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Abstract

In this work, an analytic approach to the dependability of software in the operational phase is
suggested with special attention to the hardware fault effects on the software behavior : The
hardware faults considered are memory faults and the dependability measure in question is the
reliability. The model is based on the simple reliability theory and the graph theory which
represents the software with graph composed of nodes and arcs. Through proper
transformation, the graph can be reduced to a simple two-node graph and the software
reliability is derived from this graph.

Using this model, we predict the reliability of an application software in the digital system (ILS)
in the nuclear power plant and show the sensitivity of the software reliability to the major
physical parameters which affect the software failure in the normal operation phase. We also
found that the effects of the hardware faults on the software failure should be considered for
predicting the software dependability accurately in operation phase, especially for the software
which is executed frequently. This modeling method is particularly attractive for the medium

size programs such as the microprocessor-based nuclear safety logic program.

1. Introduction

Computers today form integral parts of large
systems where processing and control are the
primary demands. They can also be the mainstay
of systems, such as airline reservation systems and
nuclear power plants which are required to be
highly reliable. Designing the reliable software and
accurately predicting the software reliability are,
therefore, the most important issues that the
computer designers and developers face. During
the last two decades, the assessment of the
software failure phenomena and the prediction of
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software dependability have become key issues in
digital system design and have drawn the attention
of many researchers because the production and
maintenance cost of the software has been rapidly
increasing. Most of these researches, however,
have focused on the development and test phases
of software rather than on the operational
phase : Models{1-3] are mainly aimed at predic-
ting the future reliability from the failure data
accumulated in the past. Some software reliability
models consider program in the operational
phase[4-7], but these models are less than ideal[8-
10] because they analyze the system software as
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an entity separated from the system hardware,
making it difficult to analyze the interaction of the
two in the integrated system.

In recent years, various experiments and
studies[11-13] have shown that the hardware
faults can affect the software dependability and
vice versa. These interactions may be very
important factors to predict the dependability of
systems that are used in life-critical applications
such as flight control system as well as those used
in safety critical applications such as nuclear
power plant monitoring and control systems.
Previous models for dependability prediction of
software, in short, have not only mainly
concentrated on the development phase focusing
on the reliability growth of single component
systems but also can not explain these effects of
interactions between the software and hardware.
An analytic approach to the dependability
evaluation of software in the operational phase is
suggested in this work with special attention to the
phuysical fault effects on the software dependability.
The physical faults considered are memory faults
and the dependability measure in question is the
reliability. The model is based on the simple
reliability theory and the graph theory with the
path decomposition micro-model. The model

A. Memory Fault and Software Fault
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represents an application software with a graph
consisting of nodes and arcs that probabilistically
determine the flow from node to node. Through
proper transformation of nodes and arcs, the
graph can be reduced to a simple two-node graph
and the software failure probability is derived from
this graph.

Using these models, we predict the reliability of
an application software in a digital system,
Interposing Logic System (ILS), in the nuclear
power plant and show the sensitivity of the
software reliability to major physical parameters
which affect the software failure in the normal
operation phase. It is found that the effects of the
hardware faults on the software failure should be
properly considered for predi¢ting the software
dependability accurately in operation phase.

2. Models

An application of the micraprocessors in the
nuclear power plant is for the nuclear safety logic.
The microprocessors are applied to the nuclear
safety logic in Younggwang(YGN) nuclear power
plant units 3 and 4 in Korea. The microprocessors
which are of high reliability and of wide
experience in the market are used. The software
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Fig. 1. Fault Recovery Mechanism Between Memory Checking Period,
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stored in erasable programmable read only
memory(EPROM) is executed when it is required
to actuate some specific components in nuclear
power plants. The memory has no error
correcting circuitry but is supported by the
memory test routine to detect memory error
periodically. The time between any two successive
memory faults is assumed to be exponentially
distributed with parameter A. Fault location in
memory is assumed to be random. It is further
assumed that, when the software code stored in
faulted memory location is executed, the software
failure occurs.

In Section A, the memory faults which cause the
software failure are described and modeled. In
Sections B and C, the methodology for prediction
of the software reliability is introduced. The
sensitivity of the software reliability to the major
physical parameters has been estimated in Section
D.

2.1. Memory Fault and Software Fault

As shown in the Figure 1, the memory test
routine checks the memory faults periodically. The
software on the ith execution state can fail by
memory faults which occur between the previous
memory checking time before the software enters
ith execution state and the time at which software
enters i+1th idle state. The probability of the
memory faults occurrence which affects the ith
software execution can be obtained as follows :

For n8<06, <(n, +1)8,

,—n,8
4=§~f deHdr =-S5
M M
e—}.lbé,.—n,b’ = i‘(l_e—}.(d-—n,ﬂ))
M 1)

where n; is the largest integer given that n/#( is not
greater than 6. Then, the probability that the fault
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occurs in one machine instruction can be obtained
as the following :

= - 1 1 ~A(6,-n8)
qn(M,2,6,,8)=1-p =l == (- O ).
o 0 g S M( )

fw~o,» ~05 =,

_ 4 iie-ng)
pr=l-—-(I-e ). -

As shown in the Equation (3), the value of p,
depends on the parameters M, g, w, and 4.
The software failure by memory faults depends on
the above four parameters. The parameter g is
obtained from Mil-Hdbk-217D. This standard
handbook presents various data for micro-
electronic devices.

p. can be evaluated from the method in [14-15]
by testing programs of the same characteristics
and the size developed by the same programming
team. Then we can get an upper s-confidence

interval on p;.
2.2, Software Failure Probability

The probabilistic program control flow graphs
are useful for the estimation of the execution time
of the software and they also can be used for the
analysis of the software failure[16]. In the program
graph construction, we can obtain a graph by
using an arc for one instruction and labeling the
arc with the execution characteristic value of that
instruction, e.g., instruction execution time. Nodes
are used for the branch and the joint points for the
control flow in the software.

Let pli, j) be the probability of entering the path
from node i to node j. The joint probability of
entering and executing successfully the path (i, j) is
given by

pij=p(i—>jlij) plij) @)

where p(i — j |i, j} is the probability of success-
fully executing the path (i, j) given that the
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program has entered the path (i j) and is given by
p(i—> jli,j)=py-ps. (5)

where n is the number of machine instruction in
path (i, j) and m the number of software
instructions in path (i, j). That is, in order for the
software to be executed, the software instructions
need to be transformed into the machine
instructions which are stored in memory. When
one software instruction is transformed to machine
instruction(s), it can be transformed to several
machine instructions and consequently occupy
several memory locations. Therefore, in order for
one instruction to be executed successfully, the
memory locations of transformed machine
instructions must be free of physical faults and
simultaneously, there must not be software faults.
p» in every machine instruction is considered to be
equal because it is assumed that the location of the
memory faults occurrence is random. We know
neither which software instruction has faults
caused by software design or coding error nor
which fault in instructions causes the failure of
software. It is therefore assumed that every
software instruction has the same failure
probability by software faults. Then p, in every
instruction is set to be equal.

p» depends on several parameters including time
as described in section A, whereas p, depends on
software quality. For program loops with L
known, the looping probability is LAL+1) and the
probability of not-looping is 1/L+1). Probability p;;
and time t,; are assigned to each oriented arc of
the graph, where node i is the origin of a directed
arc and node j the destination. Following the
software reliability prediction method in [14}, three
elementary transformations are defined - series,
parallel and loop as shown in Figure 2. In these
transformations, it is assumed that entering and
executing successfully different paths are mutually
s-independent events. The series transformation

applies to a pair of arcs in series where the
terminal node of one arc is the origin node of the
other arc. The pair of arcs and the node between
them can be replaced by a single arc, provided no
other arcs terminate or originate at the interior
nodes.

In the series reduction, arcs {i, k) and (k, j) are
replaced by a new arc (i, j) as in the Figure 2. The
probability and execution time for this new arc are

as follows :
Pij=DPix Prj> %Tij=Tixt Tk (6)

The parallel transformation is applied to a pair of
arcs in parallel, that is, a pair of arcs which have
the same origin node and the same terminal node.
The pair of arcs is replaced by a single new arc.
The probability and execution time for this new
arc are as follows:

[
TU

Parallel

Reduced node

Fig 2. Node Transformation
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Pij=Pi;+pP"; Ti; =
The loop transformation removes an arc which
has the same node for both its origin and terminal
nodes. The new probability and execution time
assigned to the remaining arc are as follows :

Pii " Tii

1-p;; .

—_

=7t

p'v’ A
pi, = LY

B I-p; ’ @

Tij

With the above transformation methods we can
get a simple two-node graph as shown in Figure 3.
The nodes are numbered from 1 to N. Then we
have the software failure probability as the
following :

S(pnps)=1-pn, 9)

where f(ps, p.) is the failure probability of the
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software.

2.3. Cumulative Software Failure robability

As shown in Figure 4, the software is either in
idle state or in execution state. The software is idle
during the time {; between the i-1th and ith
execution state. The ith execution of the software
begins after this idle time ¢, and continues for the
execution time r,. Because t, is very small
compared with the idle time &, it is reasonable to
= 0. Since the first
software execution begins after idle time &,, the

assume that 7 . 77 - -+ < T/ = =

failure probability of software before time &; is
zero as shown in the following :

P{Failure Time} = F(t})=0, for0 <t <d (10)

For &) < t < d3, the software is executed once
before time t. The failure probability is, therefore,
given by
Fit)=fi (11)
Similarly, the following equations are obtained :

Fit) = fi+(1—f))fz, for d» <t < (12)

Fit) = fir(1—f)feH(I—fN1—folfs, for <t < d
(13)

Generally, for 4 < t < d,; and i = 2, we have
Cumulative Software Failure Probability as the
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Fig. 4. Relationship Between the Various Time Interval
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Table 1. Information of an Application Software

Hardware Application
CPU 8085 SIZE 72 Byte
MEMORY 64k EPROM EXECUTIONTIME 379 Clock time

CLOCK FREQ. 1Mhz CHECKING PERIOD 5 Minutes

Table 2. Mean Time to Failure of the Software

Chip Quality ™

05hr 500 hr
(lo_f‘j‘;'(’;(‘);' by 157 10°yr 157 x 10°yr
(10_5/'“1“(5)’»30 by 157 107y 157 x 100y
following :

i-l J=k
FO = fi+ 2 S [100-730 g4
k=1 J=1

From equation (14), the reliability and mean time
to failure can be obtained as follows :

R(t)=1-F(t), (15)

T, = [1}(: )dt. (16)

2.4. Sensitivity of Reliability to the Physical
Parameters

The sensitivity of the reliability to a parameter V
can be derived by differentiating the reliability

R()
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Time(hr)
Fig. 5. Reliability of Software in the Normal

Quality memory.

function by variable V. For ¢! < t < d,,;, the
sensitivity is as follows :
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For the sample software shown in Appendix, 2f/>
pn is given by

gd I 58 69 33
—— = 73
@7;, 4 Py Pn ( Ps Pn
+72p2p,2 +71p,p, +70), (18)
and
1 -A(8;-n,8
%= F(1=e7), (19)
Pr _ 1 4, MO0 (20)
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Fig. 6. The Sensitivity of the Reliability to the
Parameters.
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Fig. 7. CSFP of the Software to Some Physical Parameters.

3. Model Application

The target ILS software is a part of AFS-1000
system developed by Forney International
Cooperation and installed in YGN nuclear power
units 3 and 4. It is written in the Intel 8085
assembly language using top-down modular design
techniques. Reliability of ILS software is predicted
only considering the software failure by memory
faults.

As shown in Table 1, the memory in the system
is the Erasable Programmable Read Only
Memory(EPROM) and the capacity of the memory
is 64k bites. The clock frequency is 1Mhz. The
sample program which is shown in Appendix is a
part of the executive program that consists of the

various subroutines which generate the logic to
perform miscellaneous functions (ANDs, ORs,
Counters, etc.). To apply the derived model to the
program, we used physical parameters and
assumptions as follows : M = 8192 bytes, 8 = 5
minutes, @ > r, p, = 1 (i.e., the program has no
software errors). It is assumed that pfi, j) is equal
for each program branch.

As described in Table 2, the MTTF of the
software failure by only memory faults is predicted
for four cases. When the software is operated with
execution period, 0.5 hr, and failure rate, 10™/hr,
the software fails once whenever the memory
faults occur about 10° times. For the same
software with execution period 500 hr, the failure
occurs about every 10° memory faults..
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Figure 5 shows the reliability of the software in
normal quality memory and with a checking
period, 0.5hr. The result shows that the reliability
is exponentially distributed. Figure 6 shows the
sensitivity of the reliability to the parameters as
time goes on. In Figure 6, the curve (2) indicates
the time dependency of the sensitivity of the
reliability to the memory fault rate. It shows that
the sensitivity increases in negative direction, that
is, as time goes on, only the small increase of
memory fault rate can affect the software failure
significantly. Curves (1) and (3) show the cases for
software execution period and for memory size,
respectively. Time dependency of the effects of
execution period and memory size to the software
reliability seems to be negligible. The curve (4)
shows that the effect of changing checking period
becomes more significant as time goes on. From
Figure 6, we know that the checking period is the
major factor which affects the reliability of the
software significantly.

Figure 7 shows the change of CSFP to some
physical parameters at a given time, 1000 hrs.
From Figure 7, we know that the increase of the
memory fault rate lowers the reliability linearly. As
the memory size becomes larger, the probability
that the memory fault affects the software is
decreased because the memory fault rate is
constant, fault location is random, and the portion
of the software in memory is decreased. The
increase of the memory size, therefore, improves
the reliability when the software size and memory
fault occurrence rate are fixed. If the time interval
between the software executions increases, the
number of the program execution in a given time
decreases. Therefore, the chance of the software
failure is reduced and the reliability increases. The
reliaility fluctuates and decreases as checking
period increases as shown in Figure 7. The
fluctuation is due to the change of the interval
between last checking time and program runtime.

If the program runtime occurs right after memory
checking, for example, the reliability is relatively
higher, and if it occurs right before the memory
checking, the reverse is true.

4. Summary and Conclusion

In this work, we suggested an analytic approach
for the dependability evaluation of software in the
operation phase with special attention to the
phuysical fault effects on the software dependability.
Generally, the safety critical software is required to
have the failure rate under 107/5000 hr[17). This
is the requirement for the software failure by only
software error. As shown in the Table 2, the result
shows that the software failure rate by only the
memory faults is about the same order of
magnitude or is greater than the value of this
requirement. Interaction effects, therefore, should
be considered for predicting the software
dependability accurately in operation phase,
especially for the software which has short
execution period. In radiation environments such
as in nuclear power plant, the memory fault
occurrence rate will be higher and the interaction
effect must be considered seriously. It was found
that the major physical parameters that affect the
software reliability are memory size, software
execution periods, memory checking period and
the memory fault occurrence rate. The major
factor which affects the reliability of the software
significantly is the memory checking period.

This modeling method is particularly attractive for
medium size programs such as software used in
digital systems of nuclear power plants. Without
modification this modeling methodology can be
extended to the software system which consists of
several complete modules performing the
independent functions. This work is believed to be
also useful to obtain optimal value of physical
memory parameters when the software is
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implemented into the digital system. Appendix

0000 MAN_AUTO: LXI H, FAOF

Nomenclature 0003 LXI D, FGPF
0006 MOV B, M
flow, p)  probability of software failure. 0007 INX H
D probability that no memory faults occur 0008 MOV A M
in one machine instruction of memory. ggg‘i ;I:gv 2 A
an probability that memory faults occur in 000B CMA
one machine instruction of memory, 1- 000C ANA B
P 000D MOV  B,A
ps probability that there is no software 000E LDA FAOF+13D
faults in one software instruction. 0011 ORA C
f; software failure probability at ith 0012 ANA M
execution state. 0013 INX H
F(t) cumulative software failure 0014 ORA B
probability(CSFP) of the software failure 0015 ORA M
probability function f(ps, pJ). 0016 INX H
Pli,j  probability of entering the path i,j. 0017 ANL 01
p(i—j li,j) probability of successfully executing 0019 Iz AUTO_MANL
path (i, j} given that the program has ggig AUTO MAN1 ;TOA\? g M
entered the path (i, j) 001E B INX H
jo joint probability of entering and 001F MOV A M
executing successfully the path fi, j). 0020 INX H
3 time at which ; th program execution 0021 ANI 01
starts. 0023 JZ AUTO_MAN2
I probability of the memory faults 0026 XRA A
occurrence which affects ith software 0027 STAX D
execution. 0028 AUTO_MAN2 IDAX D
A memory fault interarrival rate. 0029 INX D
memory checking period. 0024 MoV C.A
o, sum of the th execution time and the 0028 MOV A B
th idle time, 7, + &,. 002C CMA
T 002D STAX D
T, program execution time. 002E INX D
¢, program idle time. 002F MOV A M
M number of machine instructions which 0030 INX H
can be stored in memory. 0031 ANA C
S size of software in the number of 0032 ANA M
machine instructions. 0033 INX H
T mean time to failure. 0034 STAX D
0035 INX D
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0036 MOV AM
0037 INX H
0038 ANA C
0039 ANA M
003A INX H
003B STAX D
003C INX D
003D MOV AM
003E INX H
003F CMA
0040 STAX D
0041 INX D
0042 MOV AM
0043 ORA C
0044 STAX D
0045 INX D
0046 MOV AC
0047 CMA
0048 STAX D
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