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1. INTRODUCTION

If a flow blockage in an assembly of a liquid metal
reactor occurs, then it will probably affect the integrity of
the fuel assembly at the initiating stage and could eventually
result in a cooling deficiency of the core. It is difficult to
directly detect a flow blockage in an assembly, because a
flow blockage occurs in the fuel assembly. Therefore, in
this work, we have studied the temperature fluctuations
in the upper plenum of a liquid metal reactor in order to
develop a partial blockage detection system. From a review
of previous studies, no significant temperature increase in
the upper plenum is expected at an early stage of an event.
However, the characteristics of temperature fluctuations
in the upper plenum will be changed by a change of the
temperature profile at the exit of the assembly. Hence, the
characteristics of the temperature fluctuations in the upper
plenum could provide information about a partial blockage
of an assembly in a liquid metal reactor [1-3].

To develop a detection algorithm for a partial blockage
in a reactor core assembly, an experiment or analysis for
temperature fluctuation in the upper plenum of an entire
core is required. Previous studies of this subject have been
performed only in small facilities, due to the difficulty in
performing such experiments. To investigate the charac-

teristics of the temperature fluctuations in the upper plenum
of an entire core, we have numerically analyzed the fluc-
tuating temperature field in the upper plenum beyond the exit
of the assemblies in a reactor core by using a computational
fluid dynamics code. Since the Large Eddy Simulation
(LES) turbulence model is known to be suitable for analy-
zing the time dependent variables of a flow, we adopted
the Smagorinsky LES model in the commercial flow solver
CFX-5.7 to analyze the temperature fluctuation in the upper
plenum [3-4]. Particularly, regarding the computational
work involved , the LES model is known to be more suitable
than the Direct Numerical Simulation DNS  model for
handling high Reynolds number cases. Since the Reynolds
number in the upper plenum is about 107, we used the LES
turbulence model in the CFX-5.7 code to analyze the
temperature fluctuations in the upper plenum caused by a
partial flow blockage in an assembly. 

To analyze the temperature fluctuation in the upper
plenum, the profiles of the exit temperature and the exit
velocity of the assemblies in an entire core are required to
establish the initial boundary conditions. These conditions
can be obtained from the results of a thermal hydraulic
analysis of an entire core and a sub-channel analysis of a
partially blocked assembly. 

After analyzing the temperature fluctuations in the
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upper plenum under various blockage conditions, we studied
their statistical characteristics, such as the root mean square,
the standard deviation, the skewness, and the kurtosis of the
fluctuation data. Then, we developed a detection algorithm
based on the feed-forward neural network model with the
changes of the root mean square, the standard deviation,
and the skewness of the fluctuation data as inputs, and the
size and the location of the blockage conditions as outputs.
Although the results of the analyses had some limitations,
such as the accuracy of the sub-channel analyses and the
number of LES meshes, we propose that the developed
neural network model with the fluctuation data in the upper
plenum could be a possible alternative for detecting a flow
blockage through learning and validating some blockage
cases of an assembly. 

2. ANALYSIS MODEL

2.1 Calculation Domain
We have been developing a pool-type liquid metal reac-

tor, the Korea Advanced Liquid Metal Reactor (KALIMER),
to achieve better  performance and safety. Figure  1 shows
the simplified shape of the 1/6 symmetric breakeven core
and the distributions of the flow velocity and temperature
at the exit of the assemblies. In addition, Figure 1 shows
the horizontal location of an assembly which is assumed to
be partially blocked for analyzing the temperature fluctu-
ations in the upper plenum. We assumed that the assembly
(3, 2) was partially blocked, as shown in Fig. 1. Figure 2
shows, in centimeters, a simplified cross-sectional shape
of the KALIMER upper plenum beyond the exit of the core

and the calculation domain for analyzing the temperature
fluctuations in the upper plenum. In KALIMER, there
exist several internal structures, such as the Upper Internal
Structure (UIS), primary pump, and the Intermediate Heat
Exchanger (IHX). The height of the calculation domain
is 1 m and its equivalent radius is 1.82 m. By considering
similar analyses with sufficient accuracy, the calculation
domain was selected as shown in Fig. 2 [4-5].

To analyze the temperature fluctuation in the upper
plenum, approximately 50,000 unstructured tetrahedral
meshes and 4000 prism meshes were used. Near the wall,
we used pyramid meshes 0.01 m in size. The time step was
0.002 seconds for a 4 sec transient calculation. Limited by
computer resources, our numerical grids, time step, and
calculation domain used in the present study for the LES
might not be sufficient to achieve the exact analyses.
However, we assumed that they would be sufficient for a
feasibility study for designing a flow blockage detection
system. 

The rotational symmetry condition was used for the
boundary conditions at the symmetry plane (1/6 divided
wall) along the axial direction. The adiabatic and the no slip
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Fig. 1. Symmetric (1/6) Breakeven Core

Fig. 2. Simplified Shape of Upper Plenum



conditions were used for the wall boundary conditions in
contact with the UIS and IHX. We used the open condition
in the CFX at the upper boundary condition [6]. 

2.2 Initial Boundary Conditions
The profile of the exit temperature and the exit velocity

of each assembly in the core were used for the initial boun-
dary conditions in the analysis domain. The distributions
of the flow velocity and the temperature at the exit of the
assemblies in the 1/6 symmetric breakeven core were
obtained from the thermal hydraulic analysis code of
SLTHEN developed at KAERI [7]. From the viewpoint
of an engineering problem, the assembly-wise distribution
of the exit velocity and the exit temperature seemed to be
reasonable initial boundary conditions by which to analyze
temperature fluctuation in the upper plenum. Otherwise,
we assumed a homogeneous profile of the exit velocity
and the exit temperature at the outlet of each assembly,
respectively, except for the assumed partially blocked
assembly in the core. 

In addition, the profile of the exit temperature of the
partially blocked assembly was required as an initial boun-
dary condition for evaluating any change of the temperature
fluctuation characteristics due to a partial flow blockage
in an assembly. We performed some sub-channel analyses
of a partially blocked assembly to calculate the profile of
the exit temperature at the outlet of the assembly, and the
profile was  used for the initial boundary conditions. The
sub-channel analysis was performed by using a sub-channel
analysis code of MATRA-LMR, which was developed at
KAERI [7-9]. The sub-channel analysis code has some
limitations in that it cannot calculate the outlet temperature
of an assembly exactly, because it is not based on the full
3-D model. However, we supposed that its results would
be suitable for studying the characteristics of the outlet
temperature distribution of an assembly.

2.3 Assumption of the Blockage Conditions
We analyzed various blockage conditions for calculating

a temperature fluctuation in the upper plenum due to a partial
blockage in an assembly. Figure 3 shows the assumed
blockage conditions in the assembly for this study. We
performed analyses of the temperature fluctuation according
to size changes of the partial blockage, 1.1%, 4.4%, 10% and
17.8%, as well as location changes of the partial blockage,
center, middle, and edge, in the assembly. Of 540 channels
in an assembly, the number of blocked channels for each
blockage size was 6 channels, 24 channels, 54 channels,
and 96 channels respectively. The center, middle, and edge
locations indicate that the center of the blockage channels
was located at the center, middle, or edge in an assembly,
as shown in Fig. 3. Furthermore, we analyzed the profile
of the exit temperature according to changes of the channel
height where a blockage occurred. The exit profile of the
temperature was dependent on the distance from the bloc-

kage location in the axial direction to the exit of the assembly
due to the internal thermo-hydraulic dynamics, such as
an internal cross flow, conduction, and convection in the
assembly. Therefore, we analyzed two representative heights
of 2/4 and 1/4 along the axial direction. The height of most
blockage conditions was assumed to be half (2/4) of the
assembly height, while the height of the remaining bloc-
kages were assumed to be 1/4 of the assembly height.
However, we did not analyze the 3/4 height, because it
seemed to show a clearer difference in the profile of the
exit temperature. 

In addition, we evaluated the characteristics of a tem-
perature fluctuation according to a change of the flow
rate due to a partial blockage in an assembly. We analyzed
each blockage condition with an unchanged flow rate and
a reduced flow rate in an assembly, respectively. We refer
to those cases with a reduced flow rate as non-isovelocity
cases and those without a reduction of the flow rate as
isovelocity cases.  

We performed sub-channel analyses with two flow
conditions (isovelocity and non-isovelocity) for each bloc-
kage condition. The reduced flow rate of each blockage
condition could be calculated from a friction analysis of
the area of the blockage channels in an assembly. The
reduced ratio of the flow rate in an assembly was calculated
as 4% under the 1.1% blockage conditions, 6% under the
4.4% blockage conditions, 11% under the 10% blockage
conditions, and 18% under the 17.8% blockage conditions.
We have not determined an exact value for flow reduction
in the case of a partial blockage, as yet. Hence, we consi-
dered isovelocity cases where the flow rate was not reduced
and non-isovelocity cases where the flow rate was reduced
according to a change of the friction ratio due to a blockage
size. Table 1 shows all the cases of the assumed partial
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Fig. 3. Blockage Locations of Assembly



blockage conditions in this study and the initial boundary
conditions (temperature and flow) used in the fluctuation
analysis for each blockage condition. In the table, the case
“ID” column refers to the various blockage cases analyzed
in this paper.

Figure 4 shows the representative exit temperature
profile of each partially blocked assembly from the sub-
channel analysis along the diagonal direction (A-A') in Fig.
3. The exit profile refers to the profile of the exit temperature
at the outlet of the partially blocked assembly. 

As previously mentioned, we assumed 3 blockage
locations (center, middle, and edge) in the assembly. The
exit profiles of the temperature of the partially blocked
assembly showed different shapes from those of the assumed
blockage channels, because the exit temperature was affected
by not only the inner blockage channels but also the thermal-
hydraulic dynamics and the distance from the blocked area
to the exit of the assembly. To represent the distribution
of the exit temperature of a partially blocked assembly,
we divided the exit of the partially blocked assembly into
2 initial boundary regions. Sizes of the boundary region
and the temperatures of boundary conditions were obtained
from an analogy of the exit temperature profile calculated by
sub-channel analyses according to the blockage conditions.
We assigned the averaged temperatures to the 2 boundary
regions for each blockage condition, and we determined
the size and the averaged temperature of each region from
the results of the sub-channel analyses by an engineering
judgment. In Table 1, temp1 in each blockage case was
assigned to the blocked region, and temp2 was assigned to
the non-blocked region. This method may reduce numerical
accuracy, but we thought that the effects of the heteroge-
neous profiles at the exit of the assembly were sufficiently
considered by the divided regions of the assembly for

analyzing the temperature fluctuation in the 1/6 upper
plenum. 

We used 3.7%, with the auto-computed length scale,
for the value of the turbulence intensity at the initial boun-
dary condition for the LES analysis at the inlet boundary
condition, because it is known to be sufficient for a nominal
turbulence and it is recommended as a general estimate in
the absence of experiment data by the CFX code. 

3. RESULTS OF THE TEMPERATURE FLUCTUATION
ANALYSIS

3.1 Analysis Results
To compare the analysis results of each case, we used

a monitoring point that could represent the temperature at
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Size Loc.
height

Vel. templ1 templ2 Case
(%) (c,m,e) (m/sec) (K) (K) ID

0% N/A N/A 6.55 817 817 0

1.1% Center 2/4 6.55 844 833 1

1.1% Middle 2/4 6.55 844 833 2

1.1% Edge 2/4 6.55 833 833 3

4.4% Center 2/4 6.55 868 833 4

4.4% Middle 2/4 6.55 853 833 5

4.4% Edge 2/4 6.55 898 833 6

10% Center 2/4 6.55 898 833 7

10% Middle 2/4 6.55 883 833 8

10% Edge 2/4 6.55 918 833 9

17.8% Center 2/4 6.55 918 833 10

17.8% Middle 2/4 6.55 918 833 11

1.1% Middle 1/4 6.55 836 836 12

4.4% Middle 1/4 6.55 841 836 13

10% Middle 1/4 6.55 844 836 14

17.8% Middle 1/4 6.55 848 836 15

1.1% Center 2/4 6.29 853 843 16

1.1% Middle 2/4 6.29 853 843 17

4.4% Center 2/4 6.16 882 848 18

4.4% Middle 2/4 6.16 882 848 19

10% Center 2/4 5.83 928 856 20

10% Middle 2/4 5.83 928 856 21

17.8% Center 2/4 5.37 973 873 22

17.8% Middle 2/4 5.37 973 873 23

1.1% Middle 1/4 6.23 845 845 24

4.4% Middle 1/4 6.16 854 849 25

10% Middle 1/4 5.83 868 860 26

17.8% Middle 1/4 5.37 893 878 27

Table 1. Assumed Blockage Conditions

Fig. 4. Representative Results of Sub-channel Analyses



every time step at a point in the numerical grid. Figure 5
shows the representative temperature fluctuations of each
case at a selected monitoring point during 4 sec  interval. We
selected a monitoring point at 10 cm along the z-direction
at the center of the blocked assembly in a planar direction
beyond the exit of the assembly in the upper plenum. In
the isovelocity cases, we did not find an abrupt change of
the temperature fluctuation characteristics in the upper
plenum even though the temperature profiles at the exit
of the blocked assembly were different according to the
blockage conditions. However, an abrupt change of the
temperature fluctuation characteristics appeared in the
non-isovelocity cases.

From the analyses of the results, we found the charac-
teristics  of the temperature fluctuation caused by a partial
blockage in an assembly. The flow rate (exit velocity) in a
partially blocked assembly was one of the major parameters
affecting the temperature fluctuations. In addition, the

differences of the temperature fluctuation characteristics
in the non-isovelocity cases were more apparent than
those in the isovelocity cases; these differences were caused
by the increased exit temperatures in all the regions of the
blocked assembly as well as by the effects of the turbulence
mixing, which were maximized by a change of the velocity.
Figure 5 shows some results of the fluctuation analysis at
the selected monitoring point in the upper plenum, and
“normal” in the figure means that the assembly was not
blocked. 

3.2 Statistical Analysis
To develop a partial blockage detection algorithm, we

studied some statistical characteristics of the temperature
fluctuation data in the upper plenum taken from the blockage
cases. To clearly represent the statistical characteristics
of the temperature fluctuation of each case, we introduced
the root mean square, the standard deviation, the skewness,
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and the kurtosis of the temperature fluctuation data. To
evaluate the characteristics of the fluctuation data, we
analyzed the fluctuation data during the second half (2 sec)
of the total 4 sec transient by considering the exit velocity
of the sodium in the core, because we assumed that the
initial temperature field in the upper plenum was constant
for the LES analyses.

By evaluating the statistical parameters of the fluctuation
data, we investigated the relationships between the size
and the location of each blockage condition and the changes
of the root mean square, standard deviation, skewness,
and the kurtosis of the temperature fluctuation data. The
root mean square, the standard deviation, and the skewness
were found to have certain relationships with the blockage
conditions. However, the kurtosis was nearly independent
of the blockage conditions. The statistical parameters of
the non-isovelocity cases abruptly changed and showed
complex nonlinear relationships between the analysis cases
with the blockage conditions and the normal condition.
These relationships  originated from an abrupt change of
the exit temperature profile and from a change of the flow
rate at the exit of the assembly. Additionally, we found that
the temperature fluctuation was originally slightly skewed
in the upper plenum under the normal condition and that
the skewness in the upper plenum had a weak relationship
with the location of a blockage due to the effects of the
neighboring assemblies in the isovelocity cases. This result
was somewhat different from those of the previous studies.
Some previous studies have easily found a change of the
skewness of the temperature fluctuations beyond the exit of
an assembly without considering the effects of the neigh-
boring assemblies in a whole core, because most of the
previous studies that found a change of the skewness were
based on an experiment or an analysis for a single assembly
or a small-scaled facility [1-2,10].

To establish the response time of the measuring device,
we performed a fast Fourier transform (FFT) analysis using
the temperature fluctuation data. We found that the maxi-
mum frequency of the temperature fluctuation was about 15
Hz and that it was independent of the position of the moni-
toring points and the blocked conditions of the isovelocity
and non-isovelocity cases. Accordingly, we determined
that the response time should be shorter than 13 msec.
The response time was calculated from the inverse of the
maximum frequency divided by 5, which meant a ratio
for a sufficient resolution to represent the frequency of
the signal characteristics in general. We think that a fast-
response thermocouple would satisfy the above mentioned
criteria [11].

4. NEURAL NETWORK MODEL FOR DETECTING A
FLOW BLOCKAGE

4.1 Developed Neural Network Model
From the analogy in Section 3, we found the possibility

of detecting a partial flow blockage in an assembly from

the relationships between the partial blockage conditions
and the statistical parameters. We did not find a clearly
linear relationship between the statistical parameters of
the fluctuation data in the blockage conditions and those
of the normal condition. Therefore, we introduced a neural
network model that could identify the nonlinear relationships
between various parameters. We designed a two hidden-
layered neural network model of a learning algorithm
with a scaled conjugate gradient [12]. The inputs of the
neural model were a change of the root mean square, the
standard deviation, and the skewness between the variously
assumed blockage conditions and the normal condition.
The outputs of the model were the location (center, middle
and edge) and the sizes of the various blockage conditions.
The two hidden layers consisted of 7 neurons and one bias
neuron in each layer. The hyperbolic tangent function
was used as an activation function for each neuron. The
neural models using the isovelocity cases and the non-
isovelocity cases were learned twice, because the charac-
teristics of the two cases showed a large difference. Finally,
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the neural model learned the relationships between the
inputs and the outputs corresponding to various blockage
conditions. Figure 6 shows the results of learning  for the
neural network model. In the figure, the cases refer to the
various blockage conditions, corresponding to the case
ID column of Table 1. As shown in the figure, the model
had a good capability to retrieve the location and the size
of the blockage conditions. 

4.2 Validation of Neural Model
To validate the developed neural model, we analyzed

new blockage conditions, as shown in Table 2. As shown in
the table, we analyzed different middle blockage conditions
with a 7.2% (36 channels) blockage and a 13.3% blockage
(72 channels) at 2/4 and 1/4 heights, respectively, which had
not been used in the earlier learning phase of the developed
neural model. Figure 7 shows the results of the sub-channel
analyses, and Fig. 8 shows the temperature fluctuation
data. 

The locations and the sizes of blockage conditions for
the validation were retrieved by the neural model. Figure
9 shows the target value and the retrieved values by the
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Size Loc.
height

Vel. templ1 templ2 Case
(%) (c,m,e) (m/sec) (K) (K) ID

7.8% Center 2/4 6.55 883 833 1

13.3% Middle 2/4 6.55 908 833 2

13.3% Middle 1/4 6.55 846 836 3

7.8% edge 2/4 6.55 875 833 4

7.8% Middle 2/4 5.99 904 853 5

7.8% Middle 1/4 5.99 861 855 6

13.3% Center 2/4 5.57 951 860 7

Table 2. Blockage Conditions for Validation

Fig. 7. Results of Sub-channel Analyses for Validation

Fig. 8. Temperature Fluctuation Data for Validation

Fig. 9. Results of Validation



model. The results showed a good agreement with all the
validation cases. Thus, the developed neural network model
has been proven a good alternative for detecting a partial
flow blockage in an assembly of a liquid metal reactor.

5. CONCLUSIONS 

We have developed a neural network model for detec-
ting a partial flow blockage in an assembly of a liquid
metal reactor through numerical analyses of a temperature
fluctuation in the upper plenum of a liquid metal reactor.
The developed neural network model for a partial flow
blockage was based on the changes of the statistical charac-
teristics of the temperature fluctuation data. To analyze the
temperature fluctuation in the upper plenum, we performed
numerical analyses using the LES turbulence model in
the CFX code and evaluated its statistical parameters. We
developed a flow blockage detection algorithm based on
the neural network model using changes of the statistical
parameters of the temperature fluctuation data corresponding
to the partial flow blockage conditions in an assembly.
Although the results of the analyses had some limitations,
such as the accuracy of the sub-channel analyses and the
LES meshes, we propose that the developed neural network
model using the fluctuation data from the upper plenum
could be an alternative for detecting a flow blockage. Further
experimental research will focus on improving the detection
algorithm for a partial flow blockage of an assembly.
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