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Abstract

The lattice dynamics of Cr, Mo, and W are formulated in terms of a simple
shell model in which the transition metal ions in the crystals are treated as
deformable ions. The model involves a total of seven parameters; two charge
parameters and five force constant parameters. The numerical values of the
model parameters are determined by fitting to three elastic constants and the
lattice vibrational frequencies measured by the neutron inelastic scattering
experiments. Attempts are made to compute the phonon dispersion relations,
the frequency distribution functions, and the lattice specific heats of three
metals. The results are compared with experiments. It is found that the simple
shell model can give a satisfactory account for the lattice vibrational charac-
teristics of transition metals. The usefulness of the model is then discussed in
comparison with other lattice dynamical models,

2 oF

T TRRZ Y= AR ) 2E AP T o] Lo w HAFPord =22y
g R HauY AR ES A mde o8 4. o] 2l
A& T gl oA A AR 2T A A 2lAqsE: 28Eke 9
B FAE 349 24 A5l B ad FAA AG A o8 FF
A
A

r‘)‘s;‘

L2 g 2
A‘.L:m
1u:_|

R

o]

A o A e
—?1|‘

AT 54 Fog 3 dAteS st ARt

¥ AL moe Cr, Mo @ W3 Al 459 A% 434, FH4 LIS
2 owd & At $83A2 2 AAE AYA s vlastideh. o 2 AAG
rdze AolF&e AAAFA M E4E dFaA 48T ¢ Yo AL ¢
et =d whE AR mdlste] vlad Fite] A 2o 848 AR}

the incompletely filled d-shell electrons®.

1. Introduction Many band structure calculations show
that the d electrons are less tightly bound

It is characteristic of transition metals to their jon core than other closed shell
that the free ions of these metals possess electrons, and that d-electron states are
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lying near or crossing the Fermi surface®.
This character of d electrons is known to
be responsible for many peculiar properties
of transition metals. In particular, it is
shown that the d character in the valence
states of transition metals gives rise to so-
called local field effects in the first principle
formulations of the lattice dynamics of these
metals. Further, it has been shown that the
effects can be simulated in the phenome-
if one treats the transition
metal ions as deformable ones. This then
becomes a microscopic justification of the
shell models to be used for studying the
lattice dynamics of transition metals.®

nological way,

The first successful applications of the
shell models to the lattice dynamical studies
of ionic and covalently bonded crystals were
made a decade ago®. But it is only recently
that the shell model found its usefulness in
understanding in transition
metals and their compounds.®””® Hanke
and Bilz® analyzed the phonon dispersion

the phonons

data of several transition metals for the
first time in terms of the shell models.
They obtained a result which is in excellent
agreements with experiments. However,
they did not extend the model to study other
lattice dynamical properties of transition
metals. In addition, all the transition metals
they studied have the face-centered cubic
structures except for a couple of metals, Na
and Al

In view of these facts, we consider it in-
teresting to investigate the shell model app-
icability to the lattice dynamics of body cen-
tered cubic transition metals. To do this we
have formulated a seven-parameter simple
shell model and applied it to analyze the
neutron data for the dispersion relations and
the lattice specific heat data of chromium,
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So far, the
neutron data for the lattice vibrations in

molybdenum, and tungsten.
these metals have been analyzed mostly in
terms of the force models of the Born-von
Karman type® %10, The force models are
found to be satisfactory. However, in order,
to have a good fit to the experimental data
one must consider at least more than third
neighbor interactions. The models then invo-
lve a large number of undetermined param-
eters. In our shell model treatment we have
interactions to the
the model

restricted the ion-ion
second neighbors and, thereby,
parameters are reduced to seven.
To our best knowledge thus far, the first
principle study on the lattice vibrations in
bee transition metals is one made by Anim-
alu'”® who used the transition metal model
potential (TMMP) theory. It is observed
that, even though his theory can give a
satisfactory account of the phonon dispersion
data of fcc transition metals, there are large
discrepancies between his theory and expe-
riments in bce transition metals. There is
another type of the first principle approach
which is successfully applied to Ni and Pd'®,
This latter approach resembles the shell

model. But it has not been tested in bcc

transition metals. Therefore, it is hoped
that our shell model results serve a useful
intermediate scheme in such a model appr-
oach to the lattice dynamics of bec transit-
jon metals.

2. Formulation of Dynamical Matrix

In the shell model\treatment every metal
ion is replaced by an ion core of charge Xe
and a massless electron shell of charge Ye.
The electron shell is assumed to be bound

“to its ion core by an ijsotropic spring of
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strength %.. The sum of the core charge
and its own shell charge gives the effective
ionic charge Ze=(X+Y)e. Two ions in me-
tals are considered to couple with each other
through the short range and the Coulomb in-
teractions. The short range interactions are
further decomposed into the core-core, the
core-shell, and the shell-shell interactions.
Denoting these interactions in a usual way the
equations of motion of the shell model can
be given by!+ 19
MoU= (R+2CZ) U+ (T+ZCY)W, !
0 =(T+YCD)U+I+S+Yeryw. |
The notations in equation (1) are quite
standard. We followed those in ref. 15. In
R, T,
which specify the short range interactions

particular, and S are 3X3 matrices
between the nearest neighbor ions. I is the
unit matrix, C represents the Coulomb inter-
action which can be evaluated by the Ewald
method'® . U and W denote the displacement
vectors of the ion core and the associated
shell relative to its ion core. M is the mass
of the metal ion. Elliminating W in eq.
(1), one obtains the shell model dynamical
matrix,
D=R+7CZ—(T+ZCY) (kI+S+YCY)!
(T+YCZ). 2)
The normal mode frequencies, «;(g), are
then determined from the secular equation,
det. | Mo;*(q)I—D(q) | =0. 3)
In calculating the dynamical matrix D we
limited the short range interactions to the
second neighbors. The first neighbor inter-
actions are treated as acting only through
the electron shells, while we neglected the
core-shell and the shell-shell interactions in
the second neighbor interactions. It follows
then that R=R,+R, 'and 7T=S=R,. The
elements of 3X3 matrices, R, and R,, are
given by

Ri..{g) =Ry,,(q) =R...(q) =8a,(1—-C.C,C.),

Ry.,(q) =88:5.5,C.,

Ry (q) =2a;(1—C3,) +28,(2—C5,—C5,), and

R:.,(q) =0,
where

C.=cosng,, S.=sinng,, and C,,=cos 2xq.,

The rest of elements of R; and R; can be

obtained by cyclic permutation of the subs-
cripts, xyz. It must be noted that we have
put

2
4= (44,4.)

where a is the lattice constant.

The parameters of simple shell model just
discussed consist of five force parameters
and two charge parameters. In computing
the dispersion frequencies we consistently put
the effective ionic charge parameter Z as
unity. Therefore, the numerical values of
only six parameters need to be determined.
The procedure we take is to use three relations
between the force parameters and the elastic
constants of the metals, and two simple
relations between the force parameters and
the phonon frequencies, wr(H) and wr:(N).
Varying the value of ¥, we solve the five
relations and find the reasonable set of force
parameters which give a satisfactory account
of the phonon dispersion data. This procedure
is, in a sense, very similar to a least squares

fitting analysis of the neutron data.
3. Results and Discussions.

Chromium, molybdenum, and tungsten are
body-centered cubic transition metals which
belong to the column VI of the periodic
table. Their neutral atoms have six electrons
outside the closed shells and the electronic
configurations are 34° 4s!, 44%5s!, and 5d°@s?,

respectively'”, In many respects the meas-
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Table 1. Shell Model Parameters

model parameters force constants (X10° dynes/cm) gélra(xi'rgleu xfi:;z:;?‘; (e)l(afé:fd;:::/tg;t:;
[
transition metals @ B | a | i I k z Y Cu ] Cis ‘ Cuo
Chromium 0. 0892{—0. 0075 0.34] 0.0533 2.3636 1 —2| 33.98 5.86 9.9¢»
Molybdenum 0. 1118 0. 05 0.22/—0.0615| 0.4941 1 —1 46 17.6 11¢®
Tungsten 0.2728] 0.0932 0.25—0.0151] 8.423 1 —3] 53.26] 20.49{16.31®
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Fig. 1.

Dispersion curves for chromium along the principle symmetry
directions together with the shell model fit to the neutron data.
Circles and triangles are experimental data of Shaw and Mubhles
tein (ref. 19), while squares and hexagons are those of Mgller and
Mackingtoshi (ref. 18). White squares and circles denote the
longitudinal modes, black ones the transverse or T; modes, and
black triangles and hexagons T; modes. Phonons of T, branch have

polarization vegtor parallel to [110] direction,

while thogse of T,

branch have the polarization vector parallel to (00]] direction,
Solid curves are the pregent calculations.

ured phonon spectra for these metals show
similarities. In this section we present our
shell model results in comparison with other
theoretical studies on the latice vibrational
properties of them.

1) Chromium

The lattice dynamics of chromium has
received much attention in recent years.
The first experimental study on the phonon
dispersion relations in chromium was made
earlier by Mgller and Mackingtosh!®. Rec-
ently, Shaw and Muhlestein!®, Cunningham
et al.?», and Muhlestein et al.?V have also

made the neutron measurements for the
normal mode frequencies of the lattice vibr-
ations in chromium.
Feldman® the
theoretical attempt to calculate the phonon
dispersion relations of chromium. He based
his study on the fourth neighbor tensor
force model of Begbie and Born*®?. It is
reportedly known that Gilat? also analyzed
the neutron data in terms of the seventh
neighbor Born-von Karman model. The
recent theoretical studies are those of Sharma

made first significant

“and Singh,?> Kesharwani and Agrawal, ®

and Satya Pal.?® Sharma and Singh used
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Fig. 2. Frequency distribution functions for
chromium (a), for molybdenum (b), and
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Fig. 8. The lattice specific heat of chromium as a function of temperature.
Circles are the experimental data in which the electronic contributions
are subtracted.

Cheaveau’s model to compute the Debye
Waller (DW) factors of chromium. Keshar-
wani and Agrawal adopted the Krebs model

to examine the impurity effects on the lattice
vibrations in chromium. Satya Pal applied
the Sharma and Joshi model*” to calculate
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FigFig 4. The specific heat Debye temperature of
chromium versus temperature. The circles
are taken from the work of Clusius and

Franzosini

(ref.

28). The solid line

represents the present calculation.
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Fig. 5. Dispersion curves for the lattice vibrations in three major
directions in molybdenum at 296K°. Circles and triangles
are experimental points among which open circles denote

the longitudinal modes,

solid circles the transverse T,

modes, and triangles the T, modes. Solid curves denote
the shell model calculations.

the lattice dynamical properties of this
metal. Among these, Feldman’s study is a
most extensive one. He obtained an excellent
fit to the measured phonon frequencies.
However, his results are not to be expected,
considering that interactions between rather
far-distant neighbor ions are taken into

account. Satya Pal's study is the most
recent one. But the model he used is not
consistent with the lattice translational
symmetry and, thereby, the frequencies
computed from the model are not periodic
in the reciprocal space. Besides these, we

should mention the work of Animalu!®, who
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applied the TMMP theory to calculate the
phonon dispersion relations of chromium.
This is regarded as the first microscopic
study made in chromium. Unfortunately,
some discrepancies found between his results
and experiments,

we felt that it is
interesting to reconsider the lattice dynamics
of chromium in terms of the simple shell
model formulated in section 2. In this model

In view of these facts,

application we initially put ¥Y'=—Z and fitted
the five force parameters to three elastic
constants and two dispersion frequencies, w.
(H) and er:(N). It is found that the force
parameters determined this way predicted
too high or too low frequencies in the [110]
directions. Therefore, it becomes necessary
to readjust the force parameters by varying
the value of Y,

between the frequency calculations and neu-

until a good a greement

tron data is observed. The numerical values
of the model parameters thus obtained are
listed in table 1. An alternative procedure
would be to use all the measured frequencies
across the Brillouin zone in a least square fit,

The phonon dispersion curves of chromium
are shown in Fig. 1 together with the shell
model calculations. There are some differen-
ces between the neutron data of Mgller and
Mackingtosh and those of Shaw and Muhle-
stein particularly at or near the Brillouin zone
boundary. Nevertheless, the overall agreem-
ents of calculations with experiments are
seen to be reasonably good. Figure 2a is the
frequency distribution function calculated by
the root sampling method. In this calculation
we diagonalized the dynamical matrix at 47
inequivalent points within the irreducible
segment of the first Brillouin zone. This
corresponds to 10° sampling points inside the
Brillouin zone. We then collect the frequencies

in the frequency interval of 0.1x10'? Hz.
The frequency distribution function, g(v),
is then used for computing the specific heat

_of chromium as a function of temperature.

This result is shown in Fig. 3 and the result
is also presented as a Debye T curve in Fig.
4. It must be noted that the electronic
contributions to the specificheat is subtracted
in these curves?®. Even though we have
not compared our results with other model
calculations in Figs. 3 and 4, better agreem-
ents with experiments are observed in our
shell model calculations?®.

2) Molybdenum

The phonon dispersions of molybdenum
were first determined by Woods and Chen!'®
with the help of the coherent one phonon
scattering of thermal neutrons. Recently,
Powell et al.2® also reported the similar
neutron measurements. Woods and Chen
made the Born-von Karman analysis of their
neutron data in terms of both general and
axially symmetric force models. They found
that, if more than third neighbor interactions
are included in their force models, the qu-
alitative features of the measured phonon
dispersion curves can be explained.

Mahesh and Dayal,3®
Agrawal®?, and Animalu'® have also studied
the lattice dynamics of this metal. Mahesh
and Dayal modified the Krebs model by
including the third neighbor central inter-
action. Then they used the model to compute
the lattice vibrational frequencies and the

Kesharwani and

Debye temperature of molybdenum, and
obtained qualitatively good results. Keshar-
wani and Agrawal based their study on the
Krebs model with the second neighbor ionic
interactions. But they concentrated on the
study of impurity effects on the lattice
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Fig. 6. The lattice specific heat of molybdenum

versus temperature.

specific heat of the molybdenum alloy.
Finally, Animalu attempted the first micro-
scopic study on the lattice vibrations in this
metal by the TMMP theory. As mentioned
already, his results turned out to be very
qualitative,

In view of the success of our shell model
shown in chromium and due to interest in
the model applicability, we reformulated the
lattice dynamics of molybdenum in terms of
the simple shell model. To begin with, the
numerical values of the model parameters
are determined by the similar procedures that
we have taken in the chromium case. Namely
we have made use of the elastic constants
and two phonon frequencies at the Brillouin
zone boundary points, N and H. The relation
Y=—Z is used. The elastic constants were
taken from the ref. 32 and the phonon
frequencies from the work of Woods and
Chen!?. The numerical results are given in
Table 1.

In Fig. 5 the shell model calculations are
compared with the dispersion curve measure-
ments of Woods and Chen. The agreements
between the calculations and experiments are
shown to be generally good. But the calcu-
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Fig. 7. The specific heat Debye temperature
versus temperature for molfbdenum.

lated frequencies of the T branch are found
to be about 15% lower than the measured
frequenties. Woods and Chen noted that
their neutron data show a pronounced
anomaly near the point H in the dispersion
curves. In fact, they excluded the neutron
data at all the points near H with 5>0.9
from the least squares fitting analysis. In
contrast with this we forced the shell model
parameters to fit the phonon frequency at
the point H. This requirement may be
responsible for the discrepancies observed in
our calculations. Therefore, it seems possible
to improve the fit of the present shell model to
the dispersion data a little better. To do this
one can employ the least squares fitting
method with or without the neutron data
around H. Also one can lift the assumption
Y=—Z7 and Z=1, since the effective ionic
charge and the shell charge of molybdenum
are not known at the present time.

Fig. 2b is the frequency distribution fun-
ction, g(v), which is obtained by the root
sampling method. As in the case of chrom-
ium, 10° sampling points in the Brillouin
zone are selected for this calculation. g(v) is’
used for the evaluation of the lattice specific -
heat or equivalently the specific heat Debye
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Phonon dispersion curves for tungsten at room temperature. Experimental
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Fig. 9. The lattice specific heat of tungsten
versus temperature.

T T T T I
3801
s 340

° °
B L0000, .

300~

] i 1 | ]

40 80 120 160 200

TEMPERATURE T °K

Fig. 10. The specific heat Debye temperature
versus temperature for tungsten.

temperature of molybdenum. The results are

presented as the specific heat versus temper-
ature in Fig. 6 and as the Debye temperature
versus temperature in Fig. 7. It is shown
that the shell model predicts a little higher
values of the specific heat. It is presumed
that this discrepancy is also the result of
the dissatisfactory fitting of our shell model
parameters to the dispersion data of moly-
bdenum. Therefore, improvements in the
shell mode] fits need to be made in order to

have better account of the specific heat data

of molybdenum.

3) Tungsten

The lattice dynamics of tungsten has been
investigated by many authors, %2 1230 3% Chen
and Brockhouse!® measured the phonon
dispersion curves in the three major directions
of this metal by the neutron inelastic scat-
tering experiment. They made a Born-von
Karman general force model analysis, and
found that the qualitative features of their
neutron data can be explained by a third
neighbor force model. Also they noted that
the measured values of the elastic constants®
satisfy the condition of isotropy and,

thereby, two transverse phonon modes pro-



116

agating in the [110] direction must be
degenerate with the second neighbor force
model. Since this is not the case, they
concluded that the interaction forces must
extend beyond the second neighors.

Mahesh and Dayal®*®, Shukla

and Animalu'® also reported their investi-

Recently,

gations on the lattice vibrations in tungsten.
Mahesh and Dayal*® modified the Krebs
model by including the third neighbor central
interaction. They computed the phonon
dispersion relations and the lattice specific
heat of tungsten, and obtained a good
agreement between the model calculations
and experiments. Animalu studied the lattice
dynamics of tungsten based on the TMMP

theory. This is the first microscopic study.

Unfortunately, as in cases of other bcc
transition metals, his result is far from being
satisfactory.

It is noted that the above situations in
the lattice dynamical study of tungsten are
very similar to those of molybdenum. Ther~
efore, motivated similarly as in the moly-
bdenum case, we reexamined the lattice
dynamics of tungsten in terms of the simple
shell model. As before, the model parameter
values are fitted to the elastic constants®®
and the measured phonon frequencies at the
points N and H. It is found that ¥Y'=—3 for
the shell charge parameter of tungsten gives
a reasonable fit to the phonon dispersion
data. In addition, we found an improvement
in the shell model fit to the dispersion data,
when we made a slight readjustment of the
force parameter values independently of the
exact relations between the force parameters
and the phonon frequency at the point H.
Table. 1 shows the numerical results thus
obtained.

In Fig.9 the shell model dispersion rela-

J. Korean Nuclear Society Vol. 7, No. 2, June 1975

tions are compared with the measured ones.
Th discrepancies between the calculations and
the phonon data near H are caused by the
readjustment of the force parameter values
in the way that we discussed just before.
Figure 2c represents the frequency distribu-
tion function of tungsten obtained from the
frequency calculations at the 10° sampling
points in the Brillouin zone. It is observed
that the distribution function exhibits two
pronounced peaks at 4.5 and 6.3Xx10* Hz.
Two peaks are also observed in other model
studies' %, Chen and Brockhouse!” found
two peaks at 4.6 and 6.3X10"Hz in their
8th-neighbor force model of 23 parameters.
Also, Mahesh and Dayal®® observed the
peaks at 4.6 and 6.4x10” Hz in their
modified Krebs model calculation. Using the
distribution function of Fig.2c, we finally
calculated the lattice specific heat and
compared the results with the measurements
of Clusius and Franzosini®® in Fig.10 and
11. It is shown that the shell model results
agree remarkably well with the specific heat
data of tungsten. Therefore, it is suggested
that the model should be useful for studying
other lattice dynamical properties of tungsten
such as Debye Waller factor and the impurity

effects.

4) Conclusions

Phenomenologically speaking, the transi-
tion metals have two special features in
them. Since they are metal, some of the
valence electrons are freed to participate in
the dynamic screening process of the Coulomb
interactions between the metal ions. In
addition, they possess the d-shell electrons
which are not rigidly bound to their ion
core. Therefore, the transition metal ions
can be regarded as deformable ions rather
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than rigid ions. In this paper we have con-
centrated on this deformable nature of the
transition metal ions, and presented a simple
shell model analysis of the lattice vibrations
in chromium, molybdenum, and tungsten.
We have computed the phonon dispersion
relations, freguency distribution functions,
and the lattice specific heats of these metals,
It is
assumed that the effective ionic charge is

using a seven-parameter shell model.

unity. This assumption is not essential. But
it is made for the model simplfication. The
rest of the model parameter values is adjusted
to fit the elastic constants and the measured
phonon frequencies.

In the case of molybdenum the shell model
predicts higher values of the specific heat
than the measurement. It is attributed to the
fact that our shell model fit to the neutron
data for the dispersion relations is not com-~
plete. Therefore, it is suggested that the
least squares fitting analysis of the phonon
frequencies over the whole Brillouin zone may
improve the present results far better. It is
also suggested that one can lift the assum-
ption, Z=1, since the effective ionic charge
of molybdenum is not precisely known at the
present time. For cases of chromium and
tungsten the agreements between the shell
model calculations and the experimental data
are found to be excellent. Therefore, it is
concluded that our shell model would be
useful for the lattice dynamical study on
other bce transition metals,
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