.

Usually the form function method is used to re-
construct pinwise flux with £{x y). In this study, we
want to solve fine-mesh difference equations with no-
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dal surface flux or current. We can evaluate node sur-

face flux or current from &4x, y), which are used as
boundary conditions in reconstruction. For example,
the left boundary flux and current can be expressed

as
b = ,(—H/2,)
= REg(—h/Z,)’)y (32)

- p9 4 (_
]sg - D ay ¢g( h/2, y)

== D RS- 6~ hi2, ). (33)

But the surface flux and current provided by
AFEN (and any other nodal codes for that matter)
values are approximate. Thus the boundary condi-

tions also contain some errors.

4. Numerical Tests and Results

We tested the above four boundary conditions on
the EPRI-9R benchmark problem [9], which consists
of heterogeneous assemblies with different types of
15x 15 homogenized pin cells. It is a fairly realistic
representation of the peripheral regions of pressur-
ized water reactors (PWRs). This problem is rodded
by a control rod cluster at the core center assembly.
Therefore, there exist somewhat large flux gradients
near the rodded assembly.

We verified numerically that the reconstructed flux
is the same with the reference solution if the bound-
ary conditions used are exact. In addition, when the
homogeneous mixed boundary condition is used, the
resulting multiplication factor is the same with the ref-
erence value.

The reference solution is from VENTURE [10] us-
ing mesh size of 0.7cm. We compare the four boun-
dary conditions in terms of computing time and spec-
tral radius of the Jacobi matrix. The iteration scheme
used in this paper is LSOR and outer iteration is per-
formed per every five inner iterations. The conver-
gence criterion imposed is 1077. Table 1 shows the
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Table 1. Comparison of Computing Times and Spectral
Radii in Rodded Assembly (Exact Boundary

Conditions)
meshsize  boundary condifion  spectral radius  computing time* {sect

Dirichlet 0978411 032
. Neumann 1001284 9708
mixed(inhomogeneous)  0.979944 036
mixed(homogeneous) 0.980356 072

Dirichlet 0993532 2.34

e mixed(inhomogeneous) 0995217 278
Neumann 1.000296 350*

mixed{homogeneous) 0995427 621

* Pentium-90

** HP-735 is used due to insufficient memory of Pentium-90.

results of the four boundary conditions. We checked
that the reconstructed flux exactly matches the orig-
inal reference flux.

The second test is reconstruction of EPRI9R pin-
wise flux from AFEN values. Fig. 1 shows the group-
wise maximum and average errors of pincell fluxes
for the three boundary condition cases and Table 2
shows the comparison of computing times for two
mesh sizes (1.4 ¢m and 0.7cm). We also compare
the errors with that of the AFEN form function met-
hod. Fig. 2 shows groupwise surface flux and current
distributions along line AB (indicated in Fig. 1), whic-
h are calculated from the AFEN values. The surface
flux distribution matches well, but there are some er-

rors at the boundary interfaced with reflector. In the

Table 2. Comparison of Computing Times in Rodded
Assembly (Reconstruction from AFEN Results)

mesh size  boundary condition  computing time* {sec)

Dirichlet 040

14 cm  mixed(inhomogeneous) 046
mixed(homogeneous) 1.68

Dirichlet 249

0.7 cm  mixed{inhomogeneous) 278
mixed(homogeneous) 6.58

* Pentium-90
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fast thermal

maximum average maximum average

error(2%) error(%) error(%) error(%)

XXX X.XX X.XX x.xx AFEN form function
XXX X.XX XXX x.xx Dirichlet

X.XX X.XX X.XX x.xx Mixed (inhomogeneous)
X.XX X.XX XXX x.xx Mixed (homogeneous)
eigenvalue

X xx%xxxxX Mixed (homogeneous)
® Reference : VENTURE (h=0.7 om) ke = 0.8897334
AFEN (h=21 cm) ke = 0.8887210
@ mesh size (h) set to 0.7 an
@ Shaded area denotes a rodded assembly

? reconstructed — P venture

@ Relative error : ( ) x 100 (%)

venture

Fig. 1. Maximum and Average Relative Errors of Reconstructed Pinwise Flux in

EPRI-9R Benchmark Problem

case of current, we find significant error distribution
compared with that of the VENTURE reference val-
ues (that is more so in other nodal methods).

We find that the Dirichlet boundary condition and
the inhomogeneous mixed boundary condition are
faster than the homogeneous mixed boundary con-
dition but that the three boundary conditions give
the results of similar accuracy.

40

—— AFEN
VENTURE

30

20

Normalized fast flux ( /cm? /sec /watt)

0 | ISP W S | I 1 1
40 50 60

90
Mesh Number

Fig. 2a. AFEN and VENTURE Fast Flux Distribution
Along Line AB

5. Conclusions

There are several types of boundary conditions
that can be used when we reconstruct pinwise flux
distribution of an assembly. We tested four boundary
conditions, such as Dirichlet boundary condition,
Neumann boundary condition, inhomogeneous and

homogeneous mixed boundary conditions on the

—— AFEN
VENTURE

Normalized thermal flux { /cm? /sec /watt)

20 30 40 50 20

Mesh Number

Fig. 2b. AFEN and VENTURE Thermal Flux Distri-

bution Along Line AB



318

3.0

25 —— AFEN
--------- VENTURE

Normalized fast current { /em? /sec /watt)

(Y1} P TP S SN ROV T S SN R
10 20 30 40 50 60 70 80 90

Mesh Number

Fig. 2c. AFEN and VENTURE Fast Current Distribution
Along Line AB

0.35

030 |
—— AFEN

- VENTURE

025 |-

0.20

Normalized thermal current (/cm? /sec /watt)

0.00 |-

10 20 30 40 50 60 70 80 90
Mesh Number

Fig. 2d. AFEN and VENTURE Thermal Current Distri-
bution Along Line AB

EPRI9R benchmark problem. The Neumann bound-
ary condion is very prone to the ill-conditioning
problem and the usual iterative methods are not ap-
plicable because the spectral radius becomes some-
times larger than one. The other boundary condi-
tions are useful and perform reasonably well.

We have verified that the reconstructed flux exactly
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matches the reference solution, if the boundary con-
ditions are exact regardless of the types.

From the results of reconstruction of the EPRI-9R
benchmark problem using AFEN nodal values, we
found that the Dirichlet boundary condition and the
inhomogeneous mixed boundary condition are faster
than the homogeneous mixed boundary condition,
but with the three boundary conditions giving similar
accuracy. Of the two boundary conditions (Dirichlet,
inhomogeneous mixed), however, the Dirichlet boun-
dary condition appears to be more efficient.
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