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1. REGULATING THE RISK FROM A NUCLEAR
POWER PLANT

Classically, the control of the risk associated to the
operation of a nuclear power plant has been founded on
the definition of a group of events representing credible
worst-case accident scenarios (the so-called Design Basis
Accidents, DBAs) and on the prediction and analysis of
their consequences by deterministic calculations. Then,
the safety and protection of the system is designed against
such events, to prevent them and to protect from, and
mitigate their associated consequences. This traditional
approach to regulating nuclear safety by the verification
that a nuclear plant can withstand a set of prescribed
accident scenarios judged as most adverse, conjectures
that if a plant can cope with the DBAs, it will also be capable
of handling any other accident.

In this view to safety, the underlying concept for
protecting a nuclear power plant is the so called defense-
in-depth which has become the design philosophy for
attaining acceptable levels of safety. This structuralist
defense-in-depth viewpoint and the safety margins derived

from it, have been embedded into conservative regulations
aimed at enveloping all credible accidents, for what
concerns the challenges and stresses posed on the system
and its protections. In fact, such view to nuclear safety
has been embraced into a number of design and operating
regulatory requirements, including [1]: i) the use of
redundant active and/or passive engineered safety systems,
to avoid the risks from single failures; ii) the use of large
design safety margins to cope with the uncertainty in the
actual response of the safety systems under accident
conditions; iii) the demand of quality assurance practices
on materials, manufacturing and construction; iv) the
restriction of system operation within predetermined
bounds; v) the definition of requirements for the testing,
inspection and maintenance of the structures, systems
and components to guarantee the desired safety levels.

The approach to safety above illustrated has been
regarded effective in providing a conservative means for
managing the uncertainties in the system behaviour and
its modelling within the safety analyses. However, it is
widely recognized that the reliance on purely deterministic
analyses for the verification of nuclear safety may not be
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rational nor sufficient for bounding the required high levels
of safety across all potential accident events and protective
safety systems [2]. On one side, the practice of referring
to DBAs may lead to the consideration of excessively
conservative scenarios, but also highly unlikely, with a
penalization of the industry due to the imposition of
unnecessarily stringent regulatory burdens on the protective
barriers for defense-in-depth. On the other hand, the
conjecture that protecting from DBAs would give reasonable
assurance of protecting from any accident has been proven
wrong, e.g. by the occurrence of the Three Mile Island
accident in 1979. 

The above considerations have led to the arising of
the Probabilistic Risk Assessment (PRA) approach for
nuclear safety, based on the inclusion into the analysis of
the likelihood of all potential accident scenarios by
considering the reliability of the protection systems
through the introduction of probabilistic measures for the
treatment of the uncertainty in their behaviour [3-5]. This
allows addressing some of the shortcomings of the DBAs
thanks to a systematic modelling of more realistic
scenarios, including multiple failure events (the so-called
Beyond Design Basis Accidents, BDBAs) and to the
definition of the level of risk from the plant in
quantitative terms, [1-2]. Furthermore, the PRA analysis
can be used to prioritize improvements in the design and
operation of the plant for greatest risk reduction. On the
other hand, it is impossible to guarantee that PRA captures
all the accident events and scenarios contributing to risk
and its quantitative results may be affected by very large
uncertainties which make difficult their direct use for
decision making.

Today’s trend in the control of nuclear safety is
drifting towards an integrated decision making process
that combines the insights from the deterministic and
probabilistic analyses with the regulatory requirements and
cost-benefit considerations. This approach is increasingly
adopted for a more efficient use of resources for increased
safety and reduced regulatory burden in the application of
a rationalist defense-in-depth philosophy. Since according
to this approach risk information is to be used as adjunct
to the deterministic and prescriptive body of regulations,
it is often termed risk-informed, to unambiguously
differentiate it from the risk-based approach based solely
on insights from a PRA.

The risk-informed approach aims at systematically
integrating deterministic and probabilistic results to obtain
a rational decision on the utilization of resources for
safety. In such rationalization, explicit consideration is
given to the likelihood of events and to their potential
consequences.

The undertaking of this approach has led to a number
of efforts of risk-informing of existing regulations, i.e.
rationalizing regulatory requirements by risk information.
This has meant in particular the possibility of allowing
changes in safety requirements upon demonstration that

the corresponding change in the risk from the plant is
acceptably small and still within the design bounds [6],
[7-9]. Several instances of these efforts have demonstrated the
effectiveness of the approach, perhaps the best still being
the application in practice of the maintenance rule which
has provided a foundation for making risk insights and
prioritization of use in day to day operations [10].

2.  UNCERTAINTY

Uncertainty is an unavoidable component affecting the
behavior and modeling of systems. In spite of how much
dedicated effort is put into improving the understanding
of systems, components and processes through the collection
of representative data, it is not realistic to think that
uncertainty will be ever eliminated completely from the
analysis and modeling of the behavior of complex systems. 

Henceforth, the appropriate characterization,
representation, propagation and interpretation of uncertainty
are fundamental issues to be addressed for benefiting from
a risk-informed approach to nuclear safety. 

Indeed, it is recognized that uncertainties affect the
models, computer codes and data used to quantitatively
represent and reproduce the evolution of the nuclear
processes and the response of the nuclear systems in
operational and accidental conditions. The capability of
structures, systems and components to withstand accidental
events is also not fully characterized. Within the current
trend of using best estimate codes for deterministic accident
analysis, the control of such uncertainties entails the
combination of a reasonably conservative selection of
the input and parameter data with the propagation of the
associated uncertainties onto the analysis outcomes. The
expected end result is the demonstration of reasonable
assurance on the availability of adequate safety margins,
with a high level of confidence that failure event conditions
are avoided [2].

On the other hand, uncertainty is a major issue of
concern also in PRA, due to both the inherent stochastic
character of the failure processes and to the incomplete
knowledge of the analysts on such processes. This gives
rise to uncertainty in [2]: i) the parameters used in the
quantification of the PRA model, e.g. the failure event
frequencies, component failure and human error
probabilities; ii) the assumptions undertaken in the
analysis and models used, e.g. for representing common
cause failure events, the influence of the human operators
and organizational procedures; the completeness of the
analysis, i.e. the inclusion of all risk-contributing events
and all factors influencing the risk from a nuclear power
plant, e.g. ageing and organizational effects.

In order for the integrated, risk-informed decision making
process to virtuously benefiting from the combination of
the systematic deterministic and probabilistic analyses of
the safety of a nuclear power plant, it is necessary that an
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adequate representation and treatment of the related
uncertainties be provided.

The uncertainty can be considered essentially of two
different types: i) randomness due to inherent variability
in the system behavior and ii) imprecision due to lack of
knowledge and information on the system. The former
type of uncertainty is often referred to as objective,
aleatory, stochastic whereas the latter is often referred to
as subjective, epistemic, state-of-knowledge [11-12]. 

It is recognized that the distinction between aleatory
and epistemic uncertainty plays an important role in the
risk assessment framework applied to complex engineered
systems such as the nuclear power plants. In the context
of risk analysis, the aleatory uncertainty is related to the
occurrence of the events which define the various possible
accident scenarios whereas epistemic uncertainty arises from
a lack of knowledge of fixed but poorly known parameter
values entering the evaluation of the probabilities and
consequences of the accident scenarios [12].

In current risk practice, both types of uncertainties are
represented by means of probability distributions. However,
resorting to a probabilistic representation of epistemic
uncertainty may not be possible when sufficient quantitative
data is not available for statistical analysis, even if one
adopts expert elicitation procedures to incorporate diffuse
information into the corresponding probability distributions,
within a subjective view of probability. Indeed, an expert
may not have sufficiently refined knowledge or opinion
to characterize the relevant epistemic uncertainty in terms
of probability distributions [12-15].

For instance, when there is no information to support
a clear-cut decision out of a number of credible alternatives,
a uniform probability distribution is typically used to
characterize epistemic uncertainty. Considering an
uncertain variable x [a,b], the uniform distribution on
[a,b] represents the belief that the possible values of x are
completely contained in the interval [a,b] and (d-c)/(b-a) is
the probability that the value of x lies in the subinterval
[c,d] of [a,b]. However, if the information only supports
the fact that x [a,b], with no further reasons for
different credibility of subsets of values within this set,
then the assignment of a uniform distribution over [a,b]
does not appropriately characterize the information and
knowledge available on the value of x.

Furthermore, the propagation of the uniform uncertainty
of x onto functions of it, y=f(x) (where f could be the
model implemented in the computer code for the
deterministic safety analysis), may lead to counterintuitive,
non-uniform results if f is nonlinear. For example, if y=x2

with x distributed uniformly on [a,b] one would expect
that nothing is known about the value of y except that it
is contained in the interval [a2,b2]. On the contrary, this
is not so: taking for instance a=0, b=1, indeed y [0,1]
but with non-uniform probability (for example, the
probability that y ≤ 0.16 is 0.4) [12].

As a result of the potential limitations associated to a

probabilistic representation of epistemic uncertainty under
limited quantitative information, a number of alternative
representation frameworks have been proposed, e.g.
fuzzy set theory [16-17], evidence theory [18], possibility
theory [19] and interval analysis [20]. Evidence and
possibility theories, in particular, may be the most attractive
ones for risk assessment, because of their representation
power and relative mathematical simplicity. They are
similar to probability theory in that they are based on set
functions but differ in that they make use of dual set
functions.

Contrary to probability theory which assigns the
probability mass to individual elementary events, the
theory of evidence makes basic probability assignments
m(A) on sets A (the focal sets) of the power set P(X) of
the event space X, i.e. on sets of outcomes rather than on
single elementary events. This allows the naturally encoding
of evidence in favor of the different events which may
occur. 

Also, probability theory imposes more restrictive
conditions on the specification of the likelihood of events
as a result of the requirement that the probabilities of the
occurrence and nonoccurrence of an event must sum to
one.

As a result, while in probability theory, a single
probability distribution function is introduced to define
the probabilities of any event or proposition, represented
as a subset of the sample space, in evidence and possibility
theory there are two measures of likelihood, belief/
plausibility and possibility/necessity, respectively. For
example, the evidence theory framework allows for the
belief about events and propositions to be represented as
intervals, bounded by two values, belief and plausibility.
The belief in a proposition is quantified as the sum of the
probability masses assigned to all sets enclosed by it, i.e.
the sum of the masses of all subsets of the proposition:
hence, it is a lower bound representing the amount of
belief that directly supports a given proposition at least in
part. Plausibility is the sum of the probability masses
assigned to all sets whose intersection with the proposition
is not empty: hence, it is an upper bound on the possibility
that the proposition could be verified, i.e. it measures the
fact that the proposition could possibly be true “up to that
value” because there is only so much evidence that
contradicts it.

Both evidence and possibility theories allow epistemic
uncertainty (imprecision) and aleatory uncertainty (variability)
to be treated separately within a single framework. Indeed,
the corresponding dual fuzzy measures provide mathematical
tools to process information which is at the same time of
random and imprecise nature [21-22].

In synthesis, while random variability can be adequately
represented by probability distribution functions, imprecision
or partial ignorance may be properly described in terms
of belief functions and possibility distributions representing
families of probability distributions [23]. Actually, the
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combination of the evidence or possibility and probability
theories may prove powerful in providing an integrated
framework of representation and analysis of uncertainties
of both the aleatory and epistemic type [22, 24].

Regardless of which framework is adopted for
handling epistemic uncertainty (the issue of which one is
best suited for the different sources of uncertainty is still
somewhat controversial and subject of further studies),
the final objective is to produce insights in the analysis
outcomes which can be meaningfully used by the
decision makers. This entails that a number of topics be
successfully addressed [12]:

How to collect the information (e.g. in the form of expert
judgment) and input it into the proper mathematical
format. 
How to aggregate information from multiple, diverse
sources into a single representation of uncertainty.
How to propagate the uncertainty through the model so
as to obtain the proper representation of the uncertainty
in the output of the analysis.
How to present and interpret the uncertainty results in
a manner that is understandable and useful to decision
makers.
How to perform sensitivity analyses to provide insights
with respect to which input uncertainties dominate the
output uncertainties, so as to guide resources towards
an effective uncertainty reduction.

3.  DEMPSTER-SHAFER THEORY OF EVIDENCE

The Dempster-Shafer theory of evidence, also known
as the theory of belief functions, is a generalization of the
Bayesian theory of subjective probability in that it does
not require probabilities for each proposition or event of
interest but bases the belief in the truth of a proposition
or occurrence of an event on the probabilities of other
propositions or events related to it. 

As such, it provides an alternative to the traditional
manner in which probability theory is used to represent
uncertainty by allowing less restrictive statements about
likelihood than in the case of a probabilistic characterization
of uncertainty. This relaxation is obtained by means of
the specification of two degrees of likelihood, a belief
and a plausibility, for each subset of the universal set
under consideration.

The theory is based on two fundamental ideas: 1) the
idea of obtaining degrees of belief for one question from
subjective probabilities for related questions; 2) Dempster’s
rule for combining the degrees of belief when they are
based on independent items of evidence. Before delving
into the mathematical formulation, a simple illustrative
example is discussed on an intuitive basis.

To illustrate the first idea of obtaining degrees of
belief for one question from subjective probabilities for
related questions, suppose that a diagnostic model is

available to indicate with reliability (i.e. probability of
providing the correct result) of 0.9 when a given system
is failed. Considering a case in which the model does
indeed indicate that the system is failed, this fact justifies
a 0.9 degree of belief on such event (which is different
from the related event of model correctness for which the
probability value of 0.9 is available) but only a 0 degree
of belief (not a 0.1) on the event that the system is not
failed. This latter belief does not mean that it is certain
that the system has failed, as a zero probability would: it
merely means that the model indication provides no
evidence to support the fact that the system is not failed.
The pair of values {0.9, 0} constitutes a belief function
on the propositions ‘the system is failed’ and ‘the system
is not failed’.

To illustrate Dempster rule for combining degrees of
belief, suppose that there is available another model also
capable of indicating system failure with reliability of 0.9
and also confirming the indication of system failure in
this case. The probability that both models are providing
the correct result is 0.81, that neither are correct is 0.01
and that at least one is correct is 0.99. Since both models
are agreeing in identifying the state of the system as
faulty, believing that the system failure event has
occurred is equivalent to believing that at least one of
them is correct: this leads to assigning a degree of belief
of 0.99 to the system failure event.

On the contrary, if the two models contradict each
other (the first model indicating a faulty state and the
other a success state) they cannot both be correct. A
priori of the system state indication, the probabilities that
only the first model is correct, that only the second model
is correct and that neither one is correct are 0.09, 0.09
and 0.01, respectively. A posteriori of the contradictory
indication of system failure and success by the two
models respectively, these probabilities become 9/19,
9/19 and 1/19, respectively. Hence, there is a 9/19 degree
of belief associated to the event that the system has
failed, deriving from the related reliability of the first
model and an equal 9/19 degree of belief associated to
the dual event of system success, deriving from the
related reliability of the second model.

From the above simple example, one can appreciate
how the degrees of belief for one question (has the
system failed?) are obtained from probabilities related to
another question (is the diagnostic model reliable?).

Dempster rule is based on the assumption that the
questions for which probabilities are available are
independent with respect to our subjective probability
judgments; however, this independence is only a priori
and readily disappears when conflict is discerned between
the different items of evidence. This requirement of a
priori independence entails framing the uncertainties
affecting the problem in a way to work with independent
items of evidence. Suppose for example that both models
are identifying system failure based on the signals
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provided by a same sensor placed on the system: the two
models might both be mistaken by a sensor reading error
and because of this common uncertainty the two degrees
of belief related to the event of system failure cannot be
combined by Dempster rule. On the other hand, one may
identify three independent pieces of evidence by introducing
the evidence related to the sensor reading error and the
associated probability. By so doing, the three pieces of
evidence can be properly combined by Dempster rule.

One of the computational advantages of the Dempster-
Shafer framework is that priors and conditionals need not
be specified, unlike in Bayesian methods.

3.1 Mathematical Formulation
For the formal introduction of the Dempster-Shafer

theory of evidence, let us consider the representation of
the epistemic uncertainty in the attribution of an element
x to a particular member A of a countable set. For
example, suppose that x is a parameter whose values may
vary in a given range X also called Universe of Discourse
(UOD): then, the epistemic uncertainty associated to the
attribution of x can be represented by assigning to each
crisp set in X a value which represents the degree of
evidence that x belongs to such set. This value is a fuzzy
measure of the uncertainty in the assignment of x to a
crisp set, which in itself is not uncertain. 

At this point, it seems important to underline that the
theory of fuzzy measures is different from the theory of
fuzzy sets. The latter deals with the uncertainty associated
with vague, linguistic statements represented by overlapping
fuzzy sets, with no sharp boundaries; as a result of the
vagueness in the available information, a given x X
may simultaneously belong to several sets with different
degrees of membership. 

Thus, the difference between a fuzzy measure and a
fuzzy set is clear: the former represents the uncertainty in
the assignment of an element to a given crisp set, due to
lack of knowledge or information deficiency, whereas
the latter represents the uncertainty in the definition of
the boundaries of a set, due to a lack of sharp boundaries
deriving from vague information [17].

For the formal definition of fuzzy measures, let us
consider a finite UOD and an element x X which is not
fully characterized, i.e. it might belong to more than one
crisp set in X. Let P(X) denote the so called power set of
X, i.e. the set of all subsets of X. For a given set A P(X),
the uncertainty in the assignment of x to A can be
quantitatively represented by the value of a function
g(A) which maps to [0,1] the available evidence
regarding the membership of x in A. This function is
termed fuzzy measure and satisfies the minitivity and
maxitivity constraints with respect to the conjunction and
disjunction of two events A and B:

There are two forms of fuzzy measure functions,
namely the belief measure, Bel(A), associated to pre-
conceived notions, and the plausibility measure Pl(A),
associated with plausible information.

The belief measure represents the degree of belief,
based on the available evidence, that a given element of
X belongs to A as well as to any of the subsets of A; it is
the degree of belief in set A, based on the available evidence.
In this sense, the different subsets of A may be viewed as
the answers to a particular question, some of which are
correct but it is not known which ones with full certainty. 

A fundamental property of the belief function is that:

Thus, the specification of the belief function is capable
of incorporating a lack of confidence in the occurrence of
the event defined by subset A, quantitatively manifested
in the sum of the beliefs of the occurrence (Bel(A)) and
non occurrence (Bel(

_
A)) being less than one. 

The difference 1-(Bel(A)+Bel(
_
A)) is called ignorance.

When the ignorance is 0, the available evidence justifies
a probabilistic description of the uncertainty (see Section
3.3 below).

The plausibility measure can be interpreted as the
total evidence that a particular element of X belongs not
only to A or any of its subsets, as for Bel(A), but also to
any set which overlaps with A.

A fundamental property of the plausibility function is
that:

Thus, the specification of the plausibility function is
capable of incorporating a recognition of alternatives in
the occurrence of the event defined by subset A,
quantitatively manifested in the sum of the plausibilities
of the occurrence (Pl(A)) and non occurrence (Pl(

_
A))

being greater than one. 
The links with the belief measure are:

from which,

The representation of uncertainty based on the above
two fuzzy measures falls under the framework of
evidence theory [18]. While in probability theory a single
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probability distribution function is introduced to define
the probabilities of any event represented as a subset of
the sample space, in evidence theory there are two measures
of the likelihood, belief and plausibility. Also, in contrast
to the inequalities (3) and (4), probability theory imposes
more restrictive conditions on the specification of likelihood
by requiring that the probabilities of the occurrence and
nonoccurrence of an event must sum to one (see Eq. (19)
below).

Being a generalization of the Bayesian theory of
subjective probability, evidence theory allows epistemic
uncertainty (imprecision) and aleatory uncertainty
(variability) to be treated separately within a single
framework. Indeed, the belief and plausibility functions
provide mathematical tools to process information which
is at the same time of random and imprecise nature.

3.2 Basic Probability Assignment
The belief and plausibility functions are defined from

a mass distribution m(A) on the sets A of the power set
P(X) of the UOD X, called basic probability assignment
(bpa), which expresses the degree of belief that a specific
element x belongs to the set A only, and not to any subset
of A. In other words, the mass m(A) of a given member A
of the power set expresses the proportion of all relevant
and available evidence that supports the claim that the actual
value of the parameter belongs to A but no particular subset
of it. 

The bpa satisfies the following requirements:

Suppose for example that a system has five independent
states, one of which is the unknown true state. There are
25 possible subsets in the power set which the available
evidence may support with respect to the state of the
system; each subset can be represented by a binary array
whose 5 elements indicate whether a particular state is
occurring (1) or not (0). The empty subset (0,0,0,0,0)
represents a contradiction which is never true as the system
must be in a given state at all times; the ‘every-possibility’
or ‘unknown’ state (1,1,1,1,1) represents the situation in
which the system may be in any state, in the sense that
the available evidence does not allow to exclude anyone.

Note that from the definition (8), it is not required
that m(X)=1, nor that m(A)≤m(B) when A B, nor that
there be any relationship between m(A) and m(

_
A). Hence,

the bpa is not a fuzzy measure, nor a probability distribution.
Further, note that contrary to probability theory

which assigns the probability mass to individual values
of x, the theory of evidence makes basic probability
assignments m(A) on sets A of the power set P(X) of the
UOD X, i.e. on sets of possibilities rather than single
events, thus naturally encoding the evidence in favor of
the different possibilities. 

As mentioned above, for each set A of the power set
P(X), the bpa m(A) expresses the proportion to which all
available and relevant evidence supports the claim that a
particular element x of X, whose characterization is
incomplete, belongs to set A. The value of m(A) pertains
solely to set A and does not imply any additional claim
regarding subsets of A; if there is additional evidence
supporting the claim that the element x belongs to a
subset of A, say B A, it must be expressed by another
probability assignment on B, i.e. m(B).

Every set Ai P(X) for which m(Ai)>0 is called a
focal element of m: as the name suggests, focal elements
are subsets of X which the available evidence allows to
support to given degrees. When X is finite, the bpa m can
be fully characterized by a list of its focal elements Ai

with the corresponding values m(Ai), which together
quantify the body of evidence {Ai,m(Ai)} .

Total ignorance, then, amounts to the following
assignment:

The bpa defines the belief and plausibility measures
as follows,

Thus, the belief for a set A is the sum of all the masses
of subsets of A whereas the plausibility is the sum of all
the masses of the sets B which intersect with A. Hence,
the evidence theory framework allows for the belief
about propositions or events to be represented as intervals,
bounded by two values, belief and plausibility. The belief
in a proposition is quantified as the sum of the masses of
all sets enclosed by it, i.e. the sum of the masses of all
subsets of the proposition. Hence, it represents the amount
of belief that directly supports a given proposition at least
in part, forming a lower bound. Plausibility is the sum of
the masses of all sets whose intersection with the proposition
is not empty. Hence, it is an upper bound on the possibility
that the proposition could be verified, i.e. it measures the
fact that the proposition could possibly be true “up to that
value” because there is only so much evidence that
contradicts it.

In the case of total ignorance,

In synthesis:
m(A) is the degree of evidence of membership in set A
only; it is the amount of likelihood that is associated
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with A but without any specification of how this
likelihood might be apportioned over A: this likelihood
might be associated with any subset of A.
Bel(A) gathers the imprecise evidence that asserts A; it
is the total evidence of membership in set A and all its
subsets, which is quantified according to (10) as the
minimal amount of probability that must be assigned
to A by summing the pertinent probability masses of the
single values in the focal sets: this amount of likelihood
cannot move out of A because the summation in (10)
involves only subsets B of A;
Pl(A) gathers the imprecise evidence that does not
contradict A; it is the total evidence of membership in
set A, including all its subsets and all other sets which
intersect with A, and is quantified according to (11) as
the maximal amount of probability that could be assigned
to A by summing the pertinent probability masses of the
single values in the focal sets: this amount of likelihood
could move into A from another intersecting set, because
the summation in (11) involves all sets B which intersect
with A. 

Then, an expert believes that the evidence supporting
set A is at least Bel(A) and possibly as high as Pl(A).

With reference to the previous example of a diagnostic
model indicating with reliability 0.9 that the system is
failed, Table 1 reports the values of mass, belief and
plausibility for the 22 possible propositions in the power
set. Note that the belief for both the ‘success’ and ‘failed’
propositions matches their corresponding mass assignments,
because these propositions have no subsets. Further, the
‘unknown’ proposition (either ‘success’ or ‘failed’) has
always full belief and plausibility, by definition. The interval
(belief, plausibility) represents the uncertainty on the
probability of each proposition, based on the available
evidence.

3.3 Relation to Probability Measures
Let us consider a bpa only on individual values

(singletons) x X but not on any other subset A of the
power set P(X), i.e. m(x)=Bel(x), x X, m(A)=0, A X.
Then, m(x) is a probability measure, commonly denoted
as p(x), which maps the evidence on singletons to the unit
interval [0,1].

It is then clear that the key distinction between a
probability measure and either a belief or probability
measure is that in the former all evidence is focused on
singletons x only, whereas in belief and plausibility
measures the evidence is focused on (focal) subsets A of
the power set P(X).

Obviously, from the probability measure P(x) defined
on all singletons x X one can compute the probability
measure P(A) of any set A, which is simply a collection
of singletons:

Notice that in this case in which the basic probability
assignment focuses only on singletons x X, the belief,
plausibility and probability of a set A are all equal:

Thus, belief and plausibility measures overlap when
all the evidence is focused only on singletons x X and
they both become probability measures.

Also, considering for simplicity only two focal sets A
and B, a probability measure arises if:

On the contrary, when evidence does not reside exclusively
on the singletons x X, it can be shown that

Thus, the dual measures of belief and plausibility
form intervals [Bel(A), Pl(A)] A P(X) which can be
viewed as imprecise estimates of probabilities derived
from the coarse evidence expressed by the basic
probability assignment.
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(14)

(15)

(16)

(17)

Proposition Mass Belief Plausibility

Empty (neither success nor failed) 0 0 0

Success 0 0 0.1

Failed 0.9 0.9 1

Unknown (success or failed) 0.1 1 1

Table 1. Mass, Belief and Plausibility for the Success or Failed State of a System, Based on the Indication of a Fault by a
Diagnostic Model with 0.9 Reliability

(18)



Finally, from (3), (4) and (15) it follows that

which imposes a more stringent condition on the
probability measure than (3) and (4) do on the belief and
plausibility measures, respectively.

3.4 Aggregation of Multiple Sources of Evidence
In Dempster-Shafer Theory, evidence may be combined

in different ways which range from conjunction (AND,
based on the intersection of events or sets) to disjunction
(OR, based on the union of events or sets) operators. If
all sources are reliable, their conjunction pooling (A AND B
AND C…) is appropriate; on the contrary, if there is one
reliable source among many, the disjunctive pooling (A
OR B OR C…) is justified; in practice, many combination
operations lie between these two extremes in a tradeoff
pooling effort.

The Dempster rule of combination is purely a conjunctive
operation (AND) which combines multiple evidence through
their basic probability assignments. It is a generalization
of Bayes rule which emphasizes agreement among sources
while ignoring all conflict through the introduction of a
normalization factor.

Let us consider the common situation in which
imprecise evidence is available from more than one
source. For simplicity, let us consider two experts whose
evidence is expressed in terms of two sets of bpa’s,
m1(A), m2(A) on the focal sets A of the power set P(X) of
X. The bpa functions on the frame of discernment are
based on independent arguments and bodies of evidence,
whose combination results in a belief function based on
conjunctive pooled evidence [18]. Aggregation of this
evidence into a joint bpa m12(A) can be obtained by
means of Dempster rule [25]:

where the complementary normalization factor K is given
by

According to (20) and (21) above, the degree of
evidence m1(B) regarding focal set B P(X), from the
first source and the degree of evidence m2(C) focused on
focal set C P(X), from the second source, are aggregated
by taking their product m1(B)m2(C) focused on the
intersection focal set B C=A. This way of combining

evidence sources is analogous to the way in which in
probability theory joint probability density functions
(pdfs) are calculated from two independent marginal pdfs
and is thus justified on the same grounds. However,
some intersections B C of different focal elements B
and C, from the first and second source, may result in the
same set A so that one must sum their product contribution
to obtain m12(A). Furthermore, some of the intersections
may be the empty set, for which m12(0)=0. Then, introducing
K as the sum of products m1(B)m2(C) of all focal elements
B of m1 and C of m2 such that B C 0(15), a normalized
joint basic assignment m12 (as required by (4)) is obtained
by dividing by 1-K. As K is determined by the sum of
products of the bpa’s of all sets where the intersection is
non-null (15), it represents the basic probability mass
associated with conflict; it is a measure of the amount of
conflict between the two mass sets and the normalization
factor 1-K has the effect of completely ignoring conflict
by attributing any mass associated with conflict to the
null set [26]. Consequently, counterintuitive results are
obtained in the face of significant conflict among the
sources of evidence, which has raised serious criticism to
the formula.

Suppose for example that an automatic diagnostic
tool and a plant operator are asked to assess a fault
condition of a machinery, on the basis of observed signals
related to its health state. The automatic diagnostic tool
evaluates that the machinery has a fault of type 1 with
probability 0.99 and no fault at all with probability 0.01;
the expert operator assesses that the machinery has a
fault of type 2 with probability of 0.99 but recognizes the
possibility of the machinery being healthy, with probability
of 0.01. In this situation, the joint basic probability
assignment m(no fault)=1=Bel(no fault), thus completely
supporting the diagnosis which both diagnosticians
consider very unlikely.

As a further example, consider two experts who are
asked their opinions regarding a system failure which may
occur due to component A, B or C failing [27]. The expert
beliefs are summarized in Table 2; their combinations are
given in Table 2; the resulting joint bpa’s are summarized
in Table 3, together with the belief and plausibility
values. The conflict is K=0.99 0.01+0.99 0.01+0.99 0.99
=0.9999; the joint assignment concentrates all the basic
probability mass on component B, which corresponds to
a belief value Bel(B)=1, in spite of the highly conflicting
evidence.

Finally, there are a number of considerations that
need to be addressed when combining evidence in the
framework of Dempster-Shafer theory, in particular with
respect to the significance and relevance of conflict. These
regard the evidence itself (type, amount and accuracy),
the sources of information (type, number, reliability,
dependency and conflict) and the context of the application.
As a result, the aggregation of evidence from multiple
sources may be pursued in a variety of possible
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(21)

(20)

(19)



combination rules, most of which are modifications to
the original Dempster rule sharing the common first step
of marginal bpa’s multiplication to find the corresponding
joint bpa’s and then differing on how these are combined
and where the probability mass associated to conflict is
best allocated to properly represent the degree of conflict
among the evidential sources. Indeed, the most critical
issue of combining evidence in Dempster-Shafer theory
regards the characterization of conflict among the
sources of information and this should guide the final
selection of the combination rule. In general, under
situations of minimal or irrelevant conflict and reliable
sources of information, a Dempster combination may be
justified as it normalizes out the conflict and allows for
the comparative assessment of the masses associated to
the various events. As the level of relevant conflict
increases, conflict must be explicitly represented in the
basic probability assignment of the universal set X.
Furthermore, when choosing a combination rule, it is
important to identify the requirements of the pooling
situation as disjunctive, conjunctive or tradeoff.

From the operational perspective, it would be
important to establish a formal procedure for guiding the

selection of the appropriate combination operation.
Partial insights in the behavior of the combination
operators may be gained from their algebraic properties
[26]. Indeed, while there is yet no accepted method of
combining dependent pieces of information, desirable
algebraic properties of the resulting combination rules
are commutativity (A B=B A), idempotence (A A=A),
continuity (A B≈A’ B when A’≈A), associativity (A
(B C)=(A B) C) [28].

4. POSSIBILITY THEORY

Possibility theory offers an alternative way for
representing uncertainty [19] [29]. Like evidence theory,
it involves the specification of two measures of likelihood,
necessity and possibility, for each subset of the universal
set under consideration. On the other hand, differently from
evidence theory, which is closely related to probability
theory, possibility theory is closely tied to fuzzy set theory.

Possibility theory may be introduced axiomatically in
terms of fuzzy measures, as an interpretation of fuzzy
sets or as a special case of evidence theory for consonant
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Expert/Component A B C

1 m1(A)=0.99 m1(B)=0.01 m1(C)=0

2 m2(A)=0 m2(B)=0.01 m2(C)=0.99 

Table 2. Basic Probability Assignments of Experts 1 and 2

Expert 1/ Expert 2 A B C

A m1(A)m2(A)=0 m1(A)m2(B)=0.0099 m1(A)m2(C)=0.9801 

B m1(B)m2(A)=0 m1(B)m2(B)=0.0001 m1(B)m2(C)=0.0099

C m1(C)m2(A)=0 m1(C)m2(B)=0 m1(C)m2(C)=0

Table 3. Combination of the Basic Probability Assignments of Experts 1 and 2

A m12(A)=0 Bel(A)=0 Pl(A)=0

B Bel(B)=1 Pl(B)=1

C m12(C)=0 Bel(C)=0 Pl(A)=0

Table 4. Joint Basic Probability Assignments and Belief and Plausibility Values

Component Bel Plm12



(i.e., non conflicting) evidence. This latter view is here
taken, for a more coherent flow of the material contained
in the paper. The illustration which follows is mainly
based on [17].

Let us consider a consonant body of evidence, that is
evidence which is allocated to the various subsets of the
power set P(X) of the universal set X so as to not conflict.
For such body of evidence one has:

Comparing these equations with (1) and (2) in Section 3,
one can see that the evidence theory applied to consonant
evidence is based on the extreme values of fuzzy measures
with respect to intersection and union of sets. The
corresponding belief and plausibility measures are
referred to as necessity and possibility , respectively.
Accordingly, Eqs. (22) and (23) are re-written as

For a consonant body of evidence, the dual relationships (5)
and (6) are written for necessity and possibility as

In addition, possibility and necessity measures constrain
each other in a strong way:

Given the dual relationship of the two measures, the

treatment that follows will focus only on the possibility
measure .

4.1 Possibility Distribution Function
The possibility measure on subsets A of the power set

P(X) is defined from a possibility distribution function
r(x) which maps the singleton elements x X into the
unit interval [17], i.e.

This distribution relates to the possibility measure
(A) of subset A P(X) through the relationship:

In other words, every possibility measure (A), A P(X),
is uniquely represented by the associated possibility
distribution function r(x), x X.

It is interesting to note the peculiarity of the
definition of the possibility measure (A) which derives
from properties (r(x)) of the individual elements x X
whereas probability, plausibility and belief are defined in
terms of subsets A.

The possibility distribution r(x) can be arranged as an
ordered sequence of values 

where i=r(xi), i ≥ j for i < j and n is the length of the
ordered possibility distribution.

Alternatively, every possibility measure can also be
characterized by the n-tuple of basic probability
assignments µi=m(Ai), i=1,2, ,n, on the consonant body
of evidence formed by the nested sets Ai, i=1,2, ,n,

Considering the possibility value of the generic
singleton xi X, i=1,2, ,n, one can write from (31) and
(32):

and from the definition (11) of the plausibility measure,

or in a recursive form,

where n+1=0 by convention. This leads to a set of equations
for the ordered values i of the possibility distribution
(32) in terms of the plausibility measure (34),

Note that the first value of any ordered possibility
distribution is always 1=1. 
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(22)

(23)

(38)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(24)

(25)

(26)

(27)

(28)

(29)

(30)



In general, the larger the possibility distribution the
less specific the evidence and the more ignorance there
is. The smallest possibility distribution describes the case
where all the evidence is allocated onto one focal
element, i.e._r=(1,0, ,0) with corresponding basic
probability assignment _m=(1,0, ,0). This situation of
perfect evidence involves no uncertainty. Dually, the
largest possible distribution is _r=(1,1, ,1), with
corresponding basic probability assignment _m=(0,0, ,1)
allocating all the evidence on the focal element
comprising the entire universal set X An=x1 x2

xn. This represents the case where there is no specific
knowledge about any particular focal element in the
universal set, i.e. total ignorance.

In practice, one inspects the basic probability
assignments m(Ai) on the focal elements Ai P(X) and

verifies that they are consonant, i.e. not conflicting. A
nested diagram can be drawn, with the nested sets
embracing the appropriate subsets to form the focal
elements. Then, Eqs. (36) or (38) allow retrieving the
possibility distribution.

As an example [17], consider two diagnostic expert
systems which are asked to identify the state of the
system as healthy (A), degrading (B) or faulty (C), based
on monitored data. Table 5 reports the basic probability
assignments to the focal elements of the power set.

Based on the available data, expert system 1 assigns
m1(B)=0.2 to the degrading state, m1(B C)=0.3 to the
degrading or faulty states and m1(A B C)=0.5 to one
of the three states. All the focal elements that have
evidence are nested, i.e. B (B C) (A B C) and
the basic distribution is
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0 0 0

1 C 0 0.1 x1

2 B 0.2 0.1 x2

3 B C  0.3 0 x3

4 A 0 0.1 x4

5 A C 0 0 x5

6 A B 0 0.3 x6

7 A B C 0.5 0.4 x7

Table 5. Basic Probability Assignments

Focal Elements Ai Diagnostic System 1 m1 Diagnostic System 2 m2 SingletonsSystem states

Fig 1. Nesting Diagram for the Evidence of Table 5 [17]



which from (35) produces the possibility distribution

The focal elements of expert system 1 can be represented
in the nesting diagram of Fig 1, which indicates both the
basic probability assignments to the nonzero elements
A2,A3,A7 and the possibility distributions for the various
focal elements xi, i=1,2, ,7. On the contrary, for the expert
system 2 the focal elements on m2 are not nested since
both sets C and B bear evidence but C B.

4.2 Possibility Theory and Fuzzy Sets
Possibility theory can be formulated not only in terms

of nested bodies of evidence, but also in terms of fuzzy
sets [17]. Indeed, fuzzy sets are also based on families of
nested sets, i.e. the -cuts.

Consider a fuzzy set F on the universe of discourse
X. The membership function µF(x), x X, represents the
degree of compatibility of the value x with the linguistic
concept expressed by F. On the other hand, with respect
to the proposition X is F it is more meaningful to
interpret µF(x) as the degree of possibility that X=F.
According to this latter interpretation, the possibility
rF(x) of X=x is numerically equal to the degree µF(x)
with which x belongs to F:

Then, the associated possibility measure F is defined for
all A P(X) by (31), viz.

This measure expresses the uncertainty regarding the
actual value of variable X under the incomplete information
as given by the proposition X is x. For normal fuzzy sets,
the associated necessity measure can be calculated for all
A P(X),

For example, let X be a temperature variable taking
only integer values. The available incomplete information
about its value is given in terms of the proposition X is
around 21°C as expressed by the fuzzy set F given in Fig
2a [17]. The incomplete information represented by
fuzzy set F induces a possibility distribution function rF

that coincides with µF, according to (41) . The nested -
cuts of µF (Fig 2b) constitute the focal elements of the

corresponding possibilistic body of evidence whose basic
probability assignments, possibility and necessity measures
are reported in Table 6.

As mentioned earlier, formally possibility measures
can be seen as equivalent to fuzzy sets. In this equivalence,
the membership grade of an element x corresponds to the
plausibility of the singleton consisting of that x. In other
words, a consonant belief structure is equivalent to a
fuzzy set F of X, where µF(x)=Pl(x).

A problem in equating consonant belief structures
with fuzzy sets is that the combination of two consonant
belief structures using Dempster rule (20)-(21) does not
necessarily lead to a consonant result. Hence, since
Dempster rule is essentially a conjunction operation, the
intersection of two fuzzy sets interpreted as consonant
belief structures may not result in a valid fuzzy set, i.e. a
consonant structure.

Finally, while belief and plausibility measures
overlap when all the evidence is only on singletons x X
and both become probability measures (Eq. 15),
possibility, necessity and probability measures never
overlap except for the special case of perfect evidence
when all the body of evidence focuses on only one focal
element, a singleton. The two distribution functions that
represent possibilities and probabilities become equal in
this case: one element of the universal set is assigned a
value of unity whereas all other elements are assigned
zero evidence.

4.3 Possibility Theory Versus Probability Theory
Possibility theory and probability theory are distinct

theories and neither is subsumed under the other. Both
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(40)

(41)

(42)

(43)

(39)

Fig 2. Fuzzy Set (a) and Corresponding Possibility Distribution
over the Nested -cuts (b) [17]



are special cases of Dempster-Shafer theory of evidence. 
Table 7 summarises the main differences between the

two theories [17]. Possibility theory is based on two dual
measures, possibility and necessity, which are special
versions of the belief and plausibility measures of
Dempster-Shafer theory of evidence. Probability theory
on the other hand, coincides with that sub-area of
evidence theory in which belief measures and plausibility
measures are equal. This difference results from a
fundamental difference in the structure of the respective
bodies of evidence: families of nested sets for the
possibilistic ones and singletons for the probabilistic
ones. As a consequence, also the normalization
requirements are very different: for possibility
distributions the largest values are required to be 1
whereas for probability distributions their values are
required to sum to 1. These differences make each theory
suitable for modelling certain types of uncertainty and
less suitable for modelling other types.

A fundamental difference between the two theories
lies in the way that total ignorance is represented: in
possibility theory, as in evidence theory, this is achieved
by setting m(X)=1, m(A)=0, A X or equivalently
r(x)=1, x X; in probability theory, this is achieved by
means of a uniform probability distribution over the
universal set p(x)=1/|X|, x. In particular, the probabilistic
representation is justified by the fact that in probability
theory every uncertain situation is represented by a single
probability distribution. However, if no information is
available to characterize the situation under study, then
no distribution is supported by any evidence: total ignorance
should thus be expressed in terms of the full set of possible
probability distributions on X so that the probability of
any value x X is allowed to take any value in [0,1].

In any case, when information regarding some
phenomenon is given in both probabilistic and possibilistic
terms, the two descriptions should be in some sense
consistent. In other words, the probability and possibility
measures P and  defined on P(X) should satisfy some
consistency conditions.
The weakest, but most intuitive, consistency condition is 

This requires that an event that is probable to some
degree must be possible at least to the same degree. The
strongest consistency condition would require, on the
other hand, that any event with nonzero probability must
be fully possible, viz.

In various applications, probability-possibility
transformations are necessary, whose consistency needs
to be assured. Several types of transformations exist,
ranging from simple ratio scaling to more sophisticated
operations. A degree of consistency between the probability
and possibility measures may be defined as follows, in
terms of the associated distributions:

5. COMBINING PROBABILITY AND POSSIBILITY IN
UNCERTAINTY PROPAGATION

As highlighted in the opening Sections of the paper,
the treatment of uncertainty is an issue of paramount
importance for risk-informed applications. In particular
with respect to the risk assessment component of risk-
informed applications, the treatment of the epistemic
uncertainty associated to the probability of occurrence of
an event is fundamental. Traditionally, probabilistic
distributions have been used to characterize such epistemic
uncertainty, which is due to imprecise knowledge of the
parameters in the risk models. On the other hand, in the
preceding Sections it has been argued that in certain
instances such uncertainty may be best accounted for by
fuzzy or possibilistic distributions. This seems the case in

A1={21} 1

A2={20,21,22} 1

A3={19,20,21,22} 1 1
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(44)

(45)

Table 6. Basic Probability Assignments, Possibility and Necessity Measures [17]

Set Ai m

(46)



particular for parameters for which the information available
is scarce and of qualitative nature. 

In practice, it is to be expected that a risk model contains
some parameters affected by uncertainties which may be

best represented by probability distributions and some
other parameters which may be more properly described
in terms of fuzzy or possibilistic distributions. In this Section,
an hybrid method which jointly propagates probabilistic
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Based on a single measure, probability p

Body of evidence consists of singletons

Unique representation of probability through a probability 

distribution function

p : X [0,1]

via the formula

p(A)=
x A

p(x)

Normalization:

x X
p(x)=1

Additivity:

p(A B)=p(A)+p(B)-p(A B)

p(A) + p(
_
A) = 1

Total ignorance:

Conditional probabilities:

Probabilistic non-interaction:

pXY (x,y) = pX (x) pY (y) (a)

Probabilistic independence

pX Y (x|y) = pX (x)                 

pY X (y|x) = pY(y)

(a) (b)

Based on two measures, possibility   and necessity 

Body of evidence consists of a family of nested subsets

Unique representation of possibility through a possibility 

distribution function

r : X [0,1]

via the formula

(A) =  
x A
max r(x)

Normalization:

x X
max r(x)=1

Max/min rules:

(A B)=max[ (A), (B)]

(A B)=min[ (A), (B)]

(A) = 1- (
_
A)

(A) < 1 (A) =0

(A) > 0 (A) =1

(A) + (
_
A) ≥1

(A) + (
_
A) ≤1

max[ (A), (
_
A)]=1 

min[ (A), (
_
A)]=0

Total ignorance:

r(x)=1    x X

Conditional possibilities:

Possibilistic non-interaction:

r(x,y) = min[rX(x), rY(y)]                      (a)

Possibilistic independence

rX Y (x|y) = rX (x)                                 

rY X (y|x) = rY(y)

(b) (a)  but not vice versa

Table 7. Differences Between Possibility and Probability Theory [17] 

Probability Theory Possibility Theory

(b) (b)



and possibilistic uncertainties is considered [22].
Let us consider a model whose output is a function

f( ) of n input variables Yj, j=1, ,n; the uncertainty in
the first k input variables (hereafter called ‘probabilistic’
variables) is characterized by probability distributions
pYj(y) whereas the uncertainty in the last n-k input
variables (hereafter called ‘possibilistic’ variables) is
represented in terms of possibility distributions Yj(y)
measuring the degree of possibility that the linguistic
variables Yj be equal to y. For the propagation of such mixed
uncertainty information, the Monte Carlo technique [30]
can be combined with the extension principle of fuzzy set
theory [16] by means of the following two main steps
[21]:
i. repeated Monte Carlo sampling of the probabilistic

variables to process their uncertainty;
ii. fuzzy interval analysis to process the uncertainty

connected with the possibilistic variables.
For the generic i-th k-tuple of random values, i=1,2,

,m sampled by Monte Carlo from the probabilistic
distributions, a fuzzy set i

f estimate of f(Y) is constructed
by fuzzy interval analysis. After m repeated samplings of
the probabilistic variables, the fuzzy set estimates i

f, i=1,
,m, are combined to give an estimate of f(Y) as a fuzzy

random variable (or random possibility distribution)
accordingly to the rules of evidence theory [18].

The operative steps of the procedure are:
1. sample the i-th realization (y1

i, ,yk
i) of the probabilistic

variable vector (y1, ,yk) 
2. select a possibility value and the corresponding cuts

of the possibility distributions ( Yk+1, , Yn) as intervals
of possible values of the possibilistic variables (Yk+1,

,Yn)
3. compute the smallest and largest values of f(y1

i, ,yk
i,

Yk+1, ,Yn), denoted by _f i and –f i respectively,
considering the fixed values (y1

i, ,yk
i) sampled for

the random variables (Y1, ,Yk) and all values of the
possibilistic variables (Yk+1, ,Yn) in the -cuts of
their possibility distributions ( Yk+1, , Yn). Then, take
the extreme values _f i and  –f i found in 3. as the lower
and upper limits of the -cut of f(y1

i, ,yk
i,Yk+1, ,Yn)

4. return to step 2 and repeat for another -cut; after having
repeated steps 2-3 for all the -cuts of interest, the
fuzzy random realization (fuzzy interval) i

f of f(Y) is
obtained as the collection of the values _f i and  –f i ; in
other words, i

f is defined by all its -cut intervals _f i

, –f i

5. return to step 1 to generate a new realization of the
random variables.
The above procedure is repeated for i=1, ,m; at the

end of the procedure an ensemble of realizations of fuzzy
intervals is obtained, i.e.( 1

f, , m
f). For each set A

contained in the universe of discourse UX of the output
variable X, it is possible to obtain the possibility measure

i
f(A) and the necessity measure Ni

f(A) from the
corresponding possibility distribution i

f(u), by:                  

The m different realizations of possibility and necessity

can be combined to obtain the believe Bel(A) and the
plausibility Pl(A)  for any set A, respectively [21]:

where pi is the probability of sampling the i-th realization
(y1

i, ,yk
i) of the random variable vector (Y1, ,Yk). For each

set A, this technique thus computes the probability-
weighted average of the possibility measures associated
with each output fuzzy interval.

The likelihood of the value f(Y) passing a given
threshold u can then be computed by considering the
believe and the plausibility of the set A=(-∞,u]; in this
respect, Bel(f(Y) (-∞,u]) and Pl(f(Y) (-∞,u]) can be
interpreted as bounding, average cumulative distributions 

[21].

Let the core and the support of a possibilistic
distribution f(u) be the crisp sets of all points of UX such
that f(u) is equal to 1 and non zero, respectively.
Considering a generic value u of f(Y), it is Pl(f(Y) (-
∞,u])=1 if and only if i

f(f(Y) (-∞,u])=1, i=1, ,m,
i.e. for u>u*=maxi{inf(core( i

f))}. Similarly, Pl(f(Y) (-
∞,u])=0 if and only if i

f(f(Y) (-∞,u])=0, i=1, ,m,
i.e. for u u*=mini{inf(support( i

f))}.
Finally, one way to estimate the total uncertainty on

f(Y) is to provide a confidence interval at a given level of
confidence, taking the lower and upper bounds from
Pl(f(Y) (-∞,u]) and Bel(f(Y) (-∞,u]), respectively [21].
On the other hand, Bel(f(Y) (-∞,u]) and Pl(f(Y) (-
∞,u]) cannot convey any information on the prediction
that f(Y) lies within a given interval [u1,u2], since neither
Bel(f(Y) [u1,u2]) nor Pl(f(Y) [u1,u2]) can be expressed
in terms of Bel(f(Y) (-∞,u]) and Pl(f(Y) (-∞,u]),
respectively.

5.1 Case Study
The approach for uncertainty propagation just illustrated

has been applied [22] to the event tree analysis of an
Anticipated Transient Without Scram (ATWS) event in a
nuclear power plant in Taiwan [31]. Some results of this
application are illustrated in the following.

The event tree in Fig 3 is considered, taken from
Taiwan’s nuclear power plant II operating PRA draft
report [32]. The description of the headings of the tree are
reported in Table A1 of the Appendix. According to the
assumptions made [32], the probabilities of occurrence of
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events XC and V are conditioned by the occurrence of
events U1 and X1, whereas the probabilities of events Xv,
W, VW are considered as constants in the different sequences.

Two kinds of information are available with respect
to the event occurrences. Adopting the same assumptions
of [31], sufficient experimental data are available to build
lognormal probability distributions pvj(v) representing the
epistemic uncertainty in the event probabilities vj,
j=1, ,k, for the k=11 hardware-failure-dominated (HFD)
events. Table A2 in the Appendix reports the corresponding
means and standard deviations. On the contrary, there are
not enough data to build probability distributions for the
human-error-dominated events: in this case, the knowledge
of four experts has been elicited in the form of possibility
distributions vj(v), j=12,13,14,15 (Fig A1 in the Appendix)
[31].

The approach of joint uncertainty propagation
described above has been applied to the computation of
the probabilities of occurrence of the 23 accident sequences
identified in the event tree of Fig 3. With respect to the
mathematical formulation of the method, the function fr,
r=1, ,23, used to compute the probability of occurrence
of the r-th accident sequence, pSeqr, is the product of the
probabilities vj of occurrence/non occurrence of the
single events along the sequence, i.e.

From these sequence probabilities one can compute
the probability of occurrence of severe consequences,
pSev, by summing the probabilities of all the sequences
that lead to severe consequences:

Then, for all sets A=[0,u),u R+, the possibility and
the necessity measures, i

f([0,u)) and Ni
f([0,u)), are

obtained from the corresponding possibility distributions
i
f(u), according to Eq.(47). 

Finally, the m=1000 possibility and necessity
measures are combined to obtain the plausibility and
necessity by (Eq. 48):

Fig 4 reports the believe and plausibility of the set
[0,u) obtained for the probabilities of occurrence of
sequences 13, 15, 22 and of a severe consequence
accident. The three sequences have been chosen because
representative of distinct interesting cases of uncertainty
propagation; on the other hand, the probability of a
severe consequence accident is an important quantity for
the evaluation of the risk.

In the top graph, notice that the Bel([0,u)) (lower curve)
and the Pl[0,u) (upper curve) of the probability of sequence
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Fig 3. The Event Tree [31]; Upper Branch Corresponds to the Non-Occurrence of the Event, Lower Branch to the Occurrence,
SEQ=Sequence Number, *=Severe Consequence Sequence

(49)

(50)

(51)



13 are quite far from one another indicating large
imprecision in the estimation of the probability that p13<u,
i.e. of the cumulative distribution function F(u). This is
mainly due to the fact that Sequence 13 is characterized
by the non occurrence of the human-error-dominated
event Xc2 that is known only with very large imprecision
(bottom left graph in Fig A1). For example, the value of
Pl(0), that represents the plausibility of the impossibility
of the occurrence of accident sequence 13, is equal to 1
while the Bel(0) that represents the necessity is equal to
0. The plausibility measure is 1 due to the fact that the
possibility of having v14=1 is 1, i.e. the expert believes
that it is possible that event Xc2 always occurs; on the
contrary, event Xc2 appears in Sequence 13 as not
occurring, so that it is plausible that Sequence 13 never
occurs (Pl(pSeq13

=0)=1).
The opposite occurs for the case of Sequence 22

characterized by the occurrence of only hardware-failure-
dominated events. In this case, the input (probabilistic)
variables v1,v2, of function f22 are represented by probabilistic
distributions not affected by imprecision and thus
Bel([0,u)) and Pl([0,u)) coincide and can be interpreted
as the cumulative distribution function F(u) (third graph

from the top in Fig 4).
An intermediate situation between the cases of

sequences 13 and 22 is represented by sequence 15 (second
graph from the top of Fig 4). In this case the estimation
of the probability of occurrence of the accident sequence,
characterized by the presence of both human-error-
dominated and hardware-failure-dominated events, is
affected by both imprecision and variability represented by
the gap between Bel([0,u)) and Pl([0,u)), and the slopes
of the two curves, respectively.

6. CONCLUSIONS

Uncertainty is a key issue in all risk applications. For
practical purposes, it is convenient to consider it as of two
different types: i) aleatory, due to inherent randomness in
the system behavior and ii) epistemic, due to imprecise
knowledge and lack of information on the system. Such
distinction plays a relevant role in the risk assessment
framework applied to complex engineered systems such
as the nuclear power plants. 

In particular, in the current practice of risk-informed
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Fig 4. Believe and Plausibility of the Set [0,u) Resulting from Application of the Hybrid Approach



regulations and applications all uncertainties, epistemic
or aleatory, are represented by means of probability
distributions and their propagation is carried out by a
two-loops Monte Carlo simulation where in the outer
loop the values of the parameters (e.g. failure rates)
affected by epistemic uncertainty are sampled and in the
inner loop the aleatory variables (e.g. failure times) are
sampled from the probability distributions conditioned at
the values of the epistemic parameters sampled in the
outer loop. However, resorting to a probabilistic
representation of epistemic uncertainty may be difficult
when sufficiently informative data is not available for
statistical analysis, even if one adopts expert elicitation
procedures within a subjective view of probability. Indeed,
an expert may not have sufficiently refined knowledge or
opinion to characterize the relevant epistemic uncertainty
in terms of probability distributions. As a result of the
potential limitations associated to a probabilistic
representation of epistemic uncertainty under limited
information, a number of alternative representation
frameworks have been proposed, e.g. fuzzy set theory,
evidence theory, possibility theory, probability bounds
and interval analysis and imprecise probability. 

In this work, the basic principles of the Dempster-
Shafer theory of evidence have been recalled together with
its specification into possibility theory. These theories
offer alternative frameworks of representation which
may add value to the treatment of uncertainty in risk-
informed applications, particularly with respect to the
epistemic uncertainty arising from incomplete knowledge
of the parameters of the deterministic and probabilistic
models used for the evaluation of risk.

An example is provided of the combined use of
probabilistic and possibilistic representations of the
uncertainties regarding the probability of occurrence of
the events of an event tree. Events whose uncertain
probabilities of occurrence can typically be described by
probabilistic distributions are basic hardware failures,
whereas for the probabilities of occurrence of human
errors or of failures to protective or automation systems
possibilistic distributions may be more appropriate. In
general, an event tree may contain events of both kinds.
The propagation of the epistemic uncertainty of these
events can be carried out jointly as follows: Monte Carlo
sampling of the random variables is repeatedly performed
to process the epistemic uncertainty related to the events
whose probabilities of occurrence are described by
probabilistic distributions; then, fuzzy interval analysis is
carried out at each sampling to process the epistemic
uncertainty associated to the events whose probabilities
of occurrence are described by possibilistic distributions.
The application of the method results in the estimation of
upper and lower cumulative distributions of the
probabilities of occurrence of the accident sequences,
while effectively distinguishing between the uncertainties
due to events whose probability of occurrence is described

by probabilistic or possibilistic distributions: the former
are reflected by the slope of the believe and plausibility
functions while the latter are pictured in the gap between
the two functions.

As a final remark, it is important to underline that the
acceptance in practice of uncertainty representation
frameworks alternative to the probabilistic one is still very
controversial. Although all the different frameworks
proposed have the required axiomatic basis, the
interpretation of the underlying concepts (in terms of
metaphors, e.g. betting, and standards, e.g. drawing balls
from an urn) and the associated quantitative measures,
which are of key interest for practical applications, are
simpler and more precisely defined for some than for others.
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This event will happen when the reactor is isolated and the automatic scram

system fails. It is also assumed that mechanical failures cannot be repaired

within the allowable time.

If the plant fails to scram, an automatic recirculation pump system is

required to limit power generation immediately. A failure of the automatic

recirculation pump system will result in event R.

At the time the reactor is isolated, at least 13 of 16 S/RVs must open to

prevent overpressurization of the reactor vessel. If insufficient S/RVs open,

then event M will happen.

main condenser

isolation ATWS
T1ACM HFD v1

Table A1. Event Tree Headings (Top Events) [31]; v = Probability of Occurrence, 
HFD = Hardware-Failure-Dominated, HED = Human-Error-Dominated

Event DescriptionAcronym Type v

recirculation

pump trip
R HFD v2

safety/relief

valves (S/RVs)

open

M HFD v3

APPENDIX
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When an ATWS event happens, the power of the core is very high. If the

power cannot be slowed down to the state of shutdown, and the vapor

produced by the reactor continues to inject into the suppression pool, then

the temperature will increase to fail the high-pressure system. This will

increase the possibility of core meltdown. As a result, automatic redundant

reactivity control system (RRCS) is supposed to inject liquid Boron into the

vessel to shut down the reactor safely. If automatic RRCS fails, and

operators fail to inject liquid Boron by using standby liquid control system

(SLCS), it will result in event C0. It is assumed that operators cannot

manually inject liquid Boron within the allowable time.

Automatic depressurization system (ADS) is designed to decrease the

pressure of the reactor in order to start the low-pressure system. The low-

pressure system will inject water into the reactor vessel to protect the fuel.

When an ATWS event happens, the reactor power is controlled by the level

of water in core. Since high-level water will cause high power, the operator

should inhibit all ADS valves manually. If the operator fails to do so, event

XI will occur.

Following the stop of feedwater supply, the high-pressure makeup system is

supposed to work automatically when automatic actuation alarm appears as

soon as the water level is lowering till level 2. The water level is expected to

reach the top of the fuel. Thus, if the high-pressure system fails to work

automatically, it will lead to event U1.

The success criterion of avoidance of this event is that the high-pressure

system can maintain the water level in the vessel 24 h after the start. If the

system fails and causes event U, then using the low-pressure system to

maintain the water level is needed.

If the pressure in the reactor vessel is too high to set up the low-pressure

system, the operator should depressurize the vessel manually in time to

avoid core melt-down. Due to the different conditional probabilities of

occurrence of this event in different accidental sequences, Xc is called Xc1 in

sequences 4-9 characterized by the non-occurrence of event U1 and Xc2 in

sequences 10-15 characterized by the  occurrence of event U1.

ADS inhibit X1 HED v12

early high-

pressure makeup
U1 HFD v5

long-term high-

pressure makeup
U HFD v6

manual reactor

depressurization

XC

(XC1,XC2)
HED v13,v14

Boron injection C0 HFD v4
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vessel inventory

makeup after

containment 

(CTMT) failure

VW HFD v11

If the low-pressure system fails as well as the high-pressure system, then

event V will occur and the water level in the vessel will be so low as to

probably cause core melt-down. Due to the different conditional probabilities

of occurrence of this event in different accidental sequences, V is called V1

in sequences 4-7, V2 in sequences 10-14 and V3 in sequences 16-20.

When the pressure in the vessel is decreased till the level low enough for the

low-pressure system to inject water, huge amount of water will come into

the core. The operator should pay attention to the water level and make sure

that the level is kept not so high as to lead to core melt-down. The definition

of this event is the operator fails to complete this job.

The residual heat removal (RHR) system is initialized to cool down the

suppression pool and containment in order to maintain other supporting

systems work well. If this system fails, event W will happen.

The CTMT might fail because of over-pressure or over-heat. The water in

the reactor vessel must be kept supplying to protect the fuel not to be melt in

the condition of CTMT failure. Among these events, XI, XC and XV are mainly

caused by human errors. The others are mainly caused by hardware

failures.

T1ACM pv1(v) 1.52E-07 8.42

R pv2(v) 1.96E-03 5.00

M pv3(v) 1.00E-05 5.00

C0 pv4(v) 1.37E-02 3.00

U1 pv5(v) 8.45E-02 3.00

U pv6(v) 2.13E-03 5.00

V1 pv7(v) 1.12E-06 10.00

V2 pv8(v) 3.40E-06 10.00

V3 pv9(v) 9.49E-05 10.00

W pv10(v) 2.03E-05 10.00

VW pv11(v) 4.00E-01 2.40

Table A2. Parameters of the Probability Density Functions [31]

event pdf median error factor

reactor inventory

makeup at low

pressure

V

(V1,V2,V3)
HFD v7,v8,v9

vessel overfill

prevention
XV HED v15

long-term heat

removal
W HFD v10
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Fig A1. Possibility Distributions of the Probabilities of Occurrence of the Four Human-Error-Dominated 
Events of the Event Tree of Fig 3 [31]


