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1. INTRODUCTION

The SP-100 space reactor [1] is a fast spectrum lithium-
cooled reactor system designed for use as an orbital power
supply, a lunar or Martian surface power station, or a power
supply for nuclear electric propulsion. It is designed to be
scalable from 10s kWe to 100s kWe with a generic design
of 100 kWe. The energy conversion system is based on a
direct thermoelectric (TE) conversion mechanism. The
TE SP-100 system is made up of a nuclear reactor, a heat
transport system with associated pumps, a thermoelectric
device to convert heat to electricity, and a radiator configu-
ration system to reject waste heat into space. 

The control system is a key element of the reactor design
in terms of meeting space mission requirements such as
economics, reliability, safety, survivability, and life
expectancy. In land-based nuclear power plants, human
operators are available to perform intelligent control
functions necessary for both normal operation and during
accident situations. However, for a space mission where an
uncertain environment, rare events, and communication
delays should be anticipated, all control functions must be

achieved through a sophisticated control system with a
limited degree of human intervention from Earth. In order
to meet mission requirements and support missions with
extended periods of operation, the space reactor control
system needs to have the capability of performance
monitoring and optimization. For instance, in deep-space
missions, the reactor system is expected to have continuous,
remote, and unattended operation for up to fifteen years.
During such an extended period, many thermal and
electric components may experience a significant level of
degradation. In order to reduce mission costs, the operation
parameters should be adjusted to optimize operational
performance according to current operating conditions
and be implemented by a reconfigurable control mechanism.
Many studies have been conducted to control the SP-100
space reactor [2-4]. Whereas previous studies have
focused on normal control of the reactor, the present
paper deals with reconfigurable control of the SP-100
space reactor.

The MPC method has received much attention as a
powerful tool for control of industrial process systems [5-
11]. This method has many advantages over conventional

In this paper, a reconfigurable controller consisting of a normal controller and a standby controller is designed to control
the thermoelectric (TE) power in the SP-100 space reactor. The normal controller uses a model predictive control (MPC) method
where the future TE power is predicted by using support vector regression. A genetic algorithm that can effectively accomplish
multiple objectives is used to optimize the normal controller. The performance of the normal controller depends on the capability
of predicting the future TE power. Therefore, if the prediction performance is degraded, the proportional-integral (PI) controller
of the standby controller begins to work instead of the normal controller. Performance deterioration is detected by a sequential
probability ratio test (SPRT). A lumped parameter simulation model of the SP-100 nuclear space reactor is used to verify the
proposed reconfigurable controller. The results of numerical simulations to assess the performance of the proposed controller
show that the TE generator power level controlled by the proposed reconfigurable controller could track the target power level
effectively, satisfying all control constraints. Furthermore, the normal controller is automatically switched to the standby controller
when the performance of the normal controller degrades.
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infinite horizon control techniques because it is possible to
handle input and state (or output) constraints in a systematic
manner during the design and implementation of the control.
In particular, because of the model predictive control
concept, which repeats the optimization calculation after
measuring inputs and outputs at every time step, it provides a
suitable control strategy for nonlinear time varying systems.
Therefore, the reconfigurable controller employs the MPC
method for a normal controller and also uses the conven-
tional PI control method for a standby controller in case
the performance of the normal controller is degraded. The
model predictive control method has been applied to nuclear
engineering problems [3-4,12]. 

In this paper, the normal controller uses support vector
machines (SVMs), which have been successfully employed
to solve nonlinear regression and time series modeling
problems [13-15]. SVM regression is used to predict the
future output, which is needed in optimizing an objective
functional for the model predictive control. The objective
functional for MPC is minimized by a genetic algorithm
(GA), which is widely used in optimization problems. 

The performance of the normal controller depends on
the prediction capability of the future TE power. Therefore,
if the prediction performance is degraded, the PI controller
of the standby controller begins to work instead of the
normal controller. Performance deterioration is detected by
a SPRT. A lumped parameter simulation model of the SP-
100 space reactor is used to verify the proposed reconfigu-
rable controller.

2. CONTROL SYSTEM DESIGN 

The performance of the model predictive controller for
the SP-100 space reactor has been verified to be excellent
[3-4] but may degrade during significant transient conditions
and time-varying dynamics. In the present paper, in order
to address this potential weakness, the normal controller
is switched to a standby controller whenever the normal
controller experiences degradation. This is accomplished
by continuously monitoring the performance of a model
predictive controller, i.e., the normal controller. The normal
controller is designed using model predictive control metho-
dology and the standby controller is designed using the
conventional PI control method, which has been widely
used in industrial applications. 

2.1 A Normal Controller Using the MPC
Methodology
The model predictive control problem is formulated by

solving on-line a finite horizon open-loop optimal control
problem subject to system dynamics and constraints. Figure
1 shows the basic concept of the model predictive control
[7]. Based on measurements obtained up to time t, the future
dynamic behavior of the process outputs are predicted over
a prediction horizon, assuming some trajectory of control

inputs over a fixed number of future time instants, known as
the time horizon. Present and future control inputs are then
determined such that an open-loop performance objective
functional is minimized. Only the first control input among
the optimized control input trajectories is implemented.
At the next time step, the outputs are measured and the
calculations of the prediction and optimization are repeated
using updated measurements. 

The purpose of taking new measurements at each time
step is to compensate for unmeasured disturbances and
model inaccuracies. In order to achieve a fast response and
prevent the need for excessive control effort, the perfor-
mance objective functional is represented by the following
quadratic function:  

subject to constraints: u(t + k - 1) = 0 for k > M; umin u(t)
umax ; | u(t)| umax, where the parameter determines

the trade-off between the TE power (system output) error
and control drum angle (control input) change between
neighboring time steps, and z is a setpoint (desired TE
power) or reference sequence for the output signal. The
estimate y(t + k | t) is the optimum k -step-ahead prediction
of the system output based on data up to time t. u is the
input change between neighboring time steps. The para-
meters L and M are the prediction horizon and the control
horizon, respectively. The prediction horizon represents
the limit of the instant at which it is desired for the output
to follow the reference sequence. 

In order to obtain optimal control inputs, the system
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outputs are first predicted by using support vector machines
(SVMs) for a function approximation. SVMs were first
applied for function classification problems. However, with
the introduction of Vapnik’s -insensitive loss function
[16], they have been extended and are now widely used in
solving nonlinear regression problems. The basic concept
of the SVM regression is to nonlinearly map original data
x into a higher dimensional feature space. Hence, given a
set of data {(xi, yi)}N

i = 1 where xi is the input vector to SVMs,
yi is the actual output value, and N is the total number of data
patterns, the SVM regression function is expressed as 

where

i (x) is called the feature that is nonlinearly mapped from
the input space x. The parameters w and b are a support
vector weight and a bias, respectively, and are calculated
by minimizing the following regularized risk function:

where  

and are user-specified parameters and L (x, y, f) is called
the -insensitive loss function [16]. The loss equals zero
if the estimated value is within an error level (refer to
Figure 2). The regularized risk function can be rewritten
in the following constrained form:  

The constant determines the trade-off between the flatness
of f(x) and the amount up to which deviations larger than

are tolerated. = [ 1 2 N]T and * = [ *
1

*
2

*
N]T

are slack variables representing the upper constraints and
the lower constraints, respectively, on the outputs of the
system.

The solution to the constrained optimization problem is
given by the saddle point of the Lagrange functional [17]:

The above equation is minimized with respect to the
primal variables w, b, i, *

i, and then maximized with respect
to the nonnegative Lagrangian multipliers i, *

i, i, *
i. After

going through a complex analysis procedure, the regression
function of Equation (2) finally becomes  

where K(x, xi) = T(xi) (x) is called the kernel function.
A number of coefficients i - *

i are nonzero values. The
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Fig. 2. Insensitive Band ( ) and Slack Variables and * for
the SVM Regression



corresponding training data points have approximation error
equal to or larger than and are called support vectors. 

From Equation (8), the current predicted output can be
expressed generally as follows: 

where x(t) = [y(t - nd - 1), , y(t - nd - ny), u(t - 1), ,
u(t - nu), u(t - 1), , u(t - n u)]. The SVM-based
future output prediction can then be calculated as  

where the disturbance estimate d(t/t) is assumed to be
constant over the prediction horizon L and is calculated
as follows:  

The disturbance estimate is used to correct the model fore-
cast and to obtain offset-free control.

In this paper, we propose an SVM-based MPC metho-
dology that is based on a dynamic nonlinear SVM model to
design the normal controller for the SP-100 space reactor.
The optimization problem, which needs to be solved online,
is no longer a linear problem but a complicated nonlinear
problem that requires a large amount of computational
effort. That is, the proposed method formulates a dynamic
nonlinear optimization problem where the objective function
consists of two terms: (i) differences between the SVM
model-predicted values and the desired output trajectory
over a prediction horizon; and (ii) the control energy over
a control horizon. Also, the objective function is subject
to the constraints on the input variables and input steps.
This calculation cannot be completed on time even by fast
computing systems [18]. Due to the complexity of the SVM
model, conventional optimization techniques cannot be
easily applied. 

Therefore, in this paper, the online optimization problem
is solved using a genetic algorithm (GA). The GA is known
to be effective in solving multiple objective functions.
Compared to conventional optimization methods that move
from one point to another, GAs start from many points,
simultaneously climbing many peaks in parallel. Accor-
dingly, GAs are less susceptible to getting stuck at local
minima compared to conventional search methods [19-20].
In the GA, the term chromosome is a candidate solution
that minimizes a cost function. As the generation proceeds,
populations of chromosomes are iteratively altered by biolo-
gical mechanisms inspired by natural evolution such as
selection, crossover, and mutation. The GAs require a fitness

function that assigns a score to each chromosome (candidate
solution) in the current population, and maximizes the fitness
function value. The fitness function evaluates the extent
to which each candidate solution is suitable for specified
objectives. The GA starts with an initial population of
chromosomes, which represent possible solutions of the
optimization problem. The fitness function is computed
for each chromosome. New generations are produced by
the genetic operators, such as selection, crossover, and
mutation. The algorithm stops after the maximum allowed
time has elapsed. 

A chromosome is represented by sg, whose elements
consist of present and future control inputs and has the
following structure [18,21] :  

where t indicates the current time. Assuming we have chosen
the number of chromosomes G, which will constitute the
initial population, the crossover probability pc, and the
mutation probability pm, the algorithm proceeds according
to the following steps:

Step 1 (initial population generation): Set the number of
iterations iter = 1. Generate an initial population consisting
of a total of G chromosomes. The values are allocated
randomly, but they should satisfy both the input and input
move constraints of Equation (1).

Step 2 (fitness function evaluation): Evaluate the objec-
tive function of Eq. (1) for all the chosen chromosomes.
Then invert the objective function values and find the total
fitness of the population as follows :  

where Jg(t) is the objective function value for the g -th
chromosome and the inversion of Jg(t) is a fitness value
of the g -th chromosome. Then, calculate the normalized
fitness value of each chromosome, that is, the selection
probability pg, as follows :  

Step 3 (selection operation): Calculate the cumulative
probability qg for each chromosome using the following
equation :  
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For g = 1, , G, generate a random number r between
0 and 1. Select the chromosome for which qg-1 r qg. At
this point of the algorithm a new population of chromosomes
has been generated. The chromosomes with high fitness
values have a greater chance of being selected.

Step 4 (crossover operation): For each chromosome
sg, generate a random number r between 0 and 1. If r is
lower than pc, this particular chromosome will undergo the
process of crossover; otherwise it will remain unchanged.
Mate the selected chromosomes, and for each selected pair
generate a random integer number z between 0 and M - 1.
The crossing point is the position indicated by the random
number. Two new chromosomes are produced by interchan-
ging all the members of the parents following the crossing
point. The crossover operation might produce infeasible
offspring if the input values at the crossing point do not
satisfy the input move constraints. Therefore, the crossover
operation is conducted only if the input step constraints are
satisfied. 

Step 5 (mutation operation): For every member of each
chromosome sg, generate a random number r between 0
and 1. If r is lower than pm, this particular member of the
chromosome will undergo the process of mutation;
otherwise it will remain unchanged. Each chromosome
should satisfy both the input and input move constraints of
Equation (1) after mutation. Therefore, the mutation
operation is conducted only if the input move constraints
are satisfied.

Step 6 (repeat or stop): If the maximum allowed time
has not expired, set iter = iter + 1 and return to Step 2.
Otherwise, stop the algorithm and select the chromosome
that produced the lowest value of the objective function
throughout the entire procedure.

Although genetic algorithms usually require long
computation time, the above-simplified GA makes it
possible to calculate the optimal control in real time.

2.2  A Standby Controller Using a PI Control
Methodology

The PI controller design is used extensively in industrial
process control. The conventional PI method has advantages
of easy implementation and well-proven technology. In this
paper, a PI controller is designed to substitute for the normal
controller in case of degraded performance of the normal
controller. The discrete PI control logic is as follows:

where z(k) is a setpoint, y(k) is a measured output, and T
is a sampling interval.

3. CONTROLLER PERFORMANCE MONITORING

The performance of the MPC controller depends heavily
on the quality of the output prediction. Therefore, the output
prediction error can be a good measure in monitoring the
performance of the normal controller.  At every new sample
of the prediction error signal, a new mean and a new vari-
ance of the signal are required to assess the performance
degradation of the normal controller. However, this proce-
dure requires a large number of samples to calculate a
meaningful mean and variance. Therefore, SPRT is used
to detect the performance degradation based on the degree
of degradation and the continuous behavior of the normal
controller, without having to calculate a new mean and a
new variance at each sampling instant. The SPRT is a
statistical method developed by Wald [22-23]. 

The performance degradation of the normal controller
should be detected as soon as possible with a very small
probability of making a wrong decision. The SPRT uses
the residuals (difference between the measured output and
the predicted output, y(k) - y(k)). Normally, the residual
sequence is randomly distributed, and the residuals are
nearly uncorrelated and have a Gaussian distribution func-
tion Pi( k, mi, i) under hypothesis i, where k is the residual
signal at time instant k. The performance degradation can
be described in terms of the change in the mean m or the
change in the standard deviation . Therefore, the SPRT
detects controller performance degradation by sensing
alteration of the probability distribution. If a set of samples
is collected with a density function describing each sample
in the set, the overall likelihood ratio is given by  

where H0 represents the hypothesis that the normal controller
is working well and H1 represents the hypothesis that its
performance is degraded. 

By taking the logarithm of the above equation and repla-
cing the probability density functions in terms of residuals,
means, and standard deviations (for a Gaussian density), the
log likelihood ratio can be written in the following recurrent
form:  

When the normal controller is working well, the log likeli-
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hood ratio will decrease and eventually reach a specified
bound A, a value smaller than zero. When the ratio reaches
this bound, the decision is made that the controller is working
well, and the ratio is then reinitialized by setting it equal
to zero. However, when the normal controller is working
abnormally, the ratio will increase and eventually reach a
specified bound B, a value larger than zero. When the ratio
is equal to B, the decision is made that the controller is
degraded. The decision boundaries A and B are chosen
by a false decision probability and a missed decision 

probability 

4. A DYNAMIC MODEL OF THE SP-100 SPACE
REACTOR

The SP-100 system is a fast spectrum lithium-cooled
reactor system that can generate electric power of 100 kW.
The reactor system is made up of a reactor core, a primary
heat transport loop, a thermoelectric generator, and a secon-
dary heat transport loop to reject waste heat into space
through radiators (refer to Figure 3). The reactor core is
composed of small disks of highly enriched (93%) uranium
nitride fuel contained in sealed tubes. The heat generated
in the reactor core is transported by liquid lithium pumped by
sealed electromagnetic (EM) pumps. The interface between
the primary heat transport system and the energy conversion
system is a set of primary heat exchangers. The energy
conversion system is based on a direct TE conversion
mechanism. A temperature drop of about 500 K is
maintained across the TE elements by the cooling effect
of a second liquid lithium loop that transfers the waste heat
from the converter to a heat-pipe radiator. 

A lumped parameter simulation model [24] was
developed for the TE SP-100 system based on the early
work of Seo [25]. The individual modules of the
integrated model, as shown in Figure 4, include a model of
the reactor control mechanism, a neutron kinetics model,
a reactor core heat transfer model, and a heat exchanger
model coupled with the TE conversion model. The
integrated model involves a set of coupled nonlinear
ordinary differential equations. 

A point reactor kinetics model with six delayed neutron
groups is used to describe the dependence of nuclear reactor
power on the reactivity change. The core model takes into
account three mechanisms of reactivity feedback: fuel
Doppler feedback, reactor core expansion feedback, and
reactor core coolant temperature feedback. The external
reactivity control in the developed model uses the
mechanism of the stepper motor control drum system [2].
The control drum shaft can be rotated from 0 to 180 degrees.
The control voltage is transformed into a set of 27 V
rectangular pulses with frequency varying from 0 to 1.33
Hz. These pulses are then converted into discrete
movements of the shaft connected to the control drums.

A simplified reactor core heat transfer model calculates
the fuel temperature, the cladding temperature, and the
average core coolant temperature. In the SP-100 reactor
system, the reactor coolant enters the reactor vessel and
flows up through the annular space between the reactor
vessel and the core baffle until it reaches the upper plenum.
At the upper plenum, the reactor coolant reverses and flows
downward through the triangular fuel channels into the lower
plenum. The total pressure drop in the reactor core consists
of the pressure drop in the annular space, the pressure drop
in the triangular fuel channel, the pressure drop in the upper
plenum, and the pressure drop in the lower plenum. Because
the available hydraulic data is limited, the simulation model
has only explicitly dealt with the pressure loss in the annular
space and in the triangular fuel channel.

The electric power is generated by 3 loops 12 primary
heat exchangers 30 channels 480 TE cells. The hot
shoes of the TE cells are mounted on the two surface plates
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of the 12 primary heat exchangers. The cold shoes of the
TE cells are maintained at a lower temperature by cooling
effects of the secondary lithium loop, which is connected to
radiators through heat pipes. Because there is a temperature
gradient between the hot shoes and the cold shoes of the
TE cells, when heat is conducted from the hot shoe of a
TE cell to its cold shoe, electric power is generated due
to the Seebeck effect [26]. A single node for the radiator
model is used to describe the heat removal by the radiators.
It is assumed that the characteristic temperature of the
coolant in the radiator is equal to the outlet temperature.

Table 1 presents a comparison between a current
dynamic model [24] and SNPSAM [25] at the rated
operation conditions. Most of the simulation results are in
good agreement with the SNPSAM design parameters.
Noticeable differences are shown for the TE hot side and
cold side temperatures. The differences are attributed to
the addition of a secondary lithium loop to the developed
simulation model whereas TE cold shoes are directly
connected to radiators in the SNPSAM design.
Nevertheless, the calculated electric conversion efficiency
is close to the value of SNPSAM. Therefore, the
developed simulation model can be used to design a
credible controller for the SP-100 space reactor system.

5. APPLICATION TO THE SP-100 SPACE REACTOR

A schematic block diagram of the reconfigurable cont-
roller is presented in Figure 5. The controllers for the power
level control of the SP-100 space reactor are subject to the
following two constraints:

The sampling interval T is 1 second. The external reactivity
control uses the mechanism of the stepper motor control
drum system [2]. The control drum angle of the stepper
motor shaft can be rotated from 0 to 180 degrees. The maxi-
mum angular velocity of the drums is 1.4 /sec.

The normal controller predicts the future TE generator
power by using the SVM-based reactor model, which
consists of the control drum angle and the past and current
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Parameters
SNPSAM Current

Design [24] Model

Nominal thermal power (kW) 2000.0 2000.3

Electric power output (kW) 112.0 112.6

Thermal efficiency (%) 5.59 5.63

Core inlet temperature (K) 1254.0 1254.0

Core outlet temperature (K) 1284.0 1284.0

Fuel temperature (K) 1376.0 1376.0

Cladding temperature (K) 1288.0 1288.0

TE hot side temperature (K) 1237.0 1228.5

TE cold side temperature (K) 857.0 841.8

Table 1. Comparison Between SNPSAM and a Current
Dynamic Model [4] 

Fig. 5. Schematic Block Diagram of the Proposed
Reconfigurable Controller

Fig. 6. Training Data Plot
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TE generator power. The optimal control input is then
calculated by minimizing the objective function of Equation
(1) using the GA. The genetic algorithm usually converges
at around the 30th generation and stops unconditionally at
the 50th generation every time step. It takes about 0.7 sec
to evolute 50 generations for every time step (note that the
sampling period is 1 sec). The following exponential radial
basis function (ERBF) kernel is used in this paper:  

The most relevant design parameters for the SVM regre-
ssion model are the insensitivity zone , the regularization
parameter , and the kernel parameter , which means
kernel width. The SVM model parameters were chosen
through many simulations. In general, an increase of the
constant penalizes larger errors, which leads to a decrease
of approximation error. An increase in the insensitivity zone

corresponds with a reduction in requirements for the
accuracy of approximation and also decreases the number
of support vectors, leading to data compression. 

The regression function by SVMs is solved by using
one-fifth of the data set shown in Fig. 6. Two hundred
training data points are collected at every fifth interval
(one per five data points) from the data of 1000 sampling
points. Among these training data, 172 support vectors are
determined. 

Figure 7 shows the detailed simulation results of the
proposed reconfigurable controller for power transients.
The desired power is 100% initially and decreases to 50%
by ramp from 100 sec and recovers to 100% by step at 350
sec. Also, it decreases from 100% to 50% by step at 550 sec
and increases from 50% to 100% by ramp from 750 sec.
It is shown that the TE generator power follows its desired
value very well. It was found that the proposed reconfigu-
rable controller meets several constraints very well and
yields fast and stable responses. Figure 7(e) shows that the
normal controller is not switched to the standby controller
during the entire simulation time since the normal controller
is not observed to be degraded. Figure 7(f) shows the trend
of the best fitness function value, which is affected by the
magnitudes of the estimated output error and the control
input move. The fitness value decreases abruptly at the
moment that the desired TE power changes, because large
output error takes place.

Figure 8 shows the simulation results of the MPC
controller and the PI controller for power transients (the
same power transients were assumed for these simulations).
As known from Figure 7(e), since only the normal controller
(MPC controller) of the reconfigurable controller works
well during all the simulation time, the response of the
MPC controller is the same as that of the reconfigurable
controller. As shown in Fig. 8(b), the response of the PI

controller is delayed and the overshoot and undershoot of
the PI controller response are larger than those of the MPC
controller. The proportional gain Kp is 4.0 10-5 and the
integral gain KI is 2.0 10-6. These gains were chosen
through many simulations.

Figure 9 shows the performance of the proposed recon-
figurable controller in the case where a system dynamics
parameter changes along with power transients. As shown
in Fig. 9(c), the fuel temperature coefficient decreases by
ramp from 400 sec and increases by step at 700 sec. While
the parameter deviates considerably from its normal value,
the output prediction quality decreases. This in turn induces
the normal controller to be switched to the standby (PI)
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controller. The undershoot response at 700 sec is induced by
the abrupt parameter change. The reconfigurable controller
shows good performance in spite of a parameter change
and power transients.

Figure 10 shows the simulation results of the MPC
controller and the PI controller for power transients accom-
panied by a parameter change. The parameter change of
this simulation is assumed to be the same as that of Figure
9. The change of the fuel temperature coefficient lowers
the output prediction performance of the MPC controller,
which degrades the MPC controller between 550 sec and
750 sec. During this degraded period, the measured TE

72 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.39  NO.1  FEBRUARY 2007

NA et al.,   Development of a Reconfigurable Control for an SP-100 Space Reactor

Fig. 10. Performances of Other Controllers for Power
Transients Accompanied by a Parameter Change

Fig. 9. Performances of the Proposed Reconfigurable
Controllers for Power Transients Accompanied by a Parameter

Change



power does not follow its desired value. Except for at around
the time (700 sec) of the abrupt parameter change the PI
controller performance is not significantly different from
the simulation result of Figures 8(b). 

From simulations of setpoint changes such as a step
increase and decrease and a ramp increase and decrease,
and from simulations of parameter changes, it was found
that the controlled output follows the setpoint change well
and the controlled output is predicted well through a non-
linear identification model identified by the SVMs.

The proposed reconfigurable controller outperforms
both the MPC controller and the PI controller in transient
situations of step and ramp changes of the reference input
as well as in transient situations accompanying a parameter
change. The proposed control algorithm is coded with
MATLAB language [27]. However, MATLAB calculation
speed is very slow for computations that include the loop
calculation. In spite of the slow loop calculation speed, it
takes about 0.7 sec to simulate 1 sec by a 1.8 GHz PC.
Therefore, it can be implemented in real time.

6. CONCLUDING REMARKS

In this paper, a reconfigurable controller consisting of
a normal controller and a standby controller was designed
to control the TE power in the SP-100 space reactor. The
normal controller uses a model predictive control method
where the future TE power is predicted using SVM regre-
ssion. A genetic algorithm was used to optimize the normal
controller. In cases where the normal controller is degraded,
the standby controller begins to work instead of the normal
controller. Performance deterioration is detected by a SPRT.
The TE generator power level controlled by the proposed
reconfigurable controller could track the target power level
effectively, satisfying all control constraints. Furthermore,
the normal controller is automatically switched to the
standby controller when the normal controller performance
shows degradation.
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