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Abstract

This paper presents an approach to control that is a result of modern control

theory, and is based on the control philosophy of feeding back all the state
variable through constant gain frequency independent elements. The values of
these elements or feedback coefficients are determined by equating like coefficients
of the desired system transfer function to the transfer function of the system
containing the unspecified coefficients.

This application of modern control law is a simple design method depending on
feedingback all the system variables for reactor control and :it is particuraly

amenable to the control of Pressurized Water Reactor.
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1. Introduction

A large dynamical system defined by
X=AX+Bm(®)
is characterized by a matrix of high order A.
For such a system the analysis is laborious

and time consuming. Especially, it is very
difficult to determine feedback cofficients or
weighting factors.

The optimization procedure described here

is closely associated with the Ellert’s procedure.
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The design specifications are given in terms
of a desired overall system transfer function,
which is realized exactly through the feedback
constants. These feedback coefficients are
determined by equating like coefficients of the
desired system transfer function to the transfer
function of the system containing the unspeci-
fied coefficients.

2. State Variable Feedback Design

It is assumed that control elements are des-
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cribed by
X= A XAFBOnevereereriienneinionnnns D
where X: State Vector
m: Control Vector
A,B: nxn, nxr Matrix
and the performance index is given by substi-

tuting
fo (X, m, l):—%—[<<Xd_X>, .Q(Xd—_X)>
AL, ZmdJereeereranerneniensoens @
into
if
I= S'w FoCX, 1, E)E +oovvrerreernnrmeninniennsnnnn 3)

X? is the desired state behavior, © and Z are
symmetric matrices which possibly time-vary-
ing. The dimensions of @ are less than (#x #)
unless all components of (X“—X) are included
in f,, We can use the minimum principle to
obtain the necessary conditions for the optimal
control and so derive the extremal controls.
The Hamiltonian £ for the system (1) and
2 is

H (X, m, p, t):%_[<(Xd_Xa), CXI— X)>
+<me, Zm > 1 +<po, AX°FBmo>eeveenees @

In terms of the optimum Z#, the first neces-
sary condition for an optimum for the case of
unspecified terminal conditions on the state
variables can be written as

grad..H'=—P-

Eradn®Hom= 0 ereeeivnnnnininniniiiiniiniinne (5)

grad,oH"'——X”
subject to the boundary conditions X°(¢,) =X({.)
and p°(¢))=0. For specified terminal conditions
an X°, the latter boundary condition is replaced
by Xe(¢)=XUp.

From Eq. (5) we deduce that

me(t) = —Z7IBTPs cieiisiiocesinsiiacioniiiee ©6)
The assumption that Z is positive definite for
all gurantees and the existence of Z7! is for
all fe [, #].

The control law requires the optimum control

signal m° in terms of X-.

]. Korean Nuclear Society, Vol. 3, No. 2, June, 1971

Define the matrix R, by setting
R=BZ 1BT «citiierircitriiriciiiiitiisiisanane D
Using the matrix R, we can combine the
canonical equations in the form
{Xa)]:[“‘*"’“ﬂw 1-9--].-.@
P —0i—AT | P X¢
Equation (8) consists of a set of interrelated
linear differential equations for X° and P
Thus X° and P- must be related by a linear
transformation. This transformation may be
expressed by
Po= KXo T2 ieriserininisaciaiiaintianiosinions (€)!
where K is a square matrix of time-varying
gains and V- is a time-varying vector. The
control law for the optimum system is given
by substituting Eq. (9) into (6) to obtain
mo=—Z 1BT(KX0~ V) +eererrererennees (10)
Thus, for this case, the control law is
linear, and the controller feedback gains K are
independent of the state of the controlled
elements.
Once m° is determined, the response of the

optimum system can be obtained from

Xo=(A—RE)XHRV? wveveveevenenens an
which results from subtituting Eq. (10) into
Eq. (L.

It is known that as T—oc0, the gain matrix K
of the Eq. (11) tends to the constant matrix
K.

From Eq. (11), the system transfer function
can be obtained by taking the Laplace trans-
form with the usual assumption in transfer
function determination that all initial conditions
are zero. Transforming Eq. (11) and assuming
that V and y are the single input and output,

sX(s)=(A—RRK)X(s)+RV(s)
y(£)=CX(s)

y(s) - _ N1 eiiveercenee
Ve(s) RC(s1—A+RK) az

where C: 1 x » matrix
1: unit matrix

The design philosophy is to specify the sys-
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Fig. 1. Primary and secondary loops of nuclear reactor plant

tem dynamics in terms of the desired system
transfer function, and to realize these specifi-
cations through the feedback coefficient K.

Whiteley’s standard forms for the charac-
teristic equations are used.

3. Application to 600 MWe Pressurized
Water Reactor

v

A. Characteristic Plant Equation

The general block diagram of linear reactor
system to be considered is shown in Fig. 1.

Typical equations of state for a pressurized
water reactor plant are given in the following.
These can be made more simple or complex
as the situation demands. The one group
neutron Kinetics equations are

— n == p IB ..............................

dr ; n+iC s
AC B i eeeiieeesieieiee et eeerene
= n—AC av

where » is the neutron power as a fraction of
rated value, p is the reactivity, 8 is the frac-
tion of neutrons that are delayed, / is the
prompt neutron lifetime, Cis the concentration
of delayed neutron emitters, and 2 is the decay
constant. The symhbol ¢ represents time.

The transfer of heat from the primary loop
to the secondary loop is represented as

aty - 1 g 1 _cp_T
RV Faae) @ C.R, (-7

~ 1 _ -1 _
‘fl*” TR, (T1—T» (15)
aly _ 1 .y
dT Cle (Tl TZ)
_ _Ka_ ,,an
(e 57 )T 16

where T, is the coolant temperature of the
reactor, 7T is the steam temperature, R; is
the heat resistance, @ isinlet thermal power,
C: and C, are the heat capacity of primary
loop and secondary loop, A and Ke are const-

ants, ,g;f;}_ is the slope relation betwcen the
2

secondary system pressure and temperature in
the temperature range of interest. The symbol
¢ is the load demand as a fraction of the
rated steam flow.

The set of equations (13)-(16) is nonlinear
by virtue of (13) which contains the product
of reactivity p and neutron power z. Total
neutron power 7 is considered to be composed
of steady part #,, and a fluctuating part o».
Since the reactor is critical, thereis no steady
source. Then Eq. (13)-(16) are linearized to

don/n 1 on 2
__d#; = / o fj 70,. }- ho' SC vrevennne an
d3C _ Mo 0N 50 e 18
dr l My
AT, _ Amy on _ 8Ty 4 8T, ., 19)
dr Cl 7o C1R1 C1R

dsTy_ .
d‘l‘ CzR1
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Fig.2. Block diagram of state variable feedback control
where ZCO_.BnO/l=0 ........................... @D X2=2. 95% 101X, —0. 08X,
Ano/Cl_Tlo/ClR1+ Tzo/ClR1=0 """"" (22) X3=1. 5><104X1—‘8- 7392 % 10'2)(3
T10/C R — (1 +Ka¢ _gg,z_) 20/Ce:R1=0 (23) +8.7392 X 1072X), +reeersenceneans PSPPI 24)
The block diagram of linear reactor system )‘(‘_—_ 7. 17401 X1072.X,—0. 928166 X,
X5 = ’—‘0 1X5+u.

to be considered is shown in Fig.2

The optimum control system was employed
with 600 MWe PWR using a 8 value of 75X
1074, a decay constant 1 of 0.1 second™!, and
a prompt neutron life time / of 10~* seconds.
The heat capacity of primary loop and secon-
dary loop C,, C; are 4x1075 Btu/°F and 3.2Xx
107°Btu/°F. The heat resistance R, is 43.56X
107¢ sec °F/Btu.

The differential equations defining the sys-
tem are

Xy = —75X,-+0. 2667 X 107X, +10¢X;

where X;: z the neutron power as a fraction

of rated value.
Xi: C the concentration of delayed

neutron emitters.
X;: Ti the coolant temperature of the
reactor
Xy: T, the steam temperature
Xs: the reactivity input from controller
#: input control signal

Referring to Eqs. (24), the terms in Egs.

(1), (2) are given by

—75 0. 266710710 0 0 10

2.25X10"" —0.08 0 0 0

A=[1.5%10¢ 0 —8.7392X107% 8.7392X1072 0

0 0 7.17401X1072 —0.928166 0

0 0 0 0 —-0.1

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

B=|0 0 0 0 0 C=l0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

én 0 0 0 0 placed by

0 0 0 o0 o0 b 0 0 0 0
=0 0 0 0 o0 0 1 0 0 o0
0 0 0 0 o0 Z={0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
From Eq, (6), m° is unchanged if Z is re- 0 0 o0 o0 1
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Therfore Z 1= &1 0 0 0 0
0 1 0 0 0
0 O 1 0 O
0 0 O 1 0
0O 0 0 o0 1

Using the method of Eq. (12), the closed-
loop transfer function of optimized reactor

Xi(S) _ 10*{s*+1. 09555852 -0. 156089s+-0. 005988

ki1 ki ks ki kis
ka1 ks kg ko ks
K=| k3 ks ks k3 ks
ka kyy ks kg Res
ks1 ks, ks ks kss

system can be determined to be

V(S

where

a="76. 195558+ £ss

b=167. 790145-+-10%::4-76. 095558%35

¢=13. 251656+1. 095558 X 104451+ 2. 25 X 105k,
+1. 5X 108551 76. 24809%s;

d=0. 5619744 0. 15609%s;:+2. 285006 X 10'°%s,
+1. 512249X 10%%55+0. 10761 X 10%%s,
+5. 61974455

e=0. 005988 X 10*k5:10. 168401 X 10'%%s,
+0. 11138 X 10%s53-+0. 008609 X 10%%s,

— 10*(s*+1. 09555852 +0. 156089s-+-0. 005988)

s’+ast+bsi+cs?+-ds+e

Suppose that the desired dynamics of the
system is given by the second order transfer
function

=100 e,
o= Fa005F10° (26)

which has well-behaved transient characteri-
stics with a damping ratio of 10% and a desi-
rable frequency response. To realize these
desired system characteristics, Eq. (26) must

equal

or

(572005110 (s*+1. 0955585°-0. 156089510, 005GRE) 77" @0
_  10°(s°+1.0055585°+-0. 1560895 -0.005988) .
$5-F201. 0955585+ 10219. 26768057+ 10988. 000452+ 1562. 08765159, 88

Equating the coefficients of like powers of s
in the denominator of Eq. (28) to Eq. (26)
and solving the resultant linear algebraic
simultaneous equations for K yields
ks1=0.6310Xx107*
ks;=0.5356 X107
ks3=0.3000X 1075 recrororeretoniaceioniaiaens 29
ks.=0.30882x107°
kss=0.1249X10°
From the response curve of X;(»#) in Fig. 3,
it can be found that the transient response
behavior corresponds exactly to that expected
from the desired ststem transfer function.
The power transient shown in this case runs

between rated power(¢ =1, —Zn— = 1)
0

4. Conclusions

The above example has demonstrated a new

design technique for reactor control based on
feeding back all the system variables or state
variables through constant gain elements. The
reactor dynamical system is characterized by
a matrix of high order A. This design method
is a very simple mode for reactor control.
The design specifications are given in terms
of a desired overall system transfer function,
which is realized exactly through the feedback
constants. These feedback coefficients are
determined by equating like coefficients of the

desired system transfer function to the transfer
function of the system containing the unspeci-

{ied coefficients. The initial design procedure
is to assume that all state variables are avai-
lable, and then determine the feedback gains.
This design technique is adaptable to digital
computation.



64 J. Korean Nuclear Society, Vol. 3, No. 2, June, 1971
SCALE
X!
xs: "!
| "s
X3
0 20 ¥
TIME (SEC)
A, POWER INCREASE
T
10 IME (SEC)m 20
X3
1+
SCALE _ | ]
Xp: B. POWER DECREASE
** Y100

Fig. 8. State variable response of the various system parameters to a step

changes in power.

In order to specify 2, Egs. (8) are solved
for w. Substituting the result of K into Egs.

(8), we can obtain the value of wi;.

w11=0.192183

w22 =0. 367293 X107%

w3 =0. 193649 X107% &)
044=0. 502496 X107°

ws5=0. 143630 X 10°
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