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Abstract

The reaction cross-sections of “Ti(p,X)**V, "“Fe(p,X)*Co, ™Cu(p,X)**Zn and ™Mo(p,X)" Tc
for TLA application are calculated in the frame of the ECIS-GNASH code system up to 60
MeV. The calculated results are compared with the experimental data taken from the EXFOR at
the NEA Data Bank. A preliminary calculation with the global optical parameters of Varner et

al. shows considerable differences from the experimental data at low energy range. The global

optical parameters for the imaginary volume potential and the diffuseness of the imaginary

potential are adjusted to achieve a better description of the experimental data in the vicinities of

peak position below 16 MeV.
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1. Introduction

During the last thirty years, a global nucleon-
nucleus optical-model potential has been used for
evaluating reaction and differential cross-sections
and analyzing-power angular distributions [1-3]. It
has parameters that are smooth functions of target
atomic mass number and proton number,
projectile type and laboratory bombarding energy.
The global-model potentiails, different from the
optical-mode! potentials whose parameters are
obtained by fitting only the elastic and the inelastic
scattering data, can be used to predict nucleon-
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nucleus potentials if elastic scattering data cannot
be obtained as for nuclei far from the valley of
stability. The data for the most of proton-induced
reactions are not enough and ambiguous in
reliability except a few elastic scattering data.
Though it is difficult to evaluate the above-
mentioned activation cross-sections due to lack of
the experimental data, it is of considerable
significance for an activation analysis.

The accurate evaluation and calculation for the
production of radionuclides in charged-particle-
induced nuclear reaction are of importance for a
number of practical applications, such as the
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design and optimization of radionuclide production
routes, the monitoring of beam energies and
intensities, charged-particle activation analysis, the
description of cosmogenic nuclide production
processes and the prediction of residual
radioactivity levels in accelerator technology.

Thin layer activation (TLA) [4], one of the
practical applications, is a technique which has
been used since the 1970’s. The technique
requires that a component surface be labelled with
a known depth profile of radicactivity which
decays with the emission of 7 rays. By monitoring
the surface radioactivity, it is possible to measure
the loss of surface due to wear, erosion or
corrosion. In 1997, IAEA published a report [4]
which describes the TLA method and its
applications in industry. **V, %Co, ®Zn and *Tc
which are useful for TLA application are
produced by means of ™Ti(p,X)**V, “Fe(p,X)
%Co, ™' Culp,X)**Zn and ™Mo(p,X)**Tc. Chang et
al. [5] have evaluated the production cross-
sections of these reactions by fitting the
experimental data. In the present work, these
proton-induced reaction cross-sections are
calculated up to 60 MeV. The theoretical results
obtained by means of the ECIS96-GNASH code
systemn are compared with the experimental data
taken from EXFOR database at the NEA Data
Bank. A preliminary calculation was carried out
with the global optical parameters recommended
by IAEA in RIPL (Reference Input Parameter
Library) [6] and then more calculations are
performed by adjusting the optical parameters for
the imaginary volume potential and the diffuseness
of the imaginary potential, in order to achieve
better agreements with the experimental data. The
calculated results are compared with the
preliminary results as well as the experimental
data.

In Section 2, the ECIS96-GNASH code system
and features of each code are presented and the

CUNPUT D

- Specify reaction parameters
- Specify energy grid

-Create input files for ECIS96
- Create input files for GNASH

-Tr i coefficients

PREGNASH |
| ECIS96 I - Elastic scattering and DWBA
cross-section

- Total and reaction cross section
POSTECIS ;o'l;na:tsfonnanon of ECIS96 results inte GNASH input

e

POSTGNASH

- Full Hauser-Feshbach decay

- Exciton mode)
- Discrete level info. Included
- n,p,d,t,*He,ay spectra

-Fission model

- Transformation of GNASH output into data for
MINGUS3

MINGUS3 - Create 60McV ENDF-6 format file

60 MevV D

Fig. 1. Flow Chart of the Evaluation Code
System

used input and the optical potential parameters for
the ECIS96-GNASH code are also described. The
calculated results are discussed in Section 3 and
the conclusions are summarized in Section 4.

2. Model Calculations
2.1. ECIS96-GNASH Code System

The ECIS96-GNASH code system {7] is used for
performing the nuclear model calculations and
storing the results in an ENDF6-format. The
purpose of the code system is to automatize the
creations of their input files that are necessary at
various stages of the process and the calculations
with several codes successively. Fig. 1 describes
the flow chart of the code system used to produce
the caleulated cross-sections. The steps involved in
the code system are ; (a) specifying the reaction
parameters, such as the projectile and target type,
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the kind of emission particles, the level density
parameters, the giant resonance parameters for y-
transition and so on, and energy grid in the
INPUT ; (b) setting up the input information for
the ECIS96 [8] and the GNASH [9] using the
PREGNASH code ;
elastic scattering, transmission

(c) calculating reaction cross-
section,
coefficients, and direct inelastic scattering with the
ECIS96,; (e) transforming the ECIS96 results into
GNASH input format using the POSTECIS code ;
{d) running GNASH to determine emission cross-
sections and the spectra of n, p, d, t, *He, a, ¥
using full Hauser-Feshbash decay model and
exciton model; (e) transforming the GNASH
output into data for MINGUS3 using the
POSTGNAHS code ; and finally {f) running
MINGUS3, a code that scans the GNASH output,
calculates recoil emission spectra for the heavy
isotope products, and generates cross-section in
an ENDF6-format up to 60 MeV. In the GNASH,
the y-ray transmission coefficients are obtained by
the Kopecky-Uhl model {10} and the continuum
level densities by Ignatyuk [11].

2.2. Optical Model Calculations

The present evaluations are based mainly on the
model calculations using ECIS96-GNASH code
system. A calculation through the code system
provides a useful way to interpoclate and
extrapolate to other energies and atomic masses,
and enables the evaluated libraries to be generated
for all reaction products in a fully consistent way.
The optical model calculations are performed with
the ECIS96.

The optical model potential used in the present

evaluation is as follows:

) ==V 1) = iWof ud ) +dig g W5~ df‘;(r)
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where A is the square of the pion Compton wa-
velength, f (r} is the form factor of the Woods-

Saxon form defined in f; (=7 exp[(%— Ry

and Vv, Wy, W.s, V., and W,, are the depths of
the real volume, the imaginary volume and surface
and the real and imaginary spin-orbit potentials
respectively. The quantity ¢ - | is the scalar
product of the intrinsic and orbital angular
momentum operators. The coeflicients are
adopted from RIPL [6], and the potentials for
protons and neutrons are referenced to Varner et
al. {3].

These forms for the global nucleon-nucleus
optical potential are given as follows :
* Real central potential:

V="Vt Z +(E-E)V,, (2a)
RV=?’ A”3+r§‘,”, (Zb)
- 5215 : R Z(MeV), for(p,p). (2c)

where '+’ sign is used for proton potential, *-* sign
for neutron and Z, N and A are the numbers of
protons, neutrons and nucleons in the target
nuclide, respectively. E is the energy of the
incident proton.

« Coulomb potential radius:
R=7rA""+r®=1.2384 "*+0.116 (im)[2d)
« Spin-orbit potential radius:

Ro=rpA 47O, (2e)

« Imaginary central potential:

W= Woll+ exp(———‘#——E*))] )
W= (Wo* W(E ) £) (2q)
[1+exp(—— ) Wea N
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Table 1. Preliminary Parameters of the Global
Nucleon-nucleus Optical Potential
{adopted from reference 3.)

Parameter Value Parameter Value
Vo 52.9+0.2MeV Weo 7.840.3MeV
v, 13.1+0.8MeV Wieo 35+ 1MeV
V.,  —0.299+0.004 Woew 16+ 1MeV
rv  1.250+0.002fm
® —0.25540.009fm W,  10.0+0.2MeV
av  0.690+0.006fm W, 18+ 1MeV
Wi 36+ 2MeV
re 1.24fm Wieew 37+£2MeV
o 0.12fm W, 0. MeV
Vo  59:+0.1 MeVim?
reo 1.344+0.03fm rov; Td~ 1.3340.01fm
9 —1.24+0.1fm 8, % —0.4240.03fm
e 0.63+0.02fm  auy, @y 0.69£0.01fm
Ruw=rwA 47,
{2h)

Rwd':rwdA lls+7’$}.

The global potential parameter-values with
uncertainties are given in Table 1.

The purpose of the preliminary calculation is to
examine the applicability of the global optical
potential parameters. Varner et al. found a new
parameter set, one of global optical parameters in
RIPL, based on data for A=40 to 209, proton
energies of 16 to 65 MeV and neutron energies of
10 to 26 MeV using (p,p) and (n,n) scattering from
target nuclei in the valley of stability. The results
obtained from the preliminary calculation are in
good agreement with experimental data in the
incident proton energy of above 16 MeV, but, in
below 16 MeV, there is a considerable discrepancy
between the calculated results and the
experimental data. In many cases, one has
combined a couple of global optical potentials
which are used in specific energy range, and
chosen the transition energies between these

different potentials to result in a reaction cross

Table 1. Adjusted Parameters of the Global
Nucleon-nucleus Optical Potential

QAud ay
proton neutron

RIPL proton neutron

p+®Ti 069 059  0.59 0.59 059
p+PFe 069 051 0.51 069 069
p+®Cu 069 059 069 069 0.69
p+™™o 069 069 069 069 069
p+"Mo 069 065 0.69 0.69 069
p+®Mo 0.69 065 069 069 069

section that changes continuously, However, the
present work is not to substitute other potential
parameters for Varner’s in below 16 MeV, but to
expand the energy range of Varner’s potential by
meodifying the global optical potential parameters,
especially a volume imaginary potential parameter.

The imaginary potential is divided into two
parts, volume and surface terms. One of the
empirical characteristics of the imaginary
absorptive potential is the transition from
principally surface-dominated absorption at low
energies (E<20MeV), to volume-dominated
absorption at higher energies (E>60MeV). In most
of the optical parameters, the volume imaginary
potential is not taken into account below about 16
MeV [1-2]. Also, in the low energy range, since an
interaction between incident proton and target
nucleus become active in the vicinities of the
surface of target nucleus, it is an effective
approach to vary the diffuseness of the imaginary
potential which is sensitive to the surface effect.
The adjusted and RIPL parameters of the global
nucleon-nucleus optical potential are shown in
Table 2.

Potentials for the other ejectiles are also needed
for calculating transmission coefficients for their
decay. Potential parameters for global a-particles,
deuterons and *He which are validated for wide
mass and energy range are adopted for Avrigeanu
et al., Bojowald et al. and Becchetti et al. [12]
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respectively. The same a-particle, deuteron and
*He optical parameters are applied for ™Ti, “Fe,
"Cu and "*Mo, since a change of them
contributes a little to the proton-induced reactions,
especially (p,n) reaction, and current reaction
channels do not include the emission of deuteron,

triton, *He and a-patticle at low energy.
2.3. "Ti(p,X)**V

Natural titanium has five stable isotopes, **Ti
(8.25 %), 'Ti (7.44 %), *®Ti (73.72 %), Ti (5.41
%) and *Ti (5.18 %). To obtain ™Ti(p,X) *V, we
need to evaluate three reactions of ™Ti isotopes,
which are calculated by the following relation :

o{™Ti(p,X)**V) = 0.7372 = ¢{**Ti(p,n)"*V}
+ 0.0541 * ¢{*Ti(p,2n)**V}
+ 0.0518 * a{**Ti(p,3n)*V} (4a)

The second and third terms are ignored, since the
natural abundance ratio of **Ti and *°Ti are small
and those of {p,2n) and (p,3n) reactions, in
general, are negligible compared with that of (p,n}
reaction. Two production cross-sections of proton-
induced reactions, *Ti(p,n)**V and **Ti{p,2n)*'V,
are evaluated in order to justify the calculated
results for the activation cross-section of
"Ti(p,X)*¥V. Levkovskij [13] and Gadioli {18]
measured two activation cross-sections of
*Ti(p,n}**V and **Ti(p,2n)"’V, while other authors
have only one activation cross-section. Therefore,
in the present work, Levkovskij's results at the low
energy region and Gadioli’s at high energy are
adopted as the reference data for two reactions to
keep a consistency in sequential decay reaction

channels.
2.4. "Fe(p,X)**Co

Natural iron has four stable isotopes, *Fe
(5.845 %), *Fe (91.754 %), *Fe (2.119 %) and

*Fe (0.282 %). To obtain ™Fe(p,X)**Co, we need
to evaluate two reactions of ™Fe isotopes, which
are calculated by the following relation :

o {"*Fe(p,X)**Co} = 0.91754 * ¢{*Fe(p,n)**Co}
+0.02119 * o{*"Fe(p,2n)**Co}. (4b)

The second term for the activation cross-section
for *"Fe is ignored, since the natural abundance
ratio of *"Fe is very small compared to that of
%Fe. Two production cross-sections of proton-
induced reactions, such as **Fe(p,n)**Co and
%Fe(p,2n)*Co, are evaluated in order to justify the
calculated results for the activation cross-section of
" Fep,X)**Co. In the present work, similar to the
calculation for ™ Ti{p,X)**V, Levkovskij's results
[13] are adopted as reference data for
5Fe(p,n)**Co and **Fe(p,2n) *Co.

2.5. "Cu(p,X)%Zn

Natural copper has two stable isotopes, **Cu
(69.17 %) and **Cu (30.83 %). To obtain "™Cu
activation cross-section, we evaluate °Cu(p,n)**Zn

reaction and use the following relation :
o{™'Cu(p,X)**Zn} = 0.3083 * ¢ {**Culp,n)**Zn}.(4c)

There are few experimental data for p+%Cu
reaction except for **Cu(p,n)**Zn. Although the
experimental data for ®*Cu(p,n)®Zn are collected
enough, three different data groups shown in Fig.
8 make the evaluation be difficult. In the present
work, Michel's [24] and Mills’ results [41] are
adopted as the reference data for ™Cu{p,X)**Zn.

2.6. ™Mo(p,X)**Tc

Natural molybdenum has seven stable isotopes,
Mo (14.84 %), *Mo (9.25 %), Mo (15.92 %),
%Mo (16.68 %), Mo (9.55 %), *Mo (24.13 %)
and Mo (9.63 %). In order to obtain ™Mo
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Table 3. The Relevant and Complementary
Reaction Cross-sections

Activation Relevant reaction Complementary reaction
cross-sections cross-sections cross-sections
"Tifp,X) 8V “®Ti(p,n)*®V *®Tip,2n)"'V
“'Fe(p,X)**Co  *Fe(p,n)**Co **Fe(p,2n)**Co
"Cup,X)Zn  **Culp,n)**Zn

"Molp,X)**Tc  **Mof(p,n)**Tc
97Mo(p, 2n)**Tc
“Molp,3n)**Tc

#Mo(p,2n)**Tc
¥"Mol(p,3n)**Tc
%Mo(p,n)**Tc

activation cross-section, we need to evaluate four
reactions of ™Mo isotopes, which are added up by
the following relation :

o{™Mo(p,X)**Tc} = 0.1668 * ¢°*{Mo(p,n)**Tc}
+ 0.0955 « o{*’Mo(p,2n)*Tc}
+ 0.2413 = o{**Mo(p,3n)*Tc}
+ 0.0963 * 6{**Mo(p,5n)*Tc}. (4d)

The fourth term is ignored, since (p,5n) reaction is
difficult to take place. Since there exist no
experimental data for "™Mo(p,X)**Tc, the calcu-
lated results for the activation cross-section of ™Mo
{(p,X)**Tc are justified by evaluating the several
activation cross-sections; *Mo(p,n}**Tc, *Mo(p,2n)
*Tc, *Mol(p,2n)**Tc, “"Mo(p,3n)**Tc, *Mo(p,n)
*Tc and **Mo(p,3n)*Tc. Levkouskij [13] measured
five activation cross-sections ; *Mol(p,n), *'Molp,2n),
*Mol(p,3n)*Tc, and **Mo(p,2n), *’Mo(p,3n)**Tc. In
the present evaluation, Levkovskij's results are
adopted as reference data to keep a consistency in
sequential decay reaction channels.

3. Results and Discussion

Evaluating the activation cross-sections of
" Ti(p, X)**V, "Fe(p,X)**Co, "'Cu{p,X)**Zn and
"Mo(p,X)**Tc, we should calculate the relevant
and complementary reaction cross-sections listed
in Table 3. ‘RIPL’ in the figures 2~ 15 indicate
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800 - i . ‘ |
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1] N
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Fig. 2. Production Cross Section on **Ti(p,n)**v

the calculated results obtained from the
preliminary calculation. Though the preliminary
calculation gives reasonable results, more accurate
evaluations need to be performed by adjusting the
global optical parameters to achieve a better
description of the experimental data. ‘PRESENT’
in the figures 2~ 16 indicate the evaluated results
from the present work.

3.1. Calculated Results for "*Ti(p,X)**V

Figures 2, 3 and 4 show the present results
together with the preliminary calculated results and
the experimental data. There are considerable
discrepancies between the preliminary calculation
for “®Ti(p,n)**V and "'Ti(p,X)**V indicated as
‘RIPL’, and the experimental data. The calculated
results for **Ti(p,2n)*’V and ™Ti(p,X)*®V are in
good agreement with the experimental data, while
that for *Ti(p,n)}**V is lower than the experimental
data. However, as shown in Eq. (4a), the
calculation can not reproduce the corresponding
experimental data, *®*Ti(p,n)**V and ™Ti(p,X}**V,
simultaneously. In the present work, ™Ti(p,X)*®V
are chosen as reference data.
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3.2. Calculated Results for ™Fe(p,X)**Co

Figures 5 and 7 show that the results of the
*Fe(p,n)**Co and
"Fe(p,X)**Co are in good agreement with the

present evaluation for

experimental data, while Fig. 6 for %Fe(p,2n)**Co
shows a two-peaks which is not appeared in
experimental data. So, we choose to evaluate the

cross-section for **Fe(p,2n)**Co which is higher
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Fig. 5. Production Cross Section on S6Fe(p,n)*6Co
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Fig. 6. Production Cross Section on **Fe(p,2n)*>Co

than the experimental data below 22 MeV and
lower than above 22 MeV. Nevertheless the
calculated results for ™Fe(p,X)**Co reproduce well
the experimental data of Takacs’ [14].

3.3. Calculated Results for "'Cu(p,X)**Zn

Figure 8 shows four groups of the
experimental data for **Cu(p,n)®**Zn. The
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experimental data for "™'Cu(p,X)®Zn are
reproduced first by adopting those of Miche [24]
and Mills [41] as the reference data, and are in
good agreement with the calculated results
shown in Fig. 9. By the simple algebraic relation
given in Eq. (4c), the cross-sections for
#5Culp,n)**Zn can be obtained easily from those
for ™Cu(p,X)®**Zn. The calculated results for
%Cu(p,n)®*Zn reproduce well the experimental
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Fig. 9. Production Cross Section on "'Cu(p,X)**Zn

Entofp,n e
1200 . , : . '
1000 ¢ : PRESENT ——
o 217 p——
3 i 94Zhuravievl-M -+
E 800 ‘: i 94Zhuravievlt-M -+ |
PY H 91Levkovskij - =+
§ ; @ik o
3 P 73Hogan-M »-w--«
@ o0 Eﬂ i, 73Hogan-G +--o--
b ' L 73Hogan-M4G e
4 L ]
g 40 ;
.'b ¥
01 '
] (] .ll
0 2 I 1 n
0 10 20 30 40 50 60
Proton Energy (MaV)

Fig. 10. Production Cross Section on **Mo(p,n)
9.
Tc

data above 15 MeV except for those of Kopecky
et al. [30} and Williams et al. [35]}

3.4. Calculated Results for "*Mo(p,X)**Tc

To evaluate the production cross-section for
"Mo(p,X)**Tc, the activation cross-section data for
#Mo(p,n)*Te, *"Mol(p,2n)**Tc and *Mol(p,3n)**Tc
need to be calculated. The calculated results for
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%Mo(p,n)**Tc, “'Mol(p,2n)*Tc and *Mo(p,3n)*Tc
are in good agreement with the experimental data
as shown in Fig. 10, 12 and 14, respectively.
Therefore, in Fig. 16, the values obtained through
the simple relation in Eq. {4d) are reliable though
no experimental data exist. ‘M’, ‘G’ and ‘M+G’ in
the figures indicate the experimental data for
meta-stable state, ground state and the all states of
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Fig. 14. Production Cross Section on 9‘”’Mo(p,n)

*Tc

the remained nucleus, respectively. ‘S’ indicates
the sum of cross-sections for two states, meta-
stable and ground state, taken from the
experimental data.

4. Conclusions

We have evaluated proton-induced nuclear
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data of "™8Tj, "t56Fg mLeSCy and "h9697.98Mq
up to 60 MeV by ECIS-GNASH code system.
The present work is to expand the energy
range of Varner's potential within proton
energies of 16 MeV to 65 MeV and neutron
energies of 10 to 26 MeV by modifying the
optical potential parameters, especially the
volume imaginary potential parameter and the
diffuseness of the imaginary potential. The
calculated results are in agreement with the
measured data, which means that the adopted
neutron and proton global optical potential
parameters are appropriate for calculation of
transmission coefficients needed in the
statistical model based on the Hauser-Feshbach

formalism.
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