
175NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.38  NO.2  SPECIAL ISSUE ON ICAPP ‘05

UNIQUENESS OF THE ELEMENTARY PHYSICS 
DRIVING HETEROGENEOUS NUCLEATE BOILING AND 
FLASHING

NIKOLAY IVANOV KOLEV
Framatome ANP 
P.O. Box 3220, D-91058, Erlangen, Germany 
E-mail : Nikolay.Kolev@framatome-anp.com  

Received January 18, 2006

1. INTRODUCTION

What is different between flow-boiling and flow
flashing? In the case of boiling the surface is hotter then
the bulk and the thermal energy transfer happen from the
wall to the bulk. In the case of adiabatic flashing, the bulk
is hotter then the saturated wall boundary layer and the
thermal-energy-transfer is inversed. 

What is common between flow-boiling and flow
flashing? In both cases nucleation in technical systems is
experimentally observed at the wall and the bubble growth
and departure generate boundary layer turbulence that is
the main heat transfer driving mechanism. Therefore both
phenomena are driven by the same physics! An adequate
representation of the one phenomenon has to describe the
other too. The subject of this paper is to prove this uniqueness
of the elementary physics driving the both processes. 

Adequate description of boiling requires adequate des-
cription of the nucleation activation process, the bubble
growth and departure, the frequency of departure and the
mechanism of the bubble generated wall turbulence that
controls the heat transfer at the wall. Good models for
nucleate boiling are those that give good comparison with
experimental data for each of the above mentioned elemen-
tary processes and this for the right reason. The splitting
of the boiling process on sub-process is not only helpful
for understanding the boiling physics, it provides also the
appropriate information required for modeling the boiling
and flashing processes in the computational multiphase
fluid dynamics (CMFD).

Let us have a close look on the data and the appropriate
models describing them.

2. ACTIVATION OF NUCLEATION SITES

After long years discussing why at polished surfaces
the nucleate boiling data spread with 200% as shown in
Fig. 1 the answer seems to be finally found.

This is because the spreading of the data for the corre-
sponding active nucleation sites, see Fig. 2, due to differ-
ences mainly in the wetting angle as shown in Fig. 4. No
theory predicts well this behavior as shown in Fig. 3.

Qualitative reasoning was given by the Russian
scientists in 1958 [1] but there are Wang and Dhir [48]
who correlated their own measurements, Fig. 4, to provide
finally well establish basis to the next step of the description
of nucleate boiling.

3. BUBBLE DEPARTURE DIAMETER

During heterogeneous nucleation of saturated water
at walls the bubble departs the polished wall with a size
D1d depending on the superheat as presented in Fig. 5.

Reviewing the literature in 1994 regarding availability
of theoretical models for description of the bubble departure
diameter as a function of the local parameters, resulted in
the picture seeing in Fig. 5. Surprisingly I find out that the
phenomenon was not satisfactory described by any of the
existing theories. Especially the observation by Gardner
[12] reported 39 years ago, that the increasing superheat
leads after reaching a maximum to decrease of the bubble
departure size, as seen from Fig. 5, was not understood. I
found the explanation of the phenomenon observed by
Gardner in the mutual bubble interaction during their explo-
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sive growth and departure. The time averaged wall shear
stress turns to be different from zero. The new model de-
veloped by me [25] takes into account this force and deli-
vered acceptable agreement with the experimental data as
shown in Fig. 6. This model has the following form

Here D1d,nc is the bubble departure diameter for natural
circulation and D1d,fc is the bubble departure diameter for
predominant forced convection. For more details see the
references [25, Ch. 15 in 60, p.421]. This model is for the
time being the only one that adequately describes this phe-

Fig. 2. Active Nucleation Site Density as a Function of Superheat.
Saturated Water at 0.1 MPa. 1) Gaertner [13] 1965, 4/0 Polished

Copper, 2) Gaertner and Westwater [11] 1960, 4/0 Polished
Copper, 20 p.c. Nickel Salt-water Solution, 3) Sultan and Judd

[41] 1978, Diamond Grid 600 Polished Copper, 4) Yamagata et al.
[50] 1955, Fine Polished Brass, 5) Jakob and Linke [18] 1932,
Polished Steel, 6) Cornwell and Brown [7] 1978, 4/0 Polished

Cooper, 7) Kurihara and Myers [30] 1960, 4/0 Polished Copper, 8)
Rallis and Jawurek [37] 1964, Nickel Wire, 9) Faggani et al. [8]

1981, Polished 316 Steel Horizontal Cylinder

Fig. 3. Active nucleation site density as a function of superheat.
Saturated water at 0.1 MPa. 1) to 9) Data from Fig. 16.2.
Prediction with correlations proposed by 10) Avdeev et al. [2], 11)
Johov [21], 12) Cornel and Brown [7] and 13) Kocamustafaogullari
and Ishii [27]

Fig. 4. Active nucleation site density as a function of
superheat. Saturated water at 0.1 MPa. Wang and Dhir [48]
data for three different static contact angles 1) 90, 2) 35 and 3)
18 deg. Prediction of the same data with their correlation 4),
5), and 6), respectively. Larger static contact angle results of
larger active nucleation site density by the same superheating.

(1)

Fig. 1. Heat flux as a function of superheat. Saturated water at
0.1 MPa. 1) Gaertner [13] 1965, 4/0 polished copper, 2)
Kurihara and Myers [30] 1960, 4/0 polished copper, 3)
Yamagata et al. [50] 1955, fine polished brass, 4) Sultan and
Judd [41] 1978, diamond grid 600 polished copper, 5) Wiebe
[49] 1970, diamond 600 polished copper, 6) Gaertner and
Westwater [11] 1960, 4/0 polished copper, 20 p.c. nickel salt-
water solution, 7) Borishanskii et al. [3] 1961, steel, 5 to 8 p.c.
error, 8) Jakob and Fritz [16] 1931, polished steel, 9) Jakob
and Linke [18] 1932, polished steel, 10) Cornwell and Brown
[7] 1978, 4/0 polished cooper, 11) Vachon et al. [45] 1968,
emery grid 600 polished 304 stainless steel, 12) Nishikawa et
al. [35] 1984, emery grid No.0/10 polished copper, 13) Rallis
and Jawurek [37] 1964, nickel wire, 14) Wang and Dhir [48]
nuclead and transition boiling. Contact angle 90 deg, 15)
Wang and Dhir [48]  nuclead and transition boiling.  Contact
angle 18 deg, 16) Wang and Dhir  [48]   nuclead and transition
boiling. Contact angle 35 deg, 17) Wang and Dhir  [48]
nuclead and transition boiling. Contact angle 35 deg. Liaw
data.



nomenon. The model describes well the available data
also for forced convection as presented in Fig. 7. Data for
low- and high pressures are also very good reproduced as
demonstrated on Fig. 8.

4. MECHANISM OF NUCLEATE BOILING

As already mentioned, the experimentally observed
spreading of about 200 % of the heat flux as a function of

the wall superheating for polished surfaces as shown in
Fig. 1, was not explained quantitatively until 1995.

I realized that the turbulence controlled by the bubble
growth and departure is the most important heat transfer
mechanism. My new theory provided new peace of infor-
mation for description of the nucleate boiling. The form
of the model provides the heat flux at the wall 
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Fig. 5. Bubble departure diameter as a function of superheating.
Saturated water pool boiling at 0.1 MPa pressure. Data: 1
Gaertner and Westwater [11], 2 Gaertner [12], 3 Tolubinsky
and Ostrovsky [43], 4 Siegel and Keshok [40], 5 van Stralen et
al. [73], 6 Roll and Mayers [71]. Theories: 7 Fritz [10], 8 van
Krevelen and Hoftijzer [68], 9 Kocamostafaogullari and Ishii
[27], 10 Cole and Rohsenow [6], 11  Moalem et al. [70], 12
Klausner et al. n = 1/2 [63], 13 Klausner et al. n = 1/3 [63], 14
Ruckenstein [77], 15 Voloshko and Vurgaft [78], 16 Golorin et
al [79], 17  Kutateladze, and Gogonin [80], 18 Jensen  and
Memmnel [81]

Fig. 6. Bubble departure diameter as a function of superheating.
Saturated water pool boiling at 0.1 MPa pressure. Data 1:
Gaertner and Westwater [11], 2 Gaertner [12], 3 Tolubinski
and Ostrovsky [43], 4 Siegel and Keshok [40], 5 van Stralen et
al. [73], 6 Roll and Mayers [71], 7 IVA5 model with bubble
interactions

Fig. 7. Bubble departure diameter as function of mass flow
rate. Saturated water flow boiling at 0.1 MPa pressure. Dhy =
0.019 m, Tw - T2 = 15 K. 1 Data of Koumoutsos et al. [67], 2
IVA5 model without bubble interaction

Fig. 8. Bubble departure diameter as a function of pressure.
Saturated water pool boiling, superheat = 7.2 K. Data of Tolubinsky
and Ostrovsky: 1 Permalloy, 2 brass, 3 copper. Data of Semeria: 4
wire D = 0.8mm, 5 plate. 6 Model IVA with bubble interaction

(2)



as a function of the fluid properties, inclination angle, wall
turbulence length scale, the time scales controlling the
fluctuations, and the difference between the liquid and wall
temperature. For more details – see Ch. 16 in [60], p. 439.
The new model description is based on the boundary layer
turbulence induced by the bubble growth and departure, as
mentioned above, together with an relationship for the
nucleation site density as a function of the superheating
experimentally obtained by Wang and Dhir [48], provided
the following surprising predictive capability: Not only the
data spreading was quantitatively described by the differences
in the wetting angle, but the new boiling model provided
inherent prediction of the departure from the nucleate boiling
(DNB) with increasing wall superheat that was not available
from any other existing nucleate boiling model up to that
time. I have reported this result for a first time in 1995 [26].
Having the information provided by Eqs. (1) and (2) it is
easy to compute the mass and energy source terms in the
conservation equations as well as the source term for the
bubble number density as shown in [93].

5. HETEROGENEOUS NUCLEATION – FLASHING

If the above described mechanisms of bubble formation,
departure and energy transfer between the heated wall and
the bulk flow are universal mechanisms, they have to work
also at an adiabatic wall in case of expanding superheating
liquid being in spontaneous evaporation.

The common feature of the nucleate boiling and of
the spontaneous evaporation of superheated liquid that
happens at the wall (heterogeneous nucleation) is that the
energy transfer between the wall and the bulk flow happens
in the same way. That is the reason why I have applied
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Fig. 10. Pressure at 0.072 and 0.914 m from the dead end of
pipe as a function of time. Comparison IVA prediction with
experimental data by Edwards and O’Brien. Pipe diameter
0.0732 m, length 4.096 m

Fig. 11. Comparison of IVA prediction with BNL experimental
data for pressure distributions and area averaged void fractions
for Runs 281 - 283. pin = 688 kPa,  Tin = 148.8 C, Gin = 5730 kg/(m2s),
pout = 431 kPa, pc = 452 kPa, Tc = 148.8 C, Gcom = 5533 kg/(m2s)

Fig. 9. Heat flux as a function of superheat. Saturated water at
0.1 MPa. Comparison of the prediction of the new theory with
the experimental data by Wang and Dhir for three different
static contact angles: 1) Exp.- 90 deg; 2) Exp.-35 deg; and 3)
Exp.-18 deg, 4) Kolev-90 deg; 5) Kolev-35 deg; and 6) Kolev-
18 deg. The larger the static contact angle the smaller the critical
heat flux.



the same theory without any changes for description of a
spontaneous evaporation of superheated liquids in [93].
The good prediction of the experimental observation coll-
ected by Edwards and O’Brien (blow down of superheated
water in a pipe – see Fig. 10) [90], of the experimental
observation by Abuaf et al (flashing water flows in conver-
gent-divergent nozzles) [87] – see Fig. 11 was a very inter-
esting and original conformation of the universal character
of this phenomena. The computer code used in this compu-
tation is IVA – see Appendix 1 for some details.

If the bubble departure diameter for nucleate boiling
at hot wall or for flashing of superheated liquid is known,
and if the energy transfer between the wall and the bulk
of the flow is known, so a set of constitutive source terms
are easily computed like the particle number generated
per unit flow volume and unit time, the evaporation mass
source, the associated energy and mass transfer etc – see
[93].

6. IS THE METHOD EXTENDABLE TO OTHER
PARAMETERS?

Yes. It is. We give here an example of extension the
theory of bubble departure to sub-cooled liquids.

Ünal [82] proposed in 1976 to consider the sub-cooled
boiling bubble growth as superposition of evaporation
feed by the conduction from the wall and partial condensa-
tion at the bubble top. Using the imagination of Zuber [54]
that the superheated micro-layer is created before the explo-
sion of the nucleus and neglecting the nucleation diameter
as a small compared to any later bubble size after the origi-
nation we can write the following equation for the growth
of the bubble mass

which for constant vapor density results in

For bubble growth at a wall the expression obtained by
Labuntzov et al. [51] in 1964 can be used

where 

and 6. We assume that the disc

with a cross section D1
2/4  receive the evaporation mass

flow rate corresponding to q2
1 . The constant c1 reflects the

part of the bubble surface D1
2 contacting the sub-cooled

liquid e.g. c1 = 1/2. The condensation is assumed to be
driven by a superposition of molecular heat conduction 

Forschluetz and Chao [84] (1965), and eddies renewal
due to turbulence

Avdeev [53]. Replacing the heat flux components in the
mass conservation equation results in 

where

Note that there is a driving mechanism for a bubble growth
in sub-cooled liquid only if 

The radius of the bubble as a function of time is then

The radius possesses a maximum 

at 

If the maximum of the diameter is smaller then the
bubble departure diameter the bubble will stay at the sur-
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face, else the bubble will depart with the bubble departure
diameter. The bubble growth equation can be rewritten in
dimensionless form as proposed by Zuber [86] in 1961

Note that the form of the equation is as obtained by
Zuber but not the contents of the different terms. As expect-
ed for a given radius there are two solutions for the time

The center of mass velocity corresponding to this bub-ble
growth mechanism is then

The temporal bubble acceleration is

The total bubble acceleration is

Neglecting the virtual mass force we apply now the
momentum balance equations as described in [60] by using
the already described mechanism of the bubble growth and
collapse. The result for horizontal plane at 1 bar pressure
and varying sub-cooling is presented in Fig. 12. For zero
sub-cooling we reproduce well the experimental data as
already discussed in the pervious section. For increasing
sub-cooling the bubble departure diameter decreases. The
zero-values are artificially set to indicate in the graph that
in the particular combination of superheating and sub-
cooling there are no conditions for bubble departure at all.

7. CONCLUSIONS

The new method for description of the energy transfer
between the wall and the bulk successfully explained the
spreading of the data and provided several interesting fea-
tures one of them being predicting of boiling crisis without
empirical correlation for boiling crisis. The method turns
to operate properly for bubble production on heated and
non-heated surfaces, which confirmed the universal charac-
ter of the basic physics used for the model development.
The method is extendable for other situation. To encourage
colleagues to make further steps in this direction an example
is given of extension of the method to predict the bubble
departure diameter in sub cooled flow boiling.

The model was implemented into the IVA computer
code series (see Appendix 1 for brief description) and is
being in use for many practical applications.

NOMENCLATURE
Latin
a2 liquid thermal diffusivity, m2/s
a´ saturation liquid thermal diffusivity, m2/s
B2 = 2R1dR1/d , m2/s
cp2 specific heat of liquid, J/(kgK)
D total differential, dimensionless
D1 bubble diameter, m
D1c critical diameter, m
D1d bubble departure diameter, m
D2,inf = 2R2,inf , average center to center spacing, m
D1d,fc bubble departure diameter for strongly 

predominant forced convection,  V21d V2, m
D1d,nc bubble departure diameter for natural 

circulation, V21d V'2, m
f1w bubble departure frequency, 1/s
f t

1w boundary layer turbulence fluctuation 
frequency, 1/s

G mass flow rate, kg/(m2s)
g gravitational acceleration, m/s2

h' saturated liquid specific enthalpy, J/(kgK)
h" saturated steam specific enthalpy, J/(kgK)

h = h"- h', J/kg
Ja = 2cp2 T2-T'(p) / 1 h), Jacob number, 

dimensionless
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(21)

Fig. 12. Bubble departure diameter at horizontal surface
without flow as function of the wall superheating at 1bar.
Parameter – water sub-cooling. Stagnant liquid

(17)

(18)

(19)

(20)



Ja' = 'c'p T2-T'(p) / " h), Jacob number, 
dimensionless

n"1w active nucleation site density, 1/m2

p pressure, Pa
pc critical pressure, Pa
p' saturated pressure, Pa
Pr2 = 2 /(p2a2), Prandtl number, dimensionless
qw2,nc heat flux from the wall into the liquid during 

natural convection without boiling, W/m2

qw2,nb heat flux from the wall into the liquid during 
pool boiling, W/m2

R1 bubble radius, m
R2,inf = D2,inf /2, half of the average center-to-

center spacing, m
T'(p) saturation temperature at system pressure p, K
T2 liquid temperature, K
Tw wall temperature, K
V1cm center-of-mass bubble velocity at the 

moment of detachment, m/s
V21d tangential velocity in the boundary layer of 

thickness D1d, m/s
u2 liquid velocity in the region between R1 and 

R1,inf’, m/s
V2 volume-averaged fluctuation velocity, m/s
V2 time- and volume-averaged fluctuation 

velocity over, w+ d, m/s

Greek

2 thermal expansion coefficient, 1/K

2.min minimum of the thermal boundary layer 
thickness, m

21 = 2 1 , kg/m3

d time needed from the origination of a bubble 
with critical size to the bubble departure from
the wall, s

w delay time, s
partial differential, dimensionless

2 dynamic viscosity of liquid, kg/(ms)
2 thermal conductivity of liquid, W/(mK)

RT Rayleigh - Taylor instability 

wavelength, m
v2 cinematic viscosity of liquid, m2/s

angle between the flow direction and the 
upwards-directed vertical, - ng, rad
static contact angle between “liquid drop” 
and the wall, rad

1 gas density, kg/m3

2 liquid density, kg/m3

" saturated steam density, kg/m3

' saturated liquid density, kg/m3

surface tension, N/m
2w shear stress, N/m2

time, s
0 angle between the bubble axis and the wall, rad
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Appendix 1: Brief description of the computer code IVA
IVA_5M is a computer code for computational simul-ation

of multi-phase flows. The flow is described by means of three
velocity fields. Each of the fields consists of several chemical
components. The first field presents gas mixtures of up to 13 real
gasses in addition to water vapor. The water-vapor properties
are valid up to 2000bar pressure and 6000K temperature. The
thermal dissociation of the vapor is taken into account. The gasses
may be air, nitrogen, helium, oxygen, carbon dioxide, methane,
carbon oxide, hydrogen, ethane, propane, n-Butane, sulfur dioxide
and argon in arbitrary combination.

The number and the kind of the appearing components have
to be specified as a part of the input. The components are allowed
to move by turbulent or molecular diffusion inside the gas field in
addition to the macro-scale movement in the space of the gas field.

The second and the third velocity fields consist of liquid water
and inert components of different species. In the limi-ting case
of absence of water in one of these fields or in both of them the
inert components are allowed to be a ma-terial being either in
molten state, or in solid-liquid equili-brium state, or in liquid state.
One of the following inert materials may be chosen: uranium
dioxide, nuclear reactor corium (mixture consisting of 76%
UO2, 24% ZrO2), zirconium, zirconium dioxide, stainless steel,
aluminum dioxide, silicon dioxide, iron oxide, molybdenum,
alumi-num and boron oxide. If water is present in the fields 2 or
3 the inert component inside this field is solid being in thermal
equilibrium with the water (having the temperature of the water)
and is allowed to move by turbulent or mole-cular diffusion
inside the corresponding fields in addition to the macro-scale
movement in the space. An example of such situation is boron
oxide and water mixture used frequently in the nuclear reactor
technology.

Each of the three velocity field posses its own velocity and

temperature. Thus, the flow is in a complete thermo-dynamic and
mechanic non-equilibrium with all consequen-ces for interfacial
heat, mass and momentum transfer. 

The fields are allowed to be continuous or disperse. The
transition of the fields between continuum and dispersion as well
as the local size of the dispersions is modeled by means of dynamic
fragmentation and coalescence model-ing. 

The geometry of the space within the flow is simulated, is
described either in Cartesian or cylindrical coordinates. Other
modern capability of the code is the description of multi-phase
flows in multiple interconnected blocks with boundary fitted
orthogonal grids. 

In addition pipe networks are simulated consisting of arbitrary
number of pipes and components like, pumps, valves etc. The
pipe network can be connected with the three dimensional space. 

Local surface permeabilities in the three main directions and
local volumetric porosities are defined as a function of time as
for the 3D space. The same is valid also for the pipe network.

Inside the blocks different kind of structure types can be
simulated: Heat-transmitting 1D-structures and heat-conducting
3D-structures. The heat conducting 3D-struc-tures my have
internal heat sources prescribed by the user. The structures are
connected to the 3D flow in the space or between the pipes by
complete heat transfer mechanism including all known heat
transfer regimes to single, two- and multi-phase flows. Special
kind of structure like a nuclear reactor core can also be defined
and simulated.

The numerical method used for integration of the system of
the resulting partial differential equations is: first order donor-
cell discretization for the convective terms, second order central
differencing for the diffusion terms, first order time discretization,
implicit. The method is characterized by a strong coupling
between the velocity fields obtained by analytical reduction of
the algebraic problem to a pressure equation and successive
substitutions.

The code has powerful visualization systems, SONJA, for
input processing, post-processing, on-line visualization and
move production.

IVA_5M is written in the modern FORTRAN 95 lang-uage
and is running in all modern computers and platforms having
this compiler. SONJA is written on C and works on platforms
having this compiler and OpenGL. These may be either UNIX
workstations or PC’s under LINUX.

Most of the aspects of the code are peer reviewed in many
international journals. The basics of the method and the validation
procedure are carefully documented in [59, 60].
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