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Abstract

[1] and [2] present an approach to diagnosing possible defects in the mechanical systems of a

nuclear power plant. In this paper, by using a fault library as a database and training data, we

develop a diagnostic algorithm 1) to decide whether an Air Operated Valve system is sound or

not and 2) to identify the defect from which an Air-Operated Valve system suffers, if any. This

algorithm is composed of three stages: a neural net stage, a non-neural net stage, and an

integration stage. The neural net stage is a simple perceptron, a pattern-recognition module,

using a neural net. The non-neural net stage is a simple pattern-matching algorithm, which

translates the degree of matching into a corresponding number. The integration stage collects

each output and makes a decision. We present a simulation result and confirm that the

developed algorithm works accurately, if the input matches one in the database.
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1. Introduction

In a nuclear power plant, vibration,
contamination, unplanned cease, and malfunction
of components may cause a gradual degradation
or even an abrupt shutdown of operations. To
increase the safety and the stability of a typical
nuclear power plant, it is necessary to monitor
constantly the components that influence plant’ s
systemn performance and to diagnose properly any
defects that said components might have. Air
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Operated Valve (AOV) systems are indispensable
components in typical nuclear power plants. In
addition, the Nuclear Regulatory Commission
{NRC) recommends the use of AOVs in testing
and monitoring a plant’ s system performance. In
this paper, we propose a diagnostic algorithm that
can monitor and diagnose possible defects that the
AOV system may suffer.

This paper is organized as follows. First, we
introduce the overall structure of the algorithm.
Then, we explain the three stages that compose
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the algorithm: the neural net stage, the non-neural
net stage, and the integration stage. Finally, we
present our simulation results.

2. Methodology

2.1. Overall Structure of the Defect
Decision System

The overall structure of the system for detecting
and identifying defects in an AOV system is
illustrated in Figure 1. This system works as
follows. In various locations of the AOV system,
sensors are placed that constantly measure signals
and produce data. A data processor collects and
processes these (analog or digital) data to extract
features. These features are eventually
transformed into arrow patterns and sent to a
decision processor. The decision processor
analyzes correlation with pre-processed arrow
patterns that are stored in a database and
identifies the current states of the AQV system.
The decision processor, using the correlation
between the inputted arrow patterns and the
database, 1) determines whether the AOV system
is sound or impaired and 2) identifies the type of
defects that exist, if any. The most important
components involved are the data processor and
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Fig. 1. Overall Block Diagram of the System for
Detecting and Identifying Defects in an
AOV System

the decision processor. In [3), the data processor is
considered. In this paper, we consider the decision
processor.

2.2. Extraction of Standard Parameters of
the AOV

2.2.1. Symptoms in AOV System

AOQV systems can incur many defects [3]. In this
study, well-known defects were purposely
introduced to the AOVs in a plant to see how the
power plant system would react. The experimental
procedures were the same as those for the
baseline experiment, except that the AOV had
defective components. For each defect, the
defective levels are controlled to ascertain the
observability of the measured signals. Most defects
have unique patterns but some defects have similar
reaction patterns. When taken together, all the
defects demonstrate 12 main symptoms (18
symptoms when including sub-symptoms). Based
on the defects and the reaction each initiates, a
library of fault symptoms was constructed and is
shown in Tabie 1 [3].

2.2.2 Processing of Inputs

In (3], for each of the symptoms, we derived a
series of arrow patterns. In Table 2, we show the
arrow patterns of the symptom “Leakage at
Position A,” as an example. If leakage occurs at
position A, then the data from each sensor change,
as do all the values of the parameters derived from
the sensor data. These changes of parameters are
analyzed and represented as arrows, according to
the change patterns, as shown in Table 2. The
meanings of the arrows are listed in Table 3. For
example, the arrow patterns of the second row i.e.,
2-1 to 2-14 show the change of parameters that
are given in Table 2 in [3].
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Table 1 Fault Library for Defect an AOV System

No. List

1 Restricted supplied air
2 | 2-1 | Zero setting point of the E/P transducer (1)
2-2 | Zero setting point of the E/P transducer (])
3 1 3-1| Span of the E/P transducer (1)
3-2 | Span of the E/P transducer { | )
4 Leakage at position A

5 Clogging at position A

6 | 6-1| Initial response point of the positioner { )

6-2 | Initial response point of the positioner (] )

7 Stuck feedback linkage arm
g Leakage at position B
9 Clogging at position B

10| 10-1] Actuator spring preload { 1)

10-2| Actuator spring preload { | )
11111-1| Packing load (]}

11-2| Packing load {})

12| 12-1| Stiffness of the feedback spring (1)
12-2| Stiffness of the feedback spring ( | )

These arrow patterns are used as inputs to the
algorithm for the diagnoses of defects. These
arrow patterns present the data trends clearly.
However, they are not easy to handle

mathematically. First, these arrow patterns must
be translated into corresponding numbers. Table 3
shows the rules governing the translation of arrow
patterns into corresponding numbers. Here “b" is
a fixed number that is used to differ between a
horizontal arrow and a ‘don’t care’ or a ‘no
change’ state. The number represented by b in
Table 3 can be either a large number or an
extremely small one.

Using Table 3, we develop a vector of numbers
for each symptom arrow pattern. For example, for
the symptom in Table 2, the vector of the input
pattern is given as

P1 = [b;-1;-1;b;b;b:b;b;b;b;b:b; L
bs-1;-1;b;b;bsb; 1:-1,1;15-1; 1,1,
b;b;b;1;1;b;b;bsbsbsb;b;b; 15
1;1;15-15-15-15-15-15bs by
b;bib;b;1;15-15-15-15-1515-1;

-1;15b;b; bib;b;b;bsb;bsbsb;bibsb]

For each symptom, some items are more
important than others. To exploit the importance,

Table 2. Arrow Patterns of the Symptom “Leakage at Position A”

Item 1-1 1-2 1-3 1-4 1-5 1-6 | 1-7 1-8 1-9 1-10 | 1-11 | 1-12
/ . T 2T T 0T T T T T T
SR KIS T\ SIS K IS IS

Item 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 | 2-11 | 2-12 | 2-13 | 2-14
/ # #* / / / / * # . Py =
R 0 I T T R T 2 I AT I 7 (R P B AN D B

Item 3-1 3-2 33 34 35 3-6 3-7 3-8 39 3-10 | 3-11 ] 3-12 | 3-13 | 3-14
TV e -1 el 12T 1l el 1l Tel Tl Tl Tl
SR K SEASE KT IS IS IS IS A

Item 3-15 ) 316 3-17 | 3-18| 3-19 | 3-20| 3-21| 3-22| 323 3-24
/ ' / £ / W \ x \ % \ £l \ * \ % < <

Item 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 51 5-2 5-3 54 55 | 56
/ / / / £ % * * 3 * £ =
G G B A R PR AV I AN I AN S N 4 I AN AN B %

Item 6-1 6-2 6-3 6-4 6-5 h6—6 6-7 6-8 6-9 6-10 7-1 7-2 7-3 7-4
1o 2T T 2T 12T 12T 2T 02T 12T 1T 1T 110 T
SIS ST ST SIS IS ISEAST ST IS ST S S
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Table 3. Arrow Patterns and Their Corresponding

Numbers
Arrow Corresponding )
Pattern number Meaning
< b Don' t care
/ +1 Increase
— 0 No change
N -1 Decrease
4 No change or Increase
\g" No change or Decrease

we put an asterisk mark (*) beside the important
arrow patterns. These marks can also be
implemented numerically with a mask function.
For the symptom in Table 2, for example, the
mask function is given as

M1 =[ 0;1;1;0;0,0;0,0;0;00;0; @)
0;1;1;0;0,0;0;0;1;1;1,0;1;1;
00;0;1;1;0;0,0;0;0;0;0:0;1;
0;0;0;0:1;1;1;1;1;1,0;1;
1;0,0;0;0,0,0;0;0;0,0;0;0;0,0;0;);?

For all the symptoms imaginable, these vectors
are prepared, stored as a database, and used as
references for developing an algorithm for the
identification of defects in the AOV system. Please
refer to {3] for more information on the arrow

patterns for each symptom.

2.3. Development of a Symptom Decision
Algorithm

2.3.1. Overall Structure of the Algorithm

In Figure 2, we present a block diagram of the
developed decision processor illustrated in Figure
1. In figure 2, two pattern recognition methods
are used: one is a simple pattern-matching

method, and the other is a neural net method.
When a series of arrow patterns, which are
extracted from the sensor data, are inputted to the
system, the Neural Net algorithm identifies the
symptom that matches the input patterns. In
addition, the Non-Neural Net algorithm compares
the input patterns with those of known symptoms
stored in the database, calculates the degree of
match, and lists possible symptoms in rank order.
The system finally compares these two results,
finds a common symptom, and makes a decision.

2.3.2. Pattern Recognition Module Based
on Neural Network Algorithm

Neural networks are an area of research that
studies the structure of neurons in a human body,
especially in the human brain and the nervous
system [4]. Neural networks mimic these human
systerns to obtain similar results as those of human
beings when simulating similar work with
computers. Among other application areas, neural
networks have been found to work very well in

Fig. 2. Block Diagram of a Symptom Decision
System
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solving pattern recognition problems. In this
paper, we develop a pattern recognition algorithm
using a neural network.

In Several neural network models have been
proposed, including single layer perceptron,
Madaline, Hopfield, and multi-layer perceptron [4].
The single layer perceptron, one of the oldest
neural network models, has two main advantages:
a simple structure and good performance with
linear dichotomy problems; it is used to solve
simple character-recognition problems [4]. The
multi-layer perceptron, using a back propagation
algorithm, generally performs better than the
single layer perceptron; however, it has longer
training periods and more complex structures [4].
Adalines and Madalines are linear adaptive neural
networks and are used in adaptive signal
processing, or in modulation and demodulation
systemns, rather than in recognition problems.
Hopfield networks are unsupervised networks and
have self-organizing structures. Hopfield networks
have two main limitations: symmetric coefficients

Xy

and instability; they are usually used in building
associative memories and in solving optimization
problems. Other examples of neural networks are
the Kohonen network, Cognitron, Neocognitron,
and various Fuzzy Neural Networks [4]. All of
these networks have very complex structures and a
discussion of them is beyond the scope of this
paper. In this study, we use a very simple neural-
net model, a single layer perceptron model, in
developing a pattern-recognition algorithm (4, 5].

2.3.2.1. Architecture of the Neural Network
Algorithm

The structure of the single layer perceptron that
we are using in this paper is shown in Figure 3. In
figure 3 there are R inputs and S outputs; between
these, there are a middle layer and transfer
functions. The most popular transfer functions are
hard limiters, linear functions, and sigmoid
functions. Hard limiters are the mathematical
incarnations of synaptic functions, which send

Input

E ‘\:‘:

Yg
Quitput

Fig. 3. A Simple Neural Network Model
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synaptic pulses (i.e., the output} if the sum of all
the inputs exceeds a certain threshold and
otherwise do not. Because of this characteristic,
hard limiters are usually used in decision
components and are among the most widely used
functions in pattern recognition problems. They
are not, however, differentiable, which is essential
for some neural nets, such as back-propagation
multi-layer perceptrons. In these cases, sigmoid
functions are more preferable, since they look
similar to hard limiters but are differentiable.
Linear functions are usually used in continuous
neural net problems, such as adaptive signal
processing, adaptive control, and modulation.
Mathematically, the relationship between the
inputs and the outputs of the neural nets can be

written as
y=f(Wz+b) (3)

This equation is basically a matrix equation. W
represents a coefficient weight matrix and has
dimensions of SxR. b represents the bias vector,
and has dimensions of Sx 1. And x represents
the input vector of dimension Rx 1. This
equation, component by component, is written as
follows

R
w=ﬂ2¥@@+@,j=Lz”wS @

Here, o, s are the (i, j) components of the
coefficient matrix, x, the input, and b; is the j"
component of the bias. f represents a transfer
function and, in this paper, we use a hard limiter.
The transfer function of the hard limiter is given as

i) ={g

ANV

0 (5)

The input vector x; s are provided by multiplying
the pattern vector, P, and mask vector, M,
element by element. For example, for the
symptom ‘Leakage at the Position A’ as in Table

2, the No. 4 symptom in the table, from the
equations (1) and (2), the input vector x is given
as

;C = [PMi] (6)
= [0--1;-1;0;0;0,0;0;0;0,0;0;
05-1;-1;0;0;0;0;05-1;1;1;0; 151,
0;0;0;1;1;0;0;0,0;0;0;0;0;1;
-1;0;0;0;0;0,0;0;0;0;0;0;0;0;0;0;}

If the input to the Neural Network system is x,
then all the output yjs should be zero except v
which should be 1. If we rewrite this output vector
, then it should be a vector and is aiven ac

¥=[0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]’.
(7

Continuing with this procedure, we can find all
18 pairs of (x, ;) ‘s for all of the symptoms given
in Table 2 and we can find the weighting matrix
by training. The coefficient matrix can be derived
from a series of either supervised or unsupervised
training. These training approaches use various
adaptation processes and update the weight
matrix automatically and adaptively.

2.3.2.2. Non-neural Net Method: Simple
Pattern Matching

The non-neural net algorithm is a simple
pattern-matching method. This algorithm works as
follows. The algorithm compares the input pattern
with the arrow patterns of each symptom in the
fault library, component by component, and
calculates scores according to the degree to which
input patterns match arrow patterns of each
symptom. The score are devised to be highest if
the input pattern precisely matches that of the
pre-stored symptom. For example, for the arrow
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with the asterisk (*) mark, if the arrow matches
exactly, then the algorithm scores the input 5
points. If the input and stored arrow pattern are
different by 45 degrees, then the algorithm scores
the input 3 points. If the arrow pattern does not
match at all, then the algorithm scores 1 point.
For the case of the unmarked arrow, the algorithm
scores 2 points for an exact match and 0 points
otherwise. The formula that calculates the total
number is R
Score ;= Z:lg(x oDl
8

Here, g represents the function of scoring the
degree of matching, x;, the i_th component of
input pattern, and the i_th component of the j_th
symptom. The next table shows the maximum
possible values of the matching degree that each
of the symptoms can have. Using this table, we
calculate matching percentages using the following

equa*~— s
Matching o) o _DC07e; 5 o
percentage (%) Max'_f. 100(%)

)

This equation uses the maximum values of the
table 4 and shows the calculated degree of

matching.
3. Simulation and Results

Simulation has been done with Matlab using the
Neural Net Toolbox.

3.1. Training

The Neural Net Toolbox in Matlab has several
algorithms in it [6, 7]. Among these, ‘adapt’ and
‘train’ are most frequently used functions. In this
simulation, we used the ‘adapt’ function to get
neural net parameters, such as coefficients and
biases. The ‘adapt’ function is a kind of

Table 4. Maximum Number of Scores that a
Symptom Can Have

Symptom | Maximum | Symptom | Maximum | Symptom | Maximum
number value number value rumber value
1 138 5 150 0 10-1] 102
2 2-1 | 174 6 6-1| 162 1 10-2] 110
2-2 | 166 6-2| 162 1 11-1] 106
3 31| 154 7 134 11-2| 106
32 | 154 8 162 12 12-1) 130
4 190 9 154 12-2) 130

incremental training method and is used mostly in
the implementation of dynamic systems, such as
designing adaptive filters or static systems,
including pattern recognition (7). A standard form

f th 0 1 IR [ IR . rn
° [ net, a, e, pf] = adapt(net, P, T)

(10)

The input parameters used are as follows:

&R: Number of inputs and also the number of
sensors. In this paper, we used 75 parameters
and so, R is 75.

¢ S: Number of outputs. This matches the number
of symptoms. We used 12 symptoms (18 when
including sub-symptoms).

e net: This is a variable that has various neural
network parameters. This stores all the
parameters in the necessary memory space.
Also, the results obtained after the training are
also stored and outputted.

&P: The input data to be used in the training.
There are S number of Rx1 neural network
training vectors.

¢ T: Represents the target value of the neural
network and can be an S X S identity matrix.

The output parameters are as follows:
¢ net: Undated network values

&Y: Output of the network.

¢ E: Error.

The training data are prepared as follows. Based
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on the arrow patterns of the 18 symptoms and
sub-symptoms derived in [3], we prepared a
pattern vector, P, and a mask vector, M. By
multiplying these two vectors, the training data are
prepared. With the ‘adapt’ function in Matlab, we
calculate neural net parameters, such as the
coefficients of the weighting matrix and the biases.
To obtain a satisfactory result in this simulation,
60 training epochs were completed.

3.2. Simulation

The simulation has 3 stages. The first stage is a
neural net stage, the second is a non-neural net
stage, and the last stage is the integration of the
results of the first two stages. In the first stage, we
formulated a neural net algorithm and identified

D@ BRI
ut_score =
Columns 1 through 7
83.6957  S7T.W713
Columns 8 through 14
84,2593  52.1605
Columns 15 through 18
75,8566  $69.3396

84.9398  48.3766

81.3433  85.1852 71.7582

81.1538  59.6154

92.5325 108.8000

79.5882

symptoms with the training data. The neural net
algorithm developed here works well if there is no
noise in the input pattern. If there is noise in the
input pattern, then there is possibility that the
algorithm may not yield correct resuits. To
circumvent this problem, in the second stage, we
calculated the degree of matching with a non-
neural net algorithm. As described in section 2, this
is a simple pattern-matching algorithm. In the last
stage, we compared these two results and selected
a common part of them to make a final decision.

3.3. Results

Figure 4 shows a picture of the monitor screen
when the algorithm finished the calculation. In this
example, we used No. 4 symptom as an input. As

72.8008

70.9600

?h. 1: Result with Non neural Het

ns =
Eegree of matching with Symptom No. 3-2 : Span of the E/P transducer (down) is 93 %
ns =

egree of matching with Symptow No. & : Leakage at the position & is 100 %

ih 2: Results with Meural Net

ns =
&tched Pattern(s) from Neural Net is No. & : Leakage at the position 4.

From these results, the recognized symptom is

Etcned Pattern{s) from Both Approach is No.

Ready

4 : Leakage at the pesition 8 with Matching Percentage 108 3.

<1

N

Fig. 3. A Simple Neural Network Model
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Table 5. Summary of Simulation Results

227

Result w/ Non-neural net Final Decision
Result w/
No. Input Pattern (Symptom) Approach [Symptom #
. Neural Net
{Matching Percentage)]
1 Restricted supplied air 1(100) 1 1
2-1 Zero setting point of
the E/P transducer ( T) 2:1(100), 3-1091) 21 21
2-2 Zero setting point of
the E/P transducer (| ) 2-2(100), 3-202) 22 22
3 31 Span of the E/P transducer { 1) 3-1(100) 3-1 3-1
3-2 Span of the E/P transducer ( | ) 3-2(100) 3-2 3-2
4 Leakage at the position 3-2(93), 4(100) 4 4
5 Clogging at the position A 5(100) 5 5
6 6-1 Initial response point of 3-2(90), 6-1(100), 61 61
the positioner ( ] ) 7(93), 8(92), 12-1{93)
6-2 Initial response point of 3-1(90), 6-2(100), 62 62
the positioner ( | ) 12-2(93}
7 Stuck feedback linkage arm 7(100) 7 7
8 Leakage at the position B 6-1(97), 8(100),12-1(91) 8 8
9 Clogging at the position B 9(100) 9 9
10 10-1 Actuator spring preload ( ] ) 10-1(100) 10-1 10-1
10-2 Actuator spring preload { | ) 10-2(100) 10-2 10-2
11 111 Packing load (1) 11-1(100) 11-1 11-1
11-2 Packing load ( | } 11-2(100) 11-2 11-2
12 12-1 Stiffness of the feedback spring ( 1) 12-1(100) 12-1 12-1
12-2 I Stiffness of the feedback spring ( | [ 12-2(100) 12-2 12-2

expected, the result of the non-neural net
algorithm shows that the symptom No. 4 matches
exactly with a matching percentage of 100%. We
also show the matching percentages of some of
other symptoms as well, on the screen. For
example, No. 3-2 symptom, which is similar to
symptom No. 4, has a matching score of 94 %.
All others that do not appear on the screen have
matching percentages of less than 90% and so are
not of importance. The result of the neural net
algorithm shows that the input matches symptom
No. 4 exactly. In the integration stage, a final
decision is made if the two algorithm have the
same result. In this case, the algorithm identifies
symptom No. 4, which is the correct one.

Table 5 summarizes all the results after the

algorithm was run for all the symptoms. The
results from the non-neural net algorithm shows
that the neural net algorithm works very well and
has accurate results. In addition, the results from
the non-neural net algorithm show that the
algorithms work reasonable well. In general, we
can say that the developed algorithm works very
well for finding symptoms if the input pattern
exactly matches that of any pre-given, assumed
symptom. However, some symptoms show very
similar patterns as other symptoms, and can have
a matching percentage of as much as a 97%.
Since this situation may cause a malfunction of the
algorithm, we can say that it is desirable either to
combine similar symptoms together or to find
better parameters for future work.
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4. Conclusions

In this paper, we developed a diagnostic system
that (1) can determine whether an AOV system is
sound or malfunctioning and, (2) can specify the
defect from which the AOV system suffers. This
system is composed of three stages: a neural net
algorithm, a non-neural net algorithm, and an
integration stage. For the neural net algorithm, we
used a simple perceptron model. For the non-
neural net algorithm, we used a simple pattern-
matching algorithm that translates the degree of
matching into a corresponding percentage. Based
on the results of these two algorithms, the
integration stage produces a final decision and
specifies the class of defect. In our simulation, we
used test patterns as inputs and determined
whether the algorithm works accurately. We found
that the system accurately specifies a symptom
corresponding to that of the input.

In this paper, we used a single layer perceptron,
that is, a neural network with the simplest
structure. This algorithm works well with problems
such as linear dichotomy; however, it does not
generally obtain good results with nonlinear
problems. The sensitivity to noise and the
instability that were observed in this study appear
to be caused mainly from the simplicity of the
structure. The problems addressed in this paper
are expected to be solved, if we use a more
complex and complicated algorithm, such as a
multi-layer perceptron, using back propagation, a
Hopfield net, a Kohonnen net, or fuzzy neural
networks. Future work necessitates an upgrade to

a more powerful neural net stage and the
application of the algorithm to an AOV system in
an actual nuclear power plant.
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