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Abstract

A unified modal-nodal expansion of the angular distribution of neutron flux in
one spatial dimension is considered, following the proposal of Harms. Several
standard nodal and/or modal methods of analysis are shown to be specializations
of this technique, The modal-nodal moment from of the mono-energetic transport
equation with isotropic sources and scattering is derived and the infinite medium
eigenvalue problem solved. The technique is shown to yield results which approx—
imate the exact value of the inverse diffusion length in non-multiplying media
more accurately than standard methods of equal or somewhat greater computational

complexity.
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I. Introduction

A new approach to the analysis of the sta-
tionary, one-dimensional, mono-energetic neu-
tron transport equation has peen proposed by
Harms. © This unified modal-nodal technique,
denoted by the acronym NPi, is the first to
encompass both the spherical-harmonics modal
and the discrete-ordinate nodal approximations

within a single conceptual framework.

In the original work, the basic equations of
the NP, formalism were defined, and the re-
duction to standard modal and/or nodal approx-
imations was demonstrated. A modal-nodal mo-
ment form of the homogeneous transport
equation was derived and a spectral analysis
of the eigenvalues for the infinite-medium

2Py case was perfomed. Finally, the 2P,
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formalism was shown to yield an inverse
diffusion length in non-multiplying media which
more closely approximated the exact result
than other methods of equal or somewhat
greater computational complexity.

A review of that work, with significant
new extensions and results is presented here.
A slightly modified definition of the NP. ex-
pansion of the angular neutron flux is utilized,
which yields a more convenient form for sev-
eral results. The complete solution to the ho-
mogeneous, infinite medium problem is obtained
as a simple eigenvalue equation and certain
recursion relations. This eigenvalue equation
is solved for various low-order NP. approxi-
mations. The inverse diffusion length in non-
multiplying media for each of these approxi-
mations is derived and compared with the
exact value.

II. Background

The transport equation specifying the time-
independent, angular flux distribution of mono-
energetic neutrons in one space dimension
within a homogeneous medium with isotropic
scattering and sources may be written

52 G, D+9Cr =5 9, 41
+ 55

subject to appropriate boundary conditions.

The symbols appearing in this equation are

defined as follows:

x is the spatial variable, measured in units

of the neutron mean-free-path for the

medium;

p is the cosine of the neutron scattering
angle, assuming values on the closed inter—
val [—1, +11;

¢(x, ) is the neutron flux distribution fun-
ction in space and angle;

S(x) is the space-dependent, isotropic neu-
tron source term; and

¢ is the neutron multiplicity of the medium,
giving the mean number of neutrons pro-
duced by each interaction.

Solution of the transport equation by stand-
ard analytical and semi-numerical methods re-
quires an initial assumption concerning the
nature of the angular dependence of the ne-
utron flux distribution function,

The modal approach of the spherical harmonics
or P, approximation® assumes the distribution
function may be adequately represented by
the first (L4+1) terms of its expansion in the
infinite set of ordinary Legendre polynomials.
These functions have the angular variable as
argument and are orthogonal on the full inter-
val [—1, +1]. Experience has shown that
complexity of the resulting equations for the
expansion coefficients increases rapidly with
L. Furthermore, the sequence formed by the
solutions with odd L differs in nature from
that formed by the even L solutions.

The desirability of providing a more accurate
representation of the distribution function at the
system boundaries led to the double spherical
harmonics or DP. approximation formulated by
Yvon®. This technique expands the angular
flux density in a double series of half-range
Legendre polynomials. The polynomials of the
first series are orthogonal on the angular in-
terval [—1, 0], while those of the second are
orthogonal on [0, +1]. Although twice as many
expansion functions must be determined, the
coupled equations they satisfy are no more
complex than those of the normal spherical
harmonics approximation of the same order.
At the same time, however, the accuracy of
the DP, approximation is comparable to that
of the P41 technique. ¥

Purely nodal approaches have been developed
to accomodate the more common problems of
reactor analysis. Among the earliest of these
was the Sy method of Carlson® in which the



Modal-Nodal Transport Analysis—R, D. Joknson

distribution function is assumed the vary line-
arly between (N-}1) equally spaced angular
nodes. Another common technique is the dis-
crete ordinate segmentation or DSxy method®
in which the angular integral of the transport
equation is approximated by a quadrature em-
ploying (N-}-1) angular nodes, usually unequally
spaced.

Computational experience with these nodal
mothods indicates the existence of a point of
diminishing returns as the mnodal structure
becomes more detailed. Campise™ reported
that cell calculations by the Sy method gave
results that improved significantly as number
of angular intervals was increased from two
to four. However, the smaller improvements
in accuracy which were obtained by perform-
ing calculations with larger values for N were
rendered uneconomical by the associated in-
crease in computational effort.

An important result indicating the usefulness
of non-uniform nodal structures has been re-
ported by Cerbone and Lathrop®. In a study
of deep neutron penetration, they found that
S~ calculations with a modified 10-point quad-
rature set on the angular interval [—1. 00,
+0.95] and a modified 6-point quadrature set
on the interval [--0.95, +1.00] gave numerical
accuracy comparable to that from a calculation
with a conventional 48-point quadrature set but
required only 25% of the computer time.

The NP. formalism which is described below
employs a modal expansion of the angular de-
pendence of the distribution function on each
interval of an arbitrary nodal structure. There-
fore, it may be viewed as a unifying develop-
ment of these diverse analytical trends.

J11. Theory

The NP:. method imposes an arbitrary struc-
ture of (N+1) nodes upon the range of the
angular variable, satisfying the condition
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Within each interval, the angular flux distri~
bution rTunction is expanded in partial-range
Legendre polynomials, defined as

P, () EP,/\ZHt#."__:Iu_":l)

o a1
where Pi(y) is the ordinary Legendre polyno-
mial of order /. The orthogonality relation for
partial-range Legendre polynomials on the same

(nr=p=pt2)

interval is

S‘u:_ld/uPn’ ICIU)PII, 1' (lu) :/%%—:*{l{~1611, '

where &/, :1s the Kronecker delta symbol. The
moments of the distribution function are de-

fined by the integral relation

G 1 O= " duPs, GD9Cx, 1

Thus the NP. representation of the angular
flux is

o(x ;z):}Nj H(pn—p) H(p— pn-1)
N n=1 /‘"__‘u”_l

L
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where H(y) is the Heaviside step function.
The neutron flux is defined as the angular
integral of the angular flux distribution, viz.,

5 +1
o(x) zj_ld,ugb(x, D)
which in the NP. formalism is found to be

PCO= 2 b, o)

The neutron current density is defined as the
weighted angular integral of the distribution
function, »7z.,

J(x)= Sidﬂ uh(x, )

which becomes
. 1
J=52 [ Cntpac1 )P, o(%)

D, 1 ()

in those NP. approximations with L equal to
or greater than unity.
In order to obtain the preceding result and
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the moment form of the transport equation
considered next, a recursion relation for the

partial-range Legendre polynomials is required.

The necessary expression is derived quite read-
ily from that for the full-range Legendre
polyomials and the ' defining equation for the

partial—range functions. It may be written

141,
pPa, ()= 2 [ZH—IP"’ t:1(g0)
ﬂn+ﬂn—l W .
HATEP, )ty +1R, )

The NPL moment form of the transport equa-
tion is obtained by application of the integral

operator Y' dp P,, () and simplification by
Hr—1

means of the recursion and orthogonality re-
lations for partial-range Legendre polynomials.
The resulting expression may be written

I+1
(1—6'; )21+1 d ¢"v“’l(x)
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where the first factor serves to terminate the
series of moments at the L term. The mo-
ments of the boundary conditions are deter—
mined in a similar fashion.

IV. Reduction to Standard Forms

Reduction of the relations derived above for
the NP, formalism to those of the other com-
mon modal or nodal representations is straight-
forward. To obtain the equations of the
spherical harmonics or P, approximation, it is
necessary only to set N equal to unity in the
NP;, expressions and simplify. In the case of
the DP; formalism, the identifications N=2
and p1=0 are required. The Sy method pres-
umes the angular flux density to vary in a
linear fashion between angular nodes, viz.,

o(x, @)= Z H(ﬂ'«“ll)H(ﬂ‘/ln-l)
ﬂn—l

E(/"—F‘)Sb(x: tn-p) + (#“#L])(ﬁ(x, =)l

The NP, approximation which includes terms
linear in 4 and no higher has L equal to uni-
ty. Forming this expansion of the angular flux
density and equating it with that of the Sy for-
malism leads to the following identifications

o, (Y=o, ) o, )|

G 1(2) = ”"—F‘~ (¢<x )= 9(x, )]

Thus the equivalence of the NP, and Sy met-~
hods has been established. .

In the DSy method, the angular integral of
the distribution function, which appears in the
transport equation, is approximated with the

quadrature
+1 N
O ENVDE Lwng(x, )

where the angular nodes are zeroes of Py,,(x)
or some other polynomial of order (N-1)

and the w, are weights appropriate to the
selected polynomial. The NP. approximation
evaluates this intergral exactly as the sum
of all moments of order zero. Therefore the
results of. the DSy formalism are related to
those of the NP, approximation by
Gn o) =w0a (%, ptn)

V. Source-Free Infinite-Medium Problem

A fundamental problem in reactor physics is
the case of the source-free infinite medium.

In the NPy formalism, the moments of the
angular flux satisfy

l+1 d ﬂn—i_ﬂn—l
(1 61 L)21+1 d Sb”: 1+1(x)+l1 —yr

d
T 2 z(x)+21_H dr gb,.,l-l(x)

+ O {XD=81, o ZJ ¢,, , o(%)

Ha u»_
The boundary conditions appropriate to this
problem depend upon the number of neutrons
resulting from each interaction. In non-multi-
plying media, for which c is less than unity,
the monents must vanish. In multiplying media,
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where ¢ is greater than unity, the moments
must increase without bound. Should ¢ be
unity, the moments must be positive and finite
at the boundaries.

As the moments satisfy a set of coupled
differential equations of the first degree, ex-
ponential solutions of the form

a1 (X)=As, 6%
are admissible. Substitution of the assumed
solution leads to the following set of coupled
algebraic equations for the amplitude coefficients

&, D ITL 2+ Q)
(1 51, L) 21+1(¥An, 1+1 + fn—ftnt A

7y

N
grggn =t o A

Recursion relations for the coefficients may
be obtained by solving the equation of order
L first, using this result to solve that of order
(L-1), and working through the equations of
successively lower order. The resulting expres-

sions are
nL [==1.9 «oorer '
Ai=G @ A LZREL
and
- [c—a,', [z_tgi_vi_)g
n’-l p”_y”_‘
1L
+(1—8z, Da G » NC“D]] Ax',0=0
where
IS SN 24 Cpat-pa_)
G ,,N(“)‘ 21+1 a( Hn— ptnt

+(1—4, L‘)Zl’?a Git‘,’vL(a)]

Since the equation satisfied by zeroth order
amplitude coefficients is homogeneous, non-
trivial solutions occur only when the deter-
minant of the (N XN) matrix whose components
are given by the quantity in braces is also zero.
The nature of these components makes it pos-
sible to write the eigenvalue equation in the
following deceptively simple form,

d 1

1
LFE A ¢

125
in which
F”fN(a)Ez+<ﬂ"+””“)“
Mn— pin_1
+A—d, e G5
and « is the eigenvalue.
The expansion of F,E,(a) for various values

of L proves to be the ratio of two polynomials
in @. The denominator polynomial is of the
L* degree, while the numerator normally con-
As there are N of

these factors in the eigenvalue equation, it is

tains terms involving a**.

obvious that the NP, approximation will possess
a maximum of N(L+1) distinct eigenvalues.

VI. Solutions for Selected Approximations

In the 1P, approximation, which corresponds
to the standard P. method, the solutions to
the eigenvalue equation for the first few values
of L are given by

L=9

c¢=1(ais unrestricted; for c3s1, no solution)
L=1

1
2

a=+[3(1—0)]
L=2
3A—¢)
“=iQ+§a—oP
L=3
a=j:‘8%
where
5(7+11(1—o))+[25{7T+11Q—0)}2
f= 5 —3780(1—c)]?

In the 2P, method, the medial node may
lie anywhere in the range(—1<g;<<+1). The
eigenvalues for the zeroth-order approximation
are

a= 2 [ OmtLa— et
When L is unity, the eigenvalues satisfy
LA—pD —12p et —12024+(1—c)(1—p2)]
1o —1201+ A=) A—4)Ja?
+72(0—Dma+36(1—c) =0




126 J. Korean Nuclear Society, Vol. 3, No. 3, September, 1971

Although an algebraic quadrature is known
for the quartic equation, it is not particularly
useful here. Evaluation can be performed
quite readily by approximation techniques.

The double spherical harmonics or DP; me-
thod is obtained from the 2P. formalism, as
previously noted, by fixing the medial node
at zero. This reduces the complexity of the
eigenvalue equation significantly, leading to
the following analytic results

L=0
a=42(1—c]

L=1
a=H1p

where

p=3 201+ -3+ {1+20 -0} 1]
L=2

a=+p

where j satisfies the cubic equation
362 —36(5+2(1—¢c)]p*+20(20+43(1—c) B
—1200(1—c)=0
Again a quadrature formula is known, but
it is of sufficient complexity that evaluation
by approximation methods is more convenient.

[

1
2

o

The 3P. approximation partitions the range
of the angular variable into three segments,
the two interior nodes satisfying the condition
(—1<m<p<<+1). In the zeroth-order expan-
sion, the eigenvalues satisfy the following
cubic equation

A+p) (e tpD) u—1Da®+ 20+ ) (1—0)
+ A+ p)(a—1D@—c(pe—p1)) Ja?
+8Cue+ 1) A—c)a+8(1—c)=0

If the nodes are symmetrically placed, viz,

1=
then the eigenvalue equation reduces to a
simple quadratic and has the solutions
1
a=t o)
where g is restricted to the open interval
, +1).

VII. Evaluation of Inverse Diffusion
Length

The calculation of the inverse diffusion
length 7, for non-multiplying media (¢<{1) is a
convenient means by which the utility of the
NP, formalism may be demonstrated. The
exact value of this quantity as a function of
the mean number of secondary neutronsis
given by the transcendental equation

(1) =
and has been tabulated by Case, et al®.

The inverse diffusion length for the various
NP. approximations is evaluated as the magni-
tude of the eigenvalue of least absolute value,
viz.,

Y =min|a/

In the P, and DP. methods,

difficulty in performing this evaluation, as the

there is no

nodal structure is fixed. Thus the results for
the lowest order P. approximations are
L=0

underfined c¢x1

L=1
r=[3(1—)3%
L=2
31— V%
7={1+%<1—C)J
L=3
5(7-+1100—c))—[25(7+11(1—e))?
_1 ~—3780(1—c)]%)?
7_3‘[ 2 ]
while the DP:. method yields
L=0 1
r=2(1—c]?
L=1

=Bei+H1-0)
—(3+{1+2(1—D}3% 122
Evaluation of the inverse diffusion length in
the full NP. formalism requires the determi-
nation of the nodal structure which minimizes



Modal-Nodal Transport Analysis—R.D. Johnson

the magnitude of the eigenvalue. This can be
readily accomplished in the 2P. approxima-
tions, where only one node is variable. The
problem is much more difficult in approxima-
tions of higher N.

In the 2P, approximation, the minimization
procedure can be carried out analytically. The

resulting inverse diffusion length is
it 0=c=1

LZ[C(l— c)J%

and the location of the medial node is given by
-1

M= 1 3

1]

c

7=
5<e<1

OSCEL
%<C<1

The arrow in the medial node result indicates
that the value given cannot be assumed, but
should be approached as closely as possible.
In the case of the inverse diffusion length, it
indicates the minimum value available to the
result and that this result is approached as a
limit. The signs on the medial node formulae
specify the value to be used when the spatial
coordinate is positive or negative, respectively.

Evaluation of the inverse diffusion length
in the 2P, approximation must be performed
by inspection of the eigenvalue structure
computed for each value of neutron multiplic-
ity. As a result, analytic expressions defining
the optimum nodal location and the correspond-
ing value of the inverse diffusion length are
not available,

Similar problems arise in the case of the 3P,
approximation. However, the requirement that
the interior nodes be symmetrically placed al-
lows analytic expressions to be derived. They

are
S 0=c=1
=) 3¢ 30—\ 1_.
SLBE2) g

and
[~ 1 o0=ce=1
H2=\9_¢ 1_
1? 2<C\1

127

These results reflect the major attributes of
the 3P, approximation, but the restriction on
the placement of the interior nodes probably
prevents the representation from being exact.

The variation of inverse diffusion length
with neutron multiplicity in non-multiplying
media is presented graphically in Figure 1,
which contains curves for the exact result and
each of the approximations considered above.
It may be seen that the results improve
markedly as the number of modes in the formal-
ism is increased while the number of nodes
is held constant. This is particularly true for
the P, and DP, approximations.

Further,
node of the double spherical harmonics method

introduction of the single fixed

has produced a significant improvement over
the results obtained from the ordinary spheri-

cal harmonics method of the same modal or-

Inverse Diffusion Length-¥

~ B
Co 02 o4 06 0.8 t.o
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MNeutrgn  Mu'tiplicity ~¢

Fig. 1. Inverse Diffusion Length as a Function
of Neutron Multiplicity
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der. In fact, the various DP. curves lie be-
tween those for the P,. and Pj.,, approxima-
tions, varifying the contention of Clark and
Hansen®.

Most important, however, is the accuracy
with which the optimized 2P,, 2P; and sym-
metrical 3P, approximations reproduce the
exact values for the inverse diffusion length.
In the region of high absorption (0. 0=¢=<0.7),
the 2P, method is much more accurate than
any other approximation of comparable or
somewhat greater complexity. The 2P; for-
malism yields even better results over the entire
range of multiplicities, while the symmetrical
3P, approximation improves only slightly on
the results of the 2P, method.

VIII. Summary

The NP. formalism has been derived asa
unified modal-nodal approach to the analysis of
the mono-energetic transport equation in one
spatial dimension. It has been shown that the
P. and DP. modal methods, which rely on
symmetric nodal structures, and the Sy and DSy
nodal approaches, which require a symmetric
and a predetermined, usually asymmetric nodal
structure, respectively, are but specializations
of the appropriate NP. approximation, which
allows the use of an arbitrary nodal structure.

Survey calculations of the inverse diffusion
length in non-multiplying media indicate that
optimum nodal structures can be defined
which permit NP, approximations of low
order to yield results more accurate than those
of other methods of similar or somewhat
greater computational complexity. This is
particularly true in highly absorptive media
for which the multiplicity is less than 0. 7.

As a consequence, it is expected that
low-order optimized NP approximations should

yield comparable accuracy in the evaluation
of other reactor physics quantities, especially
the angular flux distribution.

The greatest in accuracy
should be obtained in problems where the flux

improvements

distribution is highly dependent on the angular
variable, specifically those cases involving deep
neutron penetration or media with low neutron
multiplicities. However, additional research is
needed to determine the validity of this exp-
ectation.
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