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Abstract

An accurate method is presented for flexural vibrations of sectorial plates having simply

supported-free and free-free radial edges, when the circular edge is either clamped or simply
supported. The classical Ritz method is employed with two sets of admissible functions
assumed for the transverse vibratory displacements. These sets consist of : (1) mathematically
complete algebraic-trigonometric polynomials which gurantee convergence to exact frequencies
as sufficient terms are retained, and (2) corner functions which account for the bending moment
singularities at re-entrant corner of the radial edges having arbitrary edge conditions. Accurate
(at least four significant figures) frequencies and normalized contours of the transverse vibratory
displacement are presented for the spectra of corner angles [ 90°, 180° (semi-circular), 270°,
300°, 330°, 350°, 355°, 360° (complete circular) ] causing a re-entrant corner of the radial
edges. Future solutions drawn from alternative numerical procedures and finite element
techniques may be compared with these accurate results.

Key Words : ritz method, vibration, corner stress singularities, sectorial plate, bending, natural

frequencies, mode shapes

1. Introduction

Accumulated in the literature for nearly two
centuries are approximately 200 technical
publications explaining the free vibration
characteristics of complete circular and annular
plates with various support conditions along the
circumferential boundaries or at interior points.
Extensive narratives of a lot of work have been
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chronicled in a summarizing monograph {1] and a
series of review articles (2], [3], |4]. The scope of
previous work done for the sectorial plate (see Fig.
1), in comparison, is quite narrow. Several
authors have offered approximate theoretical and
experimental vibration data for thin sectorial and
annular sector plates with various edge conditions
on the circular and radial edges [5], (6], [7], [8].
Bapu Rao et al. [9] and Guruswamy and Yang
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[10] proposed various Reissner sector plate finite
element formulations for approximate vibration
analysis of circular and annular sectorial plates.
Cheung and Chan [11] offered a three
dimensionally curved finite strip method for static
and vibration analyses of thin and thick sectorial
plates with arbitrary conditions on the circular and
radial edges. Indeed, these investigations
collectively provide a solid groundwork for gaining
a proper perspective of the significance of the title
problem in the vibration literature.

Exact solutions for frequencies and mode shapes
have long been known to exist for sectorial plates
having simply supported radial edges, with
arbitrary boundary conditions along the circular
edge [1]. However, it has been shown [12], [13]
that such solutions are not applicable when the
sector angle & exceeds 180° {forming a re-entrant
corner, see Fig. 1). An exact solution for this
situation involves non-integer order ordinary and
modified Bessel functions of the first and second
kinds, and particular relationships among the four
constants of integration to satisfy the corner stress
singularities properly.

In some recent papers incorporating corner
stress singularity effects [14], [15], [16] accurate
{five significant figures) frequencies and mode
shapes were presented for sectorial plates with
free circumferential edge and clamped or free
radial edges, and for completely free circular plates
with rigidly constrained or free V-notches.

The present work examines sectorial plates
having either a clamped or simply supported
circumferential edge, and two combinations of
simply supported and free radial edges, including
stress singularity effects at the sharp vertex corner
(see Fig. 1). For a very small notch angle, 360° —a
(say, one degree or less), a constrained, hinged, or
free radial crack ensues. A Ritz procedure is
employed, which incorporates a complete set of

admissible algebraic-trigonometric polynomials in

symmetric
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Fig. 1. Geometric Description of a Sectorial Plate

conjunction with an admissible set of corner
functions that properly model the singular
vibratory moments which exist at the vertices of
corner angles {a) which exceed 180 degrees [17],
[18]. The first set guarantees convergence to
exact frequencies as sufficient terms are retained.
The second set substantially accelerates the
convergence of frequencies, which is
demonstrated through an convergence study
summarized herein. Accurate nondimensional
frequencies are presented as the sector angle a is
varied. To better understand the nature of the
stress singularities existing in the title problem,
normalized contour plots of the vibratory
transverse displacements are studied for plates
having corner angles a = 90°, 180° (semi-
circular), 270°, 300°, 330°, 355°, and 360°

(sharp radial crack].
2. Methodology

Consider the polar coordinates (r, #) originating
at the vertex of the sectorial plate of radius, a,
shown in Figure 1. The transverse vibratory
displacement w is defined in terms of these

coordinates as follows :

w(r,8,) = W(r,08)sin ot (1)
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Fig. 2. Sectorial Plates with Various Combina-
tions Clamped, Simply Supported and
Free Edges

where t is time and w is the circular frequency of
vibration. The boundary conditions for the various
plates studied are identified according to the
lettered edges shown in Fig. 2.

Displacement trial functions are assumed as the
sum of two finite sets : W=W,+W.,, where W, are
algebraic-trigonometric polynomials and are
comer functions. The admissible polynomials for
the FFC, and FFS plates are written as

M, n M, m
W,=g8 2 ZAmr’” cosm0 + Z ZAmr"' cosnb | (2)
w0244 PRLTPSTX!

for the symmetric vibration modes, and

My m M, m ‘
W,= g,(r,e{ j Zer“sinne+2 Zer"sinnﬂj (3)

m=2,4n=24 m=1,35n=13,5

for the antisymmetric modes, in which M1, M2,
M3, and M4 denote solution sizes, and for the

FECplate:  gyfr, O)=(a®—r?? {4a)

FFS plate: ailr, )=(a®*~r?) (ab)
each of which is defined to satisfy the essential
boundary conditions along the radial edges (see
Fig. 1). Also indicated in Fig. 1 are datum lines
utilized to define the symmetric and antisymmetric
modes [Egs. (2) and (3)]. No symmetry exists for
the SFC, and SFS plates. Thus,

M M
Wp=g2(r,9){ 2 Y 41" cosn+ 2 Y At ™ cos10

m=0.24r=024 m=135n=135
®)
My, »m M = )
+2 ZB,,,r'sinne+2 Y. Br" sinm
m=24n=24 m=135n=133

in which for the

SFC plate:  galr, O)=(r/a)? (8/a) (a®*— ) (6a)

SFSplate:  gilr, O=lr/a)? (8/¢) (i*~7) (6b)
In Egs. (2), (3), and (5), A and B,,, are arbitrary
coefficients, and the values of m and n have been
specially chosen to eliminate those terms which
vield undesirable moment singularities at r = 0,
and yet, preserve the mathematical completeness
of the resulting series as sufficient terms are
retained. Thus, convergence to the exact
frequencies is guaranteed when the series is
employed in the present Ritz procedure.

The displacement polynomial Egs. (2}, (3), and
{5) should, in principle, vield accurate frequencies.
However, the number of terms required may be
computationally prohibitive. This problem is
alleviated by augmentation of the displacement
polynomial trial set with admissible corner
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functions, which introduce the proper singular
vibratory moments at the vertex corner formed by
the radial edges (Fig. 1). The set of corner
functions is taken as

X
Wc = G(r)ZCchk (7)
k=1

where C, are arbitrary coefficients, and W*,, are
solutions of the fourth-order biharmonic, static
equilibrium equation for bending of plates at acute
corner angles {17}.

W )= siny + 09 +by oy + 084 g sy - D+ ol - 9] 8)

The essential boundary conditions along the
radial edges #=+a/2 may be simply supported
li.e., Wr, xa/2)=M/{r,+a/2)=0] or free li.e., V{r,
+a/2)=M/{(r,+a/2)=0}, where M, and V, are the
usual radial moment and shear defined elsewhere
[1]. These conditions are used in Eq. (8) to
construct a set of algebraic equations from which
the values A, are obtained as roots of the vanishing
determinants.

For the symmetric modes of the FFC and FFS
plates, a, = ¢« = 0 in Eq. (8), and satisfaction of
the free-free (F-F) radial edge conditions results in
the following characteristic equation for the A,,

sin o =~
3+v

A sina 9

The corresponding corner function for the F-F
edge conditions is

L

W, (8)=r cos(hy +10+ cos(hy 18| (104

1y, Sinhy +1)a/2
in which

Similarly, for the antisymmetric modes of the
FFC and FFS plates, b, = di = 0 in Eq. (8), and
satisfaction of the F-F radial edge conditions
results in the characteristic equation for the A, :

. 1-v
sinA, o =———»%,sino 11
k PR (11)

The corner functions used for the antisymmetric
modes are analogous to those defined for the
symmetric ones in Egs. {10}, except the cosine
functions are changed to sine functions, and vice-
versa.

Satisfaction of the hinged-free (S-F) radial edge
conditions results in the following characteristic
equation for the A,,

sin2h 0 = 1A, sin 2o (12)
3+v

The corresponding S-F corner function is

W;(r,9)=r“”[sin(lk+l)9—11i onshy +08-1, sy D941, cos(lk—l)el (13)

where

_sin(A, +1a/2 (14a)
T = Costh, +1)a/2
_ Gy #Dv=D)_sinh, +Do/2
% T oD+ G4y sinlh, ~Dasz 14
Ay +D(v-1) sin(A, +1Do/2
L - GatDOoD sy ba2

Ag(v=1+@B3+v)cos(h, ~Da/2

For the FFC and SFC plates, the boundary
function in Eq. (7), whereas for the FFS and SFS
plates, G{r)=(a®—r?). Some of the A, obtained
from Egs. (9), (11), and (12) may be complex
numbers, and thus, result in complex corner

functions. In such cases, both the real and
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imaginary parts are used as independent functions
in the present Ritz procedure outlined below.
Although the same analytical procedure may be
followed for SSC and SSS plates [12], an exact
solution has been developed for cases when the
two radial edges are simply supported [13].

In employing the Ritz method for free vibration
problems, one has to construct the following
frequency equations which, for the symmetric
modes, are

0 a
EA;:(VM _Tmax)=0’ E(Vmu'Tmlx)=0 (15)
and similarly for the antisymmetric modes, using
B.. in place of A,,. In Egs. {15), the maximum
strain energy, V.., in the plate due to bending in

a vibratory cycle is

Fow = [[ 4107 - 20w 15 - Jat 16

where dA = rdrdf, D=Eh%/12(1—v? is the
flexural rigidity, h is the plate thickness, E is
Young' s modulus, ¢ is Poisson’ s ratio, and x,, s,
and x, are the maximum bending and twisting

curvatures :
SRCLA. AL A /1. AP
ot Yra Pt X'eérraﬁ'
The maximum kinetic energy is
2
T =P (w2
Tous = [{w?au (18)

where p is the mass per unit area of the plate.
The required area integrals in the dynamical
energy Eqs. (16) and (18) are performed
numerically, otherwise exact integrals are tractable
when A, is real.

Substituting Eqs. (2} — (7), (10), {13), and (14)
into (15) — (18) vields a set of homogeneous
algebraic equations involving the coefficients A,
(or B.,) and Ci. The roots of the vanishing

Table 1. Convergence of Frequency Parameters
nangﬂ_D for a Sectorial Plate having
Simply Supported-Free Radial Edges and
Simply Supported Circumferential Edge
(e = 330°)

Mode No. of Total number of terms in W,
corner

functions 40 60 84 112

0 13.215 13.080 12987 12.925
1 12986 12.835 12.729 12.658
5 12504 12482 12.467 12.459
12.454 12.451 12.449 12.448
15 12450 12.449 12.448 12447
20 12449 12448 12.448 12.447

0 16.399 16.061 15.850 15.700
1 16.029 15.758 15581 15.453
5 14195 14.176 14.165 14.159
14.147 14.147 14.147 14.146
15 14147 14.147 14.146 14.146
20 14147 14.147 14.146 14.146

0 21.290 20.503 20.007 19.664
1 17.436 17.314 17.254 17.224
5 5 17.215 17.179 17.157 17.145
10 17137 17.134 17.132 17.131

15 17133 17.132 17.131 17.131
20 17.132 17.131 17.131 17.131

0 25435 24929 24585 24.347
1 24929 24579 24.333 24.162
5 23503 23.484 23471 23.465
23.466 23.462 23.459 23.458
15 23460 23.459 23.458 23457
20 23458 23458 23.458 23.457

0 35168 33.237 32.322 31.813
1 35147 33.234 32.321 31.810
5 30.804 30.715 30.666 30.640
30.628 30.619 30.614 30.612
15 30612 30.611 30.610 30.610
20 30.610 30.610 30.610 30.610

0 39573 39.145 38925 38.801
1 39554 39.133 38.921 38.800
5 38606 38567 38555 38.549
38.575 38.547 38.543 38.541
15 38546 38542 38540 38.540
20  38.542 38540 38.540 38.540
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determinant of these equations are a set of
eigenvalues, which are expressed in terms of the
nondimensional frequency parameter wa®p/D
commonly used in the plate vibration literature.
Eigenvectors involving the coefficients A, (or B..)
and C; are determined in the usual manner by
substituting the eigenvalues back into the
homogeneous equations. Normalized contours of
the associated mode shapes may be depicted on a
r-0 grid in the sector plate domain, once the
eigenvectors are substituted into Egs. (2), (3), (5),
and (7).

3. Convergence Studies

Having outlined the Ritz procedure employed in
the present analysis, it is now appropriate to
address the important question of convergence
rate of frequencies, as various numbers of
algebraic-trigonometric polynomials and corner
functions are retained. In this section, convergence
studies are summarized for sectorial plates with a
30° notch angle (i.e., «a = 330°). All of the
frequency and mode shape data shown in the
present and following sections are for materials
having a Poisson’s ratio (v) equal to 0.3.
Numerical calculations of all vibratory frequencies
and mode shapes were performed on an IBM/RS-
6000 970 powerserver with an IBM/RS-6000
340 workstation cluster using double precision (14
significant figure) arithmetic.

Consider the first six nondimensional
frequencies wa?p/D for the SFS (Table 1)
sectorial plates (@=330°). Numerical results are
shown as 40, 60, 84, and 112 polynomial terms
are retained in Egs. (2), (3), or (5), in
conjunction with 0, 1, 5, 10, 15, and 20 corner
functions employed in Eq. (7). In these cases a
larger number of polynomial terms is required
due to the absence of symmetry of edge

conditions.

As indicated in Table 1, the lowest frequency
mode of a SFS plate exhibits a slow upper bound
monotonic decrease of wa®p/D to an inaccurate
value of 12.925, as the number of polynomial
terms (W,) is increased with no corner functions.
That is, the polynomial series, albeit complete, is
converging very slowly. An examination of the
next five rows of data reveals that an accurate
value to five significant figures is 12.447.
Interestingly, a trial set consisting of a single
corner function (corresponding to the lowest A)
along with a smaller number of 84 polynomial
terms yields an upper bound wa’yp/D value of
12.729 which is slightly lower than the 12.925
value obtained with 112 polynomial terms and no
corner functions. With larger trial sets of 84
polynomials and 10 corner functions, four
significant figure convergence of the lowest
frequency mode is achieved. One can clearly see
that by adding the first 20 corner functions to as
few as 40 polynomials vields the value of 12.449,
which is exact to four significant figures. It should
be noted that the SFS cases are the one of the
most challenging convergence studies (with regard
to the number of corner functions required) among
the four problems analyzed here, and that the
other boundary condition cases required fewer
corner functions to achieve the proper

convergence of frequencies.
4. Frequencies and Mode Shapes

Extensive convergence studies were performed
to compile in Tables 2 and 3 the least upper
bound frequency parameters wa® Jp/D for the first
six modes of sectorial plates with increasing sector
angles @ = 90°, 180°, 270°, 300°, 330°, 350°,
355°, and 360°. Listed in Table 2 are frequency
parameters for sectorial plates having simply
supported-free and free-free radial edge conditions
along with a clamped circumferential edge (i.e.,
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Table 2. Frequency Parameters wazJp/ D for Sectorial Plates Having various Radial Edge
Conditions and Clamped Circumferential Edge

a Mode No.
Case
(degrees) 1 2 3 4 5 6
90 19.660 45.088 57.666 82.477 102.42 115.45
180 19.185 26.103 40.054 56.078 56.853 69.434
270 20.629 21.420 28.825 38.315 49.013 59.368
SEC 300 20.002 21.475 26.724 34.992 44.241 54.366
330 19.669 21.842 25.075 32.367 40.488 49.375
350 19.622 22.018 24.146 30.903 38.402 46.594
355 19.629 22.054 23.930 30.566 37.924 45.956
360 19.646 22.112 23.726 30.241 37.461 45.341
90 7.5632 24.760* 31.991 56.561 67.925* 77.195
180 8.6013 19.660" 28.857 36.329 45.088* 57.665*
270 9.3280 18.814* 22.799 32.036* 37.029 42.016
FEC 300 9.4879 18.847* 21.720 29.610* 36.634 39.031
330 9.6137 18.972* 20.932 27.675 34.638 38.378
350 9.6806 19.096* 20.534 26.585* 33.148 38.392
355 9.6955 19.131* 20.449 26.334° 32.795 38.406
360 9.7094 19.167* 20.370 26.096* 32.457 38.421

*Antisymmetric modes

Table 3. Frequency Parameters wa’ [p/D for Sectorial Plates Having Various Radial Edge
Conditions and Simply Supported Circumferential Edge

a Mode No.
Case
(degrees) 1 2 3 4 5 6
920 12.498 34.872 45.608 68.868 86.609 98.448
180 11.989 18.022 30.269 44 265 45.254 56.285
270 13.358 13.672 20.368 28.696 38.228 47.212
300 12.758 13.840 18.555 25.763 33.954 43.035
SFC 330 12.447 14.146 17.131 23.457 30.610 38.540
350 12.391 14.291 16.329 22.177 28.760 36.044
355 12.393 14,321 16.144 21.883 28.337 35474
360 12.405 14.373 15.968 21.600 27.928 34924
90 2.4426 17.167* 23.046 45,387 54.921* 63.235
180 3.5149 12.498* 20.593 26.707 34.871° 45.608*
270 4.1463 11.708* 15.264 23.221* 27.380 31.993
300 42826 11.723* 14.319 21.089* 27.172 29.189
FFS 330 4.3902 11.818* 13.626 19.392* 25.512 28.500
350 4.4481 11.916* 13.274 18.441* 24.200 28.512
355 4.4610 11.945* 13.198 18.223* 23.888 28.525
360 44735 11.974* 13.129 18.015* 23.590 28.539

*Antisymmetric modes
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Fig. 3. Normalized Transverse Displacement Contours (W/W,...) for the First Three Modes of SFC and
SFS Sectorial Plates
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SFC and FFC), whereas shown in Table 3 are
frequency data for plates with the same radial edge
conditions and a simply supported circumferential
edge (i.e., SFS and FFS). Plates having both
radial edges simply supported are omitted, for
accurate frequencies were presented by Huang et
al. [13]. Frequency parameters corresponding to
the antisymmetric modes are indicated by a
superscript asterisk (*) as appropriate to the FFS
and FFC plates. All frequency results are
guaranteed upper bounds to exact values (typically
accurate to the five significant figures shown in
Tables 2 and 3). Hence, Tables 2 and 3 provide
an accurate database of frequencies for sectorial
plates having various edge conditions and notch
angles against which future results using
experimental or other numerical methods (such as
finite element analysis) may be compared.

As can be expected, the frequency parameters
of sectorial plates having a clamped
circumferential edge are higher than those having
a simply supported circumferential edge for all
combinations of radial edge conditions. Generally
speaking, it is clear that wa®|Jp/D decreases as the
sector angle @ increases. Slight exceptions to this
trend is shown in the first and second modes of
the SFC and SFS plates, the second and sixth
modes of the FFC plate, and the second mode of
the FFS plate, all of which exhibit a slight
decrease, followed by a slight increase in
wa®\[p/D with decreasing . However, a major
exception to the trend occurs for the fundamental
(i.e., lowest) frequencies of the FFC and FFS
plates, which increase monotonically as a
increases. In these cases the sole support of the
plate is along its circular boundary, and the length
of this support increases as « increases, which
increases the stiffness of the system. The higher
modes have radial node lines, which are equivalent
to additional supports.

Shown in Figs. 3-4 are normalized displacement

contours for the first three modes of sectorial
plates (contours for the higher modes are not
shown here for the sake of brevity) with various
boundary conditions for @ = 90°, 180°, 270°,
300°, 330°, 355°, and 360°. These contour
plots are normalized with respect to the maximum
transverse displacement component (i.e., —1<
W/W.,....< 1, where the negative values of (W/W...«
are depicted as dashed contour lines in Figs. 3 and
4, and the nondimensional frequencies shown
correspond to the data listed in Tables 2 and 3).
Contour lines are shown for WW,,., = +£0.2, +
0.4, +£0.6, £0.8, +1. Nodal patterns of each
mode are shown in Figs. 3 and 4 as darker
contour lines of zero displacement (W/W,,..=0)
during vibratory motion.

The normalized displacement contours of the
FFC and FFS plates are not substantially
influenced by the decrease in notch angle from
90° to 5° (see Fig. 4). Given the absence of
symmetry in the SFC and SFS displacement
contours (see Fig. 3), their nodal patterns are
rotated slightly in the clockwise direction in
relation to the nodal patterns of the FFC and FFS
plates, respectively. 1t is interesting to note that
the fundamental mode shapes for the SFC and
SFS plates with @>270° have one nodal line,
which is nearly radial, whereas the second mode
shapes have none. Across the board in Figs. 3
and 4, the W/W,,,.. contours and nodal patterns of
the sectorial plates are only slightly changed by the
clamped or simply supported circumferential edge
conditions. As expected, the contour lines W/W.,,..
= 0.2 occur closer to a simply supported
circumferential edge than a clamped one, since in
the latter both the normal displacement [W(a,8)]
and the bending slope [sW(a,8)/ar] vanish.

5. Concluding Remarks

Highly accurate frequencies and mode shapes
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Fig. 4. Normalized Transverse Displacement Contours (W/Wy,) for the First Three Modes of FFC and

FFS Sectorial Plates
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for sectorial plates with a clamped or simply
supported circumferential edge and combinations
of simply supported and free radial edges have
been obtained using a Ritz procedure in
conjunction with classical thin-plate theory. In this
approximate procedure, the assumed transverse
displacement of the plate constitutes a hybrid set
of complete algebraic-trigonometric polynomials
along with corner functions that account for
singular bending moments at the vertices of acute
corner angles.

Detailed numerical tables have been presented,
showing the variations of nondimensional
frequencies (accurate to at least five significant
figures) over a spectra of corner angles a. No
results were given for the SSC or SSS cases for
they exist elsewhere [12], [13]. A primal
conclusion explicating the title problem is that the
large bending moment stresses in the
neighborhood of the vertices of simply supported
or free radial edges of vibrating sectorial plates do
indeed significantly influence the frequencies.

The present variational Ritz approach is
computationally effective for modeling the
unbounded vibratory stresses, which exist at the
sharp corners of constrained radial edges of
sectorial plates. A point of methodological
procedure is that investigators using continuum-
based and discrete element-based formulation will
have difficulty in calculating accurate solutions to
the title problem unless they explicitly consider in
the assumed displacement or stress fields the
moment singularities at the sharp re-entrant
corner {@>180°). The present method can be
used to set up resonant responses for the plates
having highly localized stresses. Such plates may
be found as components of aircraft, machine, and
civil engineering structures subject to cyclic
loading. Most of all, the accurate vibration data
presented here serves as benchmark values for
comparison with data obtained using modern

experimental and alternative theoretical
approaches.
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