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Abstract

An analytic axial xenon oscillation model was developed for pressurized water reactor

analysis. The model employs an equation system for axial difference parameters that was

derived from the two-group one-dimensional diffusion equation with control rod modeling and

coupled with xenon and iodine balance equations. The spatial distributions of flux, xenon, and

iodine were expanded by the Fourier sine series, resulting in cancellation of the flux-xenon

coupled non-linearity. An inhomogeneous differential equation system for the axial difference

parameters, which gives the relationship between power, iodine and xenon axial differences in

the case of control rod movement, was derived and solved analytically. The analytic solution of

the axial difference parameters can directly provide with the variation of axial power difference

during xenon oscillation. The accuracy of the model is verified by benchmark calculations with

one-dimensional reference core calculations.

1. Introduction

Xenon-induced spatial power oscillations occur
as a result of rapid perturbations to the power
distribution that cause the xenon and iodine
distributions to be out of phase with the perturbed
power distribution. This results in a shift in the
xenon and iodine distributions that causes the
power distribution to change in an opposite

80

direction from the initial perturbation, and thus an
oscillatory condition is established. The xenon-
induced power oscillation is described by a system
of differential equations with non-linearities
between xenon and flux distributions. Many
approaches|[1-7] to analyze the equations had been
proposed using linear modal analysis which
generally proceeds by linearizing the equations and
expanding the spatial dependence in terms of
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eigenfunctions. However, these focused on
derivations of stability criteria because the stability
is relatively easy to evaluate by derivations of
transfer functions, while the explicit spatial
solutions are too complex and difficult to obtain
analytically. Onega and Kisner(8,9] developed a
two-point xenon oscillation model. The model
employed the non-linear xenon and iodine balance
equations coupled with one-group neutron
diffusion equation having non-linear power
reactivity feedback. The non-linearity was treated
explicitly but only numerical results of spatial
oscillation were given. Cho and Grossman[10)]
developed a simple core control model for the
control of xenon spatial oscillation. The model was
formulated as a linear-quadratic tracking problem
and the resulting two-point boundary problem was
solved directly.

Recently, an analytical model was proposed,
which provides complete analytic solutions for the
xenon oscillation characteristics.[11-12] The axial
xenon oscillation is characterized by axial
difference parameters which are based on Fourier
sine series expansions of the spatial distributions
of flux, xenon, and iodine. Through this approach,
the xenon-flux coupled non-linear terms were
completely linearized and an analytical solution for
the axial power difference was derived. In this
model, the xenon oscillation behavior is described
by a homogeneous equation system of axial
difference parameters which does not include the
control rod movement in the core.

This study is an extension of the above analytic
xenon oscillation model to treat the control rod
movements in the core. With the control rod
movements, the equation system of the xenon
oscillation becomes inhomogeneous. The solution
of the xenon oscillation characteristics with control
rod modeling is provided. The model was
benchmarked by reference calculations based on
the two-group one-dimensional neutron diffusion

theory code ONED94.[13]

2. Equation of Axial Difference
Paramenters

2.1. Derivation of a System of Equations
for Axial Difference Parameters

The equation treatment of this study is similar to
those of previous work[12] except that the control
rod considerations are included. However, for
completeness of our discussion all of the processes
are reproduced herein. The two-group one-
dimensional diffusion equations with xenon

dynamics including control rod modeling are given
by
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where

$ 4, Nx, N; = Core average values of group-wise
flux, xenon, and iodine number
densities, respectively,

@, (z,t) = group-wise neutron flux distribution,
X (z,t) = xenon distribution,
I(z,t) = jodine distribution,
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ap = power coefficient in units of change
in neutron production rate per unit
power change per unit thermal flux,

Z:(2) = Falzt) - oxX (z,1),

Z.0) = X2+ Zr(2),

A X 4 (z,t) = control rod absorption cross sections
of energy group g,

and other notations are standard. It is assumed

that power and xenon feedbacks affect only the

thermal neutron balance and the core properties

do not change during the xenon oscillation except

the thermal neutron absorption due to the change

of xenon distribution. The power feedback is

represented as the power coefficient multiplied by

the thermal flux, as in the concept of Stacey s

power feedback model.[6]

Now the one-dimensional spatial distribution for
the i-th parameter is expanded by Fourier sine
series as

yi(z,0) = Z} b..(t) Sin(%i) , (2)

where H is the effective core height. By this
expansion each axial difference parameter, which
is defined by the difference in the parameter
between the bottom and top half cores, has only
the (4k-2)nd terms as follows:

20= ["hte0d [l 1= b0
Therefore, if we are interested in the axial
difference parameters, the approximation of
Fourier series expansion with only the first and
second terms for the spatial distribution has the
accuracy equivalent to the Fourier series
expansion with five terms. The spatial distribution
of Eq. {2) is normalized so that the core average
value is equal to 1.0,

['m, sin(%) +b, sin(%z)]dz

[&

=1. 4

If we solve this equation, the coefficient of the first
Fourier sine term satisfies the condition of
g
h=3- )
By the above approximation, the eigenvalue k in
Eq. (1a) should be reproduced by integration of the
equation over the core height as
N S
VE, + 72 Vi,
k=— ©)
(ﬁ) D, + zl

where the sign ~ means core average quantities.
Let cross sections homogenized for each half core

be

Hi2 H
[ rewad PRICOL
I:m«z) & iy I:n Kz)dz .

It is assumed that the cross section change due to
control rod motion is only step function at the top
half core only, i.e.,

AT, ;()=0 and AL (N=AZ,. 8
Now, an operator is defined to calculate the

difference of integrals between the bottom and top
half cores as follows.

o =(f Ydz - [_vas], ©)

so that b;; denotes the axial difference parameter
itself, because the coefficients of Fourier series are
already normalized by Eqgs. (4) and (5). The
differences of unknowns from those at the
equilibrium condition is defined by

Ei =bi,2 (' )_bi.Z(w) ’ (10)

where index i represents fast flux, thermal flux,
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iodine and xenon for 1, 2, 3 and 4, respectively,
Inserting Eq. (5) into Egs. (1) through (4), then
the operation © results in

_D=

e

E+A, (11)

where
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It should be noted that cross sections appearing in
the above equations are not core average values,
which are usually defined by the flux weighted
averages, but the arithmetic average of the
homogenized cross sections for the bottom and
top halves of the core. However, the two
quantities are usually close to each other in
operating reactors.

2.2. Solution of the System of Equations
for Axial Difference Parameters

In order to obtain complete solutions, each
initial condition of E, (t = 0) is required. However,
all of the parameters such as flux, iodine and
xenon distributions are not measurable in power
reactors. Therefore, the initial conditions should
be estimated from the axial power difference
which can directly be measured. Also note that the
axial power difference may be the parameter in
which we are usually interested. Let Ep{t) be the
difference of the axial power difference from that
of the equilibrium condition in a relative power

unit, then
E.(t) = fLE\()+1,E, (1), (12)
where
S -
TR P RS UN

which implies the power fraction contributed by
each group flux. Combining Egs. (11) and (12) we
can get an equation system which represent the
relationship of axial difference parameters as

follows:
0=C,E, +CyE, + 4] (13a)
dE ’
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In the equilibrium state, Eqs. (13) are
; B ) -RO=C,R, O+ CR(), (180

0=C,E () +C,E () +4;, (14a)
0= Cp3Ep(°°)+C33E3 () +4;, (14b)
0=C,E, () +CE () + CuE () + 44, (14c)

which give the difference of the axial power
difference between rodded and unrodded
equilibrium states as follows :

A;Cn Cu + Cu (A;C43 _ Azcas ) .

E (CD) == ’
? C33C44C;2 + Cu (C43Cp3 - C33C,4)

(15a)
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Ey(0)= CouldiCpp ~4Cp) + CuldiCu ~ 4C,)
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(15¢)

For easy treatment of Eqgs. (13), the ASI
difference from rodded equilibrium state is defined
by

‘R,(t) =E, (1) - E, (). (16)

Inserting Eq. (16) into Egs. (13a) through (13c), we
can get

ochzRP +C24R4) (173)
.“%zcﬂR, +CyR,, (170)
%:cﬂnp +CoR, +CuR,. (170)

By Laplace transform

sR(9)-R(0)=C R, ()+CuR, ) +C«‘~R\4(s) ,(18¢)
where $R(s) is the Laplace transform of $R(t), and
the solution of $R,(s) is given by
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Note that 7 and € can also be represented by initial
conditions of power variation as

7 = R,(0) (20a)

and

dR,(®)

2= =BR,(0)].

=0

|
s=t (20b)

Equation (19) gives the solution of
R, (1) = e [ncos(w?) + £sin(w 1)) (21)

and finally we can get
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E,()=E, +e™[ncos(w) +&sin(wf)].  (22)

The physical meaning of the final solution is that
the initial power perturbation causes cosine shape
oscillation due to xenon redistribution and the
oscillation is affected by sine shape oscillation due
to iodine redistribution. The iodine and xenon
redistributions can be represented by the initial
axial power difference perturbation and its
derivative. The effect of control rod movement on
the damping ratio and frequency of the oscillation
is negligible.

One of the important facts is that the control
rod effect on the oscillation can be represented by
the rodded equilibrium axial power difference
instead of the control rod cross sections. The
rodded equilibrium ASI data can be pre-
determined much easier than the contro! rod
cross sections. Thus, the initialization of iodine
and xenon requires only unrodded equilibrium
core parameters, iodine and xenon related
physical constants, equilibrium rodded axial
power difference, and initial power perturbation
data.

3. Benchmarks

In order to test the accuracy of the analytical
results, two reference xenon oscillations were
generated via the two-group one-dimensional core
calculation code ONED94.[13] The reference core
model is the same core model in Table Il of
Reference 12. The physical constants of xenon
and iodine, core average quantities and core
average cross sections of the equilibrium xenon
condition are reproduced in Table 1. In the first
oscillation, a control bank insertion at an unrodded
equilibrium core state, was simulated by ONED94.
In the second oscillation, a control bank

Table 1. Data for Benchmark Problem

Parameters Unit Values
H cm 381
A, Ax sec’ 2.924x10%, 2.100x 10°®
$., 6,  #/cmPsec 1.366x 10", 3.117x10%
Ni, Ny #/cm®  3.224x10%, 1.497 x 10%°
D1, D, cm’? 1.320, 4.005x10
T, e cm’? 8.652x 10®, 7.480x 102
Zg em’? 1.711x10?
In, Ip cm? 2.254x10%, 3.772x 10
v 2.469
oy cm? 1.431x1018
ap em’? -2.697 x 10*
ASI{ARO, Eq) 0.0278
E(eo) {rodded) 0.0814

withdrawal at an control bank inserted equilibrium
state was also simulated. Both control bank
movement lead to an axial power perturbation
followed by oscillation. Using the initial power
perturbations and their derivatives of ONED94
results, the behaviors of oscillations are estimated
by Eq. {22) and compared with the results of
ONED94 simulations as shown in Figures 1 and 2.
In this comparison the axial power is
parameterized by axial shape index (ASI) defined
by

B-F

ASI = P+B’ (23)

where Pg and Pr are the bottom and the top half
powers of the core, respectively. The errors of
oscillation period of the analytic estimation of Eq.
{23) from the ONED94 reference results are only
0.25 hour for both benchmark cases. The errors
of the second ASI peaks are 0.7 and 1.3 % ASI
unit for the control rod insertion and withdrawal
cases, respectively.
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Fig. 1. Comparison of ASI Variation for Control
Rod Insertion

4. Conclusions

A mode! of axial xenon oscillation due to control
rod movement was suggested in this study. The
model characterized the xenon oscillation in terms
of axial difference parameters. An inhomogeneous
equation system resulting from the control rod
movement was derived from the two-group, one-
dimensional neutron balance equations and iodine
and xenon dynamics equations. The equation
system can then be converted into a homogeneous
equation system by defining rodded equilibrium
axial power difference and the result gives a more
general representation of xenon oscillation than
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Fig. 2. Comparison of ASI Variation for Control
Rod Withdrawal

that of the previous work which does not include
control rod considerations.[12] It was shown that
the effect of control rod movement can be
represented by rodded equilibrium axial power
difference, initial axial power perturbation and its
derivative. This makes it possible to initialize
iodine and xenon with minimized pre-determined
data and measured axial power difference data.
The accuracy of the model was benchmarked via
one-dimensional core calculation, and the results
verified that the model provides good accuracy in
predicting the trend of xenon oscillation behavior.
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