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As a key and core knowledge for the design of various types of nuclear reactors, the discipline of reactor physics
has been advanced continually in the past six decades and has led to a very sophisticated fabric of analysis methods and
computer codes in use today. Notwithstanding, the discipline faces interesting challenges from next-generation nuclear
reactors and innovative new fuel designs in the coming.

After presenting a brief overview of important tasks and steps involved in the nuclear design and analysis of a reactor,
this article focuses on the currently-used design and analysis methods, issues and limitations, and current activities to
resolve them as follows:
(1) Derivation of the multigroup transport equations and the multigroup diffusion equations, with representative

solution methods thereof.
(2) Elements of modern (now almost three decades old) diffusion nodal methods.
(3) Limitations of nodal methods such as transverse integration, flux reconstruction, and analysis of UO2-MOX mixed

cores. Homogenization and related issues.
(4) Description of the analytic function expansion nodal (AFEN) method.
(5) Ongoing efforts for three-dimensional whole-core heterogeneous transport calculations and acceleration methods.
(6) Elements of spatial kinetics calculation methods and coupled neutronics and thermal-hydraulics transient analysis.
(7) Identification of future research and development areas in advanced reactors and Generation-IV reactors, in

particular, in very high temperature gas reactor (VHTR) cores.

1. INTRODUCTION

Nuclear reactors are engineering devices in which controlled nuclear fission chain reactions are maintained and
from which the produced nuclear energy is extracted for useful uses, such as generation of electricity. In such a device,
neutrons induce nuclear fission reactions with heavy nuclei called nuclear fuel. The constituent materials of a reactor are
generally fuel, coolant/ moderator, structural materials, and fission control material. In general, these materials are arranged
very heterogeneously due to neutronics, thermal-hydraulics, and structural conside-rations. In addition, these structural
arrangement and the constituents may change depending on the life-cycle of the fuel or on the operational mode of the
reactor, including accident conditions.

Although the discipline of reactor physics that deals with the design and analysis of such reactors encompasses several
areas in science and engineering, the reactor physics has matured on its own and established a unique field; and thus in
particular, reactor analysis and methods development may be characterized as a discipline concerning determination and
prediction of the states of a reactor that sustains chain reaction by balancing neutron production by fission and loss by
capture and leakage. More specifically and summarily, we can say that the objective of the reactor analysis is to
determine : 

i) neutron multiplication factors for various configurations of a reactor,
and

ii) neutron flux distributions (hence, power distributions that are generated), spatial and temporal, under various
operating (including accident) conditions.

Thus, the results of reactor design and analysis become the base or springboard to other activities necessary in the
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Fig 1.1 Typical configuration of 1/8 ractor core and fuel assembly.

Fig 1.2 Calculational flow of reactor core design. (from [1])

realization of a nuclear power plant.
Figure 1.1 shows a two-dimensional schematic of a typical configuration of a power reactor core and fuel

assembly. Figure 1.2 shows a typical calculational flow involved in reactor core design and analysis. Note that major
methods currently in use consist of transport theory methods and diffusion theory methods. The methods based on
transport theory are used in cell and assembly local calculations, while the methods based on diffusion theory are used
in whole-core global calculations. Detailed calculational flows (e.g., the number of groups and methods in each phase)
depend on the specific reactor vendors and the fuel designers who provide initial/reloaded fuel design services.



2. GOVERNING EQUATIONS IN REACTOR PHYSICS

2.1 Starting Equations

2.1.1 Transport Equation
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2.1.2 Diffusion Equation
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2.2 Multigroup Approximation

2.2.1 Multigroup Transport Equations
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2.2.2 Multigroup Diffusion Equations
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3. NUMERICAL METHODS FOR MULTIGROUP DIFFUSION EQUATIONS

3.1 Overall Structure of the Solution Framework
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3.2 Finite Difference Methods
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3.3 Modern Nodal Methods

3.3.1 Equivalence Homogenization Theory
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3.3.2 Modern Nodal Methods (Based on Transverse Integration Procedure)
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3.3.3 Analytic Function Expansion Nodal Method (Without Transverse Integration)
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3.4 CMFD/CGR Acceleration Methods

3.4.1 Coarse Mesh Finite Difference (CMFD) Acceleration
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3.4.2 Coarse Group Rebalance (CGR) Acceleration
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4. NUMERICAL METHODS FOR MULTIGROUP TRANSPORT EQUATIONS
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4.1 Method of Characteristics (MOC)

4.1.1 Ray Tracing
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4.1.2 Product Quadrature 

4.2 Whole-Core Transport Calculation
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4.2.1 2D/1D Fusion Method
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4.2.2. Numerical Results on OECD Benchmark Problem C5G7MOX
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4.3 Acceleration Methods
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4.3.1 Diffusion Synthetic Acceleration (DSA)
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4.3.2 Partial Current-Based Coarse Mesh Finite Difference (p-CMFD) Acceleration
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4.3.3 Coarse-Mesh Angular Dependent Rebalance (CMADR) Acceleration
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5. THREE-DIMENSIONAL REACTOR KINETICS

5.1 Methods for Spatial Reactor Kinetics

5.1.1 Space-Time Factorization Methods
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5.1.2 Direct Methods
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5.2 Coupled Thermal Hydraulics and Neutron Kinetics
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6. CHALLENGES FOR THE FUTURE
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