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1. INTRODUCTION

Wavelets are useful in many different fields of science
and engineering. Examples include sound analyses,
decomposition and reconstruction of visual data, and
detections of edges and singularities [1,2]. In addition,
several researchers have tried to solve differential equations
using orthonormal wavelet functions [3], including the
neutron diffusion equation [4,5] and neutron transport
equation [6].

In this paper, the focus is on the detection of singu-
larities for processing signals using the wavelet theory. It
is well known that the neutron noise theory allows
monitoring and diagnosis of many reactor operating
parameters and conditions. The neutron noise theory has
been used for diagnostic purposes, for the identification
of abnormal situations and for the estimation of dynamical
core parameters when the reactor is at steady-state
conditions. Many previous works can be found in the
literature, and more can be found in the references therein
[7,8,9,10]. In recent years, applications of soft computing
and artificial intelligence techniques has drawn particular
attention [11,12,13]. Over the past several decades, many

significant contributions to the neutron noise theory have
been reported. Most of these studies are based on the
frequency domain and most address the signals at steady-
state conditions, but the techniques can be used successfully
for diagnoses of many practical systems. In this work, the
primary concern is on the diagnoses of parameter changes
in nuclear reactors with the time-domain approach using
wavelet theory. First, the de-noising capability of the
wavelet transform is exploited to make plant signal
smoother and more readable. Second, method of detecting
abrupt changes in a dynamics system is investigated. The
method is then applied to a research-reactor dynamics
model. In this work, the orthonormal basis of compactly
supported wavelets constructed by Daubechies [1] is used.

2. WAVELET THEORY 

One of the important features of wavelets is a multi-
resolution analysis (MRA). This enables the construction
of a hierarchy of approximations to functions in various
subspaces. An MRA of L2(R) is defined as a set of closed
subspaces Vj with j Z that exhibit the following

Wavelet theory was applied to detect a singularity in a reactor power signal. Compared to Fourier transform, wavelet
transform has localization properties in space and frequency. Therefore, using wavelet transform after de-noising, singular points
can easily be found. To test this theory, reactor power signals were generated using the HANARO (a Korean multi-purpose
research reactor) dynamics model consisting of 39 nonlinear differential equations contaminated with Gaussian noise. Wavelet
transform decomposition and de-noising procedures were applied to these signals. It was possible to detect singular events such as
a sudden reactivity change and abrupt intrinsic property changes. Thus, this method could be profitably utilized in a real-time
system for automatic event recognition (e.g., reactor condition monitoring).
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properties:
1) Vj Vj+1,
2) ( ) Vj (2x) Vj+1 and (x) V0 (x ) V0,

3)      Vj is dense in L2 (R) and Vj = {0},

4)  A scaling function (x) V0 exists such that the set
{ (x l) l Z} is the basis of V0.

Consequently, the sequence (hk) l2(Z) exists such that
the scaling function satisfies the two-scale difference
equation

The set of functions { j.l (x) | l Z} with j.l (x)=2j/2 (2jx l)
is the orthonormal basis of Vj.

The complementary space of Vj in Vj+1 is denoted by
Wj ; that is Vj+1=Vj Wj. This satisfies following properties:
1) Wk Wl  if  k l
2) w(x) Wj w(2x) Wj+1 and w(x) W0 w(x ) W0,

3) Wj=L2(R),

4) Afunction (x) W0 exists such that the set { (x l)
l Z} is the basis of W0.

A function (x) is termed a mother wavelet. As the mother
wavelet is also an element of V1, the sequence (gk) l 2(Z)
exists such that

The set of functions { j,1(x) l Z} with j,1(x)=2j/2 (2jx-
l) is the orthonormal basis of Wj. The Daubechies
coefficients hk and gk are related by 

where N is the Daubechies order.
In this study, fast wavelet transform (FWT) [14] is used

to de-noise the signal and to detect the singularities.
Assuming that a finite sequence sk

0, k =1,2,...K, is given,
the FWT of this sequence can then be written as:

and the inverse fast wavelet transform (IFWT) can be
written as:

FWT is a decomposition process of the original
sequence. The original sequence is decomposed into
approximation coefficients (s j) and detail coefficients (d j).
The approximation coefficients contain low-frequency
information and the detail coefficients have high-frequency
information such as edges or discontinuities. The approxi-
mation coefficients become input signals recursively to the
next-stage transform. Reversely, IFWT is a reconstruction
process. Fig. 1 shows the decomposition and reconstruction
processes of FWT and IFWT.

3. DE-NOISING USING THE THRESHOLDING
ALGORITHM

In addition to the advantages related to its multi-
resolution properties, the wavelet transform shows another
important characteristic that can be exploited in the signal
domain. This is the capability of discriminating a typical
“noise” process from a typical “signal” process.
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Fig. 1. Schematic Diagram of the Fast Wavelet Transform (FWT)
and Inverse Fast Wavelet Transform (IFWT) 

(a). Decomposition Process of FWT

(b). Reconstruction Process of IFWT.



The de-noising capability is based on the different
evolution across the scales of the detail coefficients (d j)
maxima, depending on the signal regularity degree, defined
in terms of the Lipschitz exponent [15]. The detail coefficient
maxima that have negative Lipschitz exponents tend to
vanish as the scale increases, whereas this does not happen
if the maxima are characterized by positive exponents.
Fortunately, fluctuating noise causes negative Lipschitz
exponents in the signal; therefore, it is possible to remove
the noise from the corrupted signal by rejecting maxima
whose Lipschitz exponents are negative. To select these
maxima, thresholding algorithm can be used [16]. For a
signal whose size is n, the threshold level (t) is given by

Where is the noise level of the signal. A simple choice for
the threshold value is based on the idea of “de-noising”,
which attempts to eliminate pure noise terms. For white
noise, can be estimated very well, for example by a robust
scale estimate applied to the finest scale wavelet coefficients.
Hence, it is assumed that is known. Assuming the noise
is Gaussian allows the use of the property that for X1,...,
Xn i.i.d. N(o, 2).

Hence, the threshold will zero out for every term
that has all noise and no signal components.

To de-noise the signal using the wavelet thresholding
method, the following procedure is used:

First, the wavelet transform of the noisy signal is
performed. Wavelet coefficients s and d are then obtained. 

Secondly, detail coefficients d are passed through the
thresholding function. There can be two choices: hard or
soft thresholding. The hard-thresholding function and
soft-thresholding function are, respectively [16],

Where I is the usual indicator function. While the hard-
thresholding preserves values that are greater than t and sets
the others to equal zero (keep-or-kill), the soft-thresholding
shrinks all the values by t towards zero (shrink-or-kill).
This shrinking has the effect of reducing variance while
increasing bias. While d is passed through the thresholding
function, s is unchanged.

Lastly, the signal is reconstructed from s and the
thresholded d by inverse wavelet transform, providing the
de-noised signal.

4. SINGULARITY DETECTION

Essentially, the idea underlying most singularity-
detection techniques is the computation of a local derivative
operator. The wavelet-based method uses the fast wavelet
transform.

The presence of noise makes the wavelet transform
decomposition difficult if applied directly to the signal
detection. However, the wavelet transform coefficients
are able to localize the sharp variation points of a signal
(and in particular the onset of anomaly) effectively, provided
that the signal is de-noised, as was demonstrated by the
application of the technique on synthetic data [15].

Assuming that the integral of a smoothing function
(x) is equal to 1 and that it converges to 0 at infinity, if a

wavelet (x) is equal to the first-derivative of a smoothing
function (x) , the wavelet function transform is computed
by convolving the signal with a dilated wavelet. The
wavelet transform of f(x) at the scale s and position x,
computed with respect to the wavelet (x) , is defined by

This can be easily derived [15] as

The local extrema of Ws
1f (x) correspond to the inflection

points of f s(x). For edge and singularity detection, only the
local maxima of Ws

1f (x) are of interest. When detecting
the local maxima of Ws

1f (x) , the value of the wavelet
transform is maintained at the corresponding location. It
is noted that the regularity of the Daubechies wavelets
increases linearly with N:

n.k , n.k C (N)= space of Holder continuous
functions with exponent (N).

Therefore, the Daubechies wavelet (x) can be equal
to the first-derivative of a smoothing function (x). One
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signal sharp variation produces the detail coefficient
maxima at the differing scales 2 . The value of the detail
coefficient maximum at scale 2 measures the derivative
of the signal smoothed at scale 2 .

5. NUMERICAL TESTS

The wavelet thresholding method is applied to detect
changes in the model parameters of HANARO, a multi-
purpose research reactor in Korea. HANARO is cooled
by ordinary water and moderated by heavy water. The
reference plant model is simulated using a fifth-order
Runge-Kutta method with adaptive time step sizes chosen
to deal with the stiffness inherent in nuclear reactor dynamics.
39 nonlinear differential equations are used to describe
the HANARO model [17]. The neutron kinetics part of
the reactor dynamics is shown as follows:
1) Neutron flux in the core region:

2) Neutron flux in the reflector region:

3) Delayed neutron precursors:

4) Photoneutron precursors:

5) Reactivity feedback:

6) Temperature of the fuel element:

7) Temperature of the coolant passing through the reactor
channels:

where
Af = heat transfer area of fuel
Cc = specific hear of coolant water
Cf = specific hear of fuel meat 
Ci = core-averaged i’th group precursor density
Dj = reflector-averaged j’th group photoneutron

precursor density
Mc = mass of H2O in coolant channel
Mcl = mass of cladding
Mf = mass of fuel 
Nc = core-aceraged neutron density (or reactor

power)
Nr = reflector-averaged neutron density 
Qc = power produced in core
Tc = core coolant temperature
Tco = initial coolant temperature
Tf = fuel element temperature
Tfo = initial fuel temperature
Tl = temperature in inlet
Uf = heat transfer coefficient between fuel and core

coolant
Wc = core flow rate
lc = neutron generation time

c = coolant temperature coefficient 
cr, rc = cross-coupling coefficients between core and

reflector
f = fuel temperature coefficient
rr = coefficient of auto-coupling in reflector
i = i’th group delayed neutron fraction ( = i)
j = j’th group photoneutron fraction ( = i)
f = fraction of heat absorbed in fuel
i = i’th group delayed neutron decay constant
Dj = j’th group photoneutron decay constant
R = external reactivity from control rod
T = temperature feedback reactivity due to fuel and

coolant temperature variation
cr, rc = time lags for neutron transport

Here, the simulation time-step sizes are far smaller than
the sampling time interval ( t=0.01sec). Thus, the
signals are piecewise constant in the plant simulation
time steps. Normalized reactor power signals were
generated with initial values of 1. A total of 128
simulated data are contaminated with the Gaussian noise
N(0, 2).

5.1 Change in the Reactivity [18]
The results with the Daubechies 3 wavelet are presented

in Fig. 2. The reactivity is a series of step functions, as
shown in Fig. 2(a). Fig. 2(b) and Fig. 2(e) are the results
of reactivity changes with a Gaussian noise variance of
N(0,0.52) and N(0,0.032) added to HANARO simulated
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power, respectively. The root-mean-square error of each
Daubechies wavelet is shown in Fig. 3. From the detail
coefficients, it can be ascertained that abrupt change in
the reactivity of the reactor have occurred. For =0.5, the
reactivity change at t=0.5 sec is detected clearly, but the
change at t=1.0 sec is buried in noise. For the second case of

=0.03, the two reactivity changes are detected clearly.
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(a) Reactivity and Normalized Reactor Power

(b) Noisy Reactor Power and its Wavelet Coefficients d1 ( =0.5)

(c) Soft Thresholded Reactor Power and its Wavelet Coefficients d1

(d) Hard Thresholded Reactor Power and its Wavelet Coefficients d1

(a) = 0.5(e) Noisy Reactor Power and its Wavelet Coefficients d1 ( =0.03)

(f) Soft Thresholded Reactor Power and its Wavelet Coefficients d1

(g) Hard Thresholded Reactor Power and its Wavelet Coefficients d1

Fig. 2. De-noised Reactor Power and its Wavelet Coefficients
for the Daubechies 3 Wavelet 



5.2 Change in the Neutron Generation Time (lc)
5.2.1 Under Constant Reactivity

A constant reactivity =0.001 is applied with a Gaussian
noise of =10-5. At t=0.5sec, the neutron generation time
is reduced to one third of the initial value. This results in
a very small increase of the reactor power. Normally, it is
not easy to notice this small change by monitoring the
reactor power. The result shows that the applied wavelet-
based de-noising and decomposition procedure easily
identifies the singular point in the detail coefficient. The
result is shown in Fig. 4. The root-mean-square error of
each Daubechies wavelet is presented in Fig. 5.

5.2.2 Under Fluctuating Reactivity
It was assumed that there exists a sinusoidal perturbation

giving a reactivity fluctuation with a Gaussian noise of 
=10-5. The neutron generation time is then decreased to
one-third unexpectedly at t =0.5sec. This has a very small
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(a) Neutron Generation Time and Normalized Reactor Power

(b) Noisy Reactor Power and its Wavelet Coefficients d1 ( =10-5)

(c) Soft Thresholded Reactor Power and its Wavelet Coefficients d1

(d) Hard Thresholded Reactor Power and its Wavelet Coefficients d1

Fig. 4. De-noised Reactor Power and its Wavelet Coefficients
for the Daubechies 6 Wavelet

Fig. 5. Root-mean-square Error of a De-noised Reactor Power
With Soft and Hard Thresholding 

Fig. 3. Root-mean-square Error of a De-noised Reactor Power
With Soft and Hard Thresholding

(b) = 0.03



effect on the power level; hence, the power level continues
to be dominated by fluctuating reactivity. From the detail
coefficient by the Daubechies 6 wavelet, a significant change
in the reactor state was found. The results are presented
in Fig. 6 and Fig. 7.

5.3 Change in the Delayed Neutron Fraction ( )
The power signal is generated via constant reactivity

and the Gaussian noise N(0,0.0032). It is assumed that the
delayed neutron fraction decreases to half of the initial
value at t=0.5sec. The Daubechies 3 wavelet is used to
perform the wavelet transform. the results are represented in
Figs. 8 and 9.
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(a). Neutron Generation Time and Normalized Reactor Power

(b). Noisy Reactor Power and its Wavelet Coefficients d1 ( =10-5)

(c). Soft Thresholded Reactor Power and its Wavelet Coefficients d1

(b). Noisy Reactor Power and its Wavelet Coefficients d1 ( =0.003)

(a). Fraction of Delayed Neutron and Normalized Reactor Power

Fig. 7. Root-mean-square Error of a De-noised Reactor Power
With Soft and Hard Thresholding

(d). Hard Thresholded Reactor Power and its Wavelet Coefficients d1

Fig. 6. De-noised Reactor Power and its Wavelet Coefficients
for the Daubechies 6 Wavelet



5.4 Change in the Coolant Temperature 
Coefficient  ( c)
The moderator (or coolant) temperature coefficient

c could be significantly changed by variations in the
boric acid concentration or the core temperature. In this

simulation, c is assumed dropped at t=0.5sec, as shown
in Fig. 10(a) under constant reactivity, and Gaussian
noise N(0,0.0012) is added to the measurement. The
Daubechies 3 wavelet is used to de-noise and detect the
singular point. The results are presented in Figs. 10 and
11.

6. DISCUSSION

To de-noise the signal in this test, two wavelet
thresholding techniques were used. The first was a hard-
thresholding function and the second a soft-thresholding
function. It is known that soft-thresholding is generally
preferred to hard-thresholding, as the hard-thresholding
function is discontinuous at x = t in Eq.(10) [19,20].
Due to this discontinuity at the threshold, it yields abrupt
artifacts in the de-noised signal, especially when the
noise level is significant. However, for high frequency
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(b). Noisy Reactor Power and its Wavelet Coefficients d1 ( =0.001)

(a). Reactivity Coefficient of Coolant Temperature and Normalized 
Reactor Power

(c). Soft Thresholded Reactor Power and its Wavelet Coefficients d1

Fig. 9. Root-mean-square Error of a De-noised Reactor Power
With Soft and Hard Thresholding 

(d). Hard Thresholded Reactor Power and its Wavelet Coefficients d1

Fig. 8. De-noised Reactor Power and its Wavelet Coefficients
for the Daubechies 3 Wavelet

(c). Soft Thresholded Reactor Power and its Wavelet Coefficients d1



signals, it is clear that hard-thresholding results in
superior estimates compared to those of soft-
thresholding. In the test cases in this study, hard-
thresholding provides smaller errors than soft-
thresholding with de-noised signals, as the overall
frequencies of the signals are high and broad in the
temporal domain.

7. CONCLUSIONS

The investigation in this paper indicates that the
wavelet transform utilizing the multiresolution property
of the wavelet functions can be used to detect
singularities in dynamic systems after the signal is de-
noised. Numerical tests on a detailed reactor simulation
model show that the changes in the reactor state as well
as a change of reactivity can be detected if the singularity

is not “buried” in strong noise. The wavelet transform
decomposition and de-noising procedures are also shown
to be computationally efficient. Thus, this wavelet theory
and the wavelet functions may be profitably utilized in a
real-time system for automatic event recognition (e.g.,
reactor condition monitoring). 

ACKNOWLEDGMENTS
The authors would like to express much gratitude to

the Korea Atomic Energy Research Institute for the
useful information about the HANARO research reactor.
This work was supported in part by the Ministry of
Science and Technology of Korea through the Nuclear
Technology Infrastructure and Basic Research Program.

REFERENCES_______________________________
[  1  ] I. Daubechies, “Orthonormal Bases of Compactly Supported

Wavelets,” Comm. Pure. Appl. Math., 41, 909 (1988).
[  2  ] G. Strang, “Wavelets and Dilation Equations: A Brief

Introduction,” SIAM Rev., 31, 614 (1989).
[  3  ] R. Glowinski, W. Lawton, M. Ravachol, and E.

Tenenbaum, “Wavelet Solution of Linear and Nonlinear
Elliptic, Parabolic and Hyperbolic Problems in One Space
Dimension,” in Comput. Methods Appl. Sci. Eng, SIAM,
Philadelphia, 55 (1990).

[  4  ] N. Z. Cho and C. J. Park, “Wavelet Theory for Solution of
the Neutron Diffusion Equation,” Nucl. Sci. Eng., 124, 417
(1996).

[  5  ] H. Nasif, R. Omori, and A. Suzuki, “Improved Solution of
the Neutron Diffusion Equation Using Wavelet Theory,” J.
Nucl. Sci. Technol., 36 [9], 839 (1999).

[  6  ] N. Z. Cho and L. Cao, “Wavelet-theoretic Method for
Solution of Neutron Transport Equation”, in Proc. Korean
Nuclear Society Spring Mtg., Chuncheon, Korea, CD-ROM
(2006).  

[  7  ] Thie, J. A., Reactor Noise, Rowman and Littlefield, Inc, New
York (1963).

[  8  ] Thie, J. A., Power Reactor Noise, American Nuclear Society,
La Grange Park, IL (1981).

[  9  ] Uhrig, R. E., Random Noise Techniques in Nuclear Reactor
Systems, The Ronald Press Company, New York (1970).

[ 10 ]  Williams, M. M. R., Random Processes in Nuclear Reactors,
Pergamon Press, Oxford (1974).

[ 11 ] Uhrig, R. E.,  “Integrating Neural Network Technology and
Noise Analysis,” Progress in Nuclear Energy, 29, 357
(1995).

[ 12 ] Uhrig, R. E. and Tsoukalas, L. H., “Soft Computing
Technologies in Nuclear Engineering Applications,” Progress
in Nuclear Energy, 34, 13 (1999).

[ 13 ] Hines, J. W. and Uhrig, R. E., “Trends in Computational
Intelligence in Nuclear Engineering,” Progress in Nuclear
Energy, 46, 167 (2005).

[ 14 ] G. Beylkin, R. Coifman, and V. Rokhlin, “Fast Wavelet
Transforms and Numerical Algorithms,” Comm. Pure. Appl.
Math, 43, 141 (1991).

[ 15 ] S. Mallat and W.L. Hwang, “Singularity Detection and
Processing with Wavelets,” IEEE Trans. Inform. Theory, 38,
617 (1992).

[ 16 ] D. L. Donoho, “De-noising by Soft Thresholding,” IEEE

229NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.39  NO.3  JUNE 2007

KIM et al.,   Investigation of Reactor Condition Monitoring and Singularity Detection Via Wavelet Transform and De-noising

Fig. 11. Root-mean-square Error of a De-noised Reactor
Power With Soft and Hard Thresholding 

(d). Hard Thresholded Reactor Power and its Wavelet Coefficients d1

Fig. 10. De-noised Reactor Power and its Wavelet Coefficients
for the Daubechies 3 Wavelet



Trans. Inform. Theory, 41, 613 (1995).
[ 17 ] T. W. Noh, B.S. Sim, Bo. W. Rhee, and S. K. Oh, “Korea

Multipurpose Research Reactor,” Korea Atomic Energy
Research Institute, Tech. Rep. KM-031-400-02 (1989).

[ 18 ] C. J. Park and N. Z. Cho, “Reactor Condition Monitoring via
Wavelet Transform De-noising,” in Proc. Korean Nuclear
Society Autumn Mtg., Daejeon, Korea, 67 (1996).

[ 19 ] B. J. Yoon and P. P. Vaidyanathan, “Wavelet-based Denoising
by Customized Thresholding,” in Proc. 29th IEEE Int.
Conf. Acoustics, Speech, and Signal Processing, 2, 925
(2004).

[ 20 ] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive Wavelet
Thresholding for Image Denoising and Compression,” IEEE
Trans. Image Processing, 9, 1532 (2000).

230 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.39  NO.3  JUNE 2007

KIM et al.,   Investigation of Reactor Condition Monitoring and Singularity Detection Via Wavelet Transform and De-noising


