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1. Introduction 

 
Recently, MUSAD (Modules of Uncertainty and 

Sensitivity Analysis for DeCART) was developed for 
the uncertainty analysis of PMR200 core [1] and the 
fundamental adjoint solver was implemented into 
DeCART [2]. However, the application of the code was 
limited to the uncertainty to the multiplication factor, 
keff, because it was based on the classical perturbation 
theory. For the uncertainty analysis to the general 
response as like the power density, it is necessary to 
develop the analysis module based on the generalized 
perturbation theory and it needs the generalized adjoint 
solutions from DeCART.  

In this paper, the generalized adjoint solver is 
implemented on DeCART and the calculation results 
are compared with the results by TSUNAMI of SCALE 
6.1 [3]. 

 
2. Methods and Results 

 
The general response is commonly expressed as the 

following.  
𝑅 = <𝐻1(𝛼)𝜙(𝛼)>

<𝐻2(𝛼)𝜙(𝛼)>
                              (1) 

 
Here, 𝛼 is an input parameter and H1 and H2 are 

response functions as like the cross sections. Eq.(1) can 
represent the various core parameters according to the 
response functions. Thus, the sensitivity of the response 
[1] to an input parameter can be presented as 

 
𝑆𝑅,𝛼 = 𝛿𝑅

𝛿𝛼
𝛼
𝑅
                                   (2) 

 
The generalized perturbation theory can describe the 

sensitivity without directly obtaining the solutions of 
the perturbed state. It can be achieved using the solution 
of the generalized adjoint equation which must be 
obtained from DeCART. 

In the next sections, the formulations for setting the 
generalized adjoint equation based on the generalized 
perturbation theory are described and then the scheme 
for the numerical solution of the equation in DeCART 
is presented in the section 2.3. 

 
2.1 Generalized Perturbation Theory 

 
Neglecting over the second order term, the small 

perturbation of the general response, Eq.(1), can be 
approximated as the following 

 

𝛿𝑅 ≅ �� 𝜕𝑅
𝜕𝐻1

𝜕𝐻1
𝜕𝛼

+ 𝜕𝑅
𝜕𝐻2

𝜕𝐻2
𝜕𝛼

+ 𝜕𝑅
𝜕𝜙

𝜕𝜙
𝜕𝛼
� 𝛿𝛼�           (3) 

 
Using the definition of the general response, Eq.(1), 

Eq.(3) can be rewritten as 
 

𝛿𝑅
𝑅
≅ <𝛿𝐻1𝜙>

<𝐻1𝜙>
− <𝛿𝐻2𝜙>

<𝐻2𝜙>
+ <𝐻1𝛿𝜙>

<𝐻1𝜙>
− <𝐻2𝛿𝜙>

<𝐻2𝜙>
      (5) 

 
The first two terms are the direct components by the 

response functions which can be easily calculated from 
their definitions. However, the last two terms are the 
indirect components including the solution of the 
perturbation equation and they can’t be simply 
calculated, because the each transport equation of the 
perturbed state must be solved for the solution. For the 
more simple form of the indirect term, the adjoint 
method can be used. 

 
2.2 Generalized Adjoint Equation 

 
The first order perturbed equation for the eigenvalue 

problem can be expressed as the following 
 

(𝐴 − 𝜆𝐵)𝛿𝜙 = −(𝛿𝐴 − 𝜆𝛿𝐵)𝜙 + 𝛿𝜆𝐵𝜙       (6) 
 
Thus, the generalized adjoint equation can be 

described as Eq.(7). 
 

(𝐴∗ − 𝜆𝐵∗)Γ∗ = S∗ ≡ 1
𝑅
𝜕𝑅
𝜕𝜙

= 𝐻1
<𝐻1𝜙>

− 𝐻2
<𝐻2𝜙>

    (7) 
 

Here, Γ∗  is the generalized adjoint solution and the 
source term in the right side of Eq.(7) is set as the above 
form in order to simplify the indirect term of Eq.(5). 
Then, the generalized adjoint solution can be 
appropriately obtained according to the source term. 

Taking the inner product with the weight of Γ∗  in 
Eq.(6) and the weight of 𝛿𝜙 in Eq.(7), respectively, and 
using the definition of the adjoint operator, one can 
readily obtain the relation as the following 

 
�𝛿𝑅
𝑅
�
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡

≅ <𝐻1𝛿𝜙>
<𝐻1𝜙>

− <𝐻2𝛿𝜙>
<𝐻2𝜙>

  
= −< Γ∗(𝛿𝐴 − 𝜆𝛿𝐵)𝜙 > +𝛿𝜆 < Γ∗𝐵𝜙 >       (8) 

 
However, the second term of the right side in Eq.(8) 

still includes the perturbed eigenvalue, 𝛿𝜆, which must 
be obtained from the perturbed equation. For 
eliminating the second term, an auxiliary condition 
must be introduced as 

< Γ∗𝐵𝜙 > = 0                             (9) 
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This means that the generalized adjoint solution, Γ∗, 

satisfying the above condition can be calculated from 
Eq.(7).  Using the definition of the adjoint operator, one 
can easily obtain the general solution as Eq.(10) which 
consists of the particular solution,  Γ𝑝∗ , and the 
homogeneous solution, 𝜙∗, of Eq.(7) and satisfies the 
condition, Eq.(9). 

Γ∗ = Γ𝑝∗ −
<𝜙𝐵∗Γ𝑝∗ >
<𝜙𝐵∗𝜙∗>

𝜙∗                       (10) 
 
Therefore, the general adjoint equation and its 

condition can be established as Eq.(7) and Eq.(10), 
respectively, and the solution can be obtained using the 
iterative scheme described in next section. 

 
2.3 Scheme for Numerical Solution 
 

For obtaining the solution of the generalized adjoint 
equation, the fixed source problem, Eq.(7), must be 
solved  using a iterative method as the following. 
 

𝐴∗Γn+1∗ = 𝜆𝐵∗Γ𝑛∗ + 𝐻1
<𝐻1𝜙>

− 𝐻2
<𝐻2𝜙>

            (11) 
 

If considering the additional condition, Eq.(10), 
Eq.(11) becomes 
 
𝐴∗Γn+1∗ = 𝜆𝐵∗ �Γ𝑛∗ −

<𝜙𝐵∗Γ𝑛∗ >
<𝜙𝐵∗𝜙∗>

𝜙∗� + 𝐻1
<𝐻1𝜙>

− 𝐻2
<𝐻2𝜙>

 (12) 
 
Here, 𝜆 is the fundamental eigenvalue,  𝜙 is the solution 
of the forward equation, and 𝜙∗ is the solution of the 
fundamental adjoint equation.  

First, DeCART solves the forward equation and the 
fundamental eigenvalue and the solution should be 
obtained. Then, the fundamental adjoint equation must 
be calculated and the generalized adjoint solution can 
be produced from Eq.(12). 
 
2.4 Numerical Results 

 
For the verification of this code, the results of the 

code on PMR200 pin cell were compared to them of 
TSUNAMI of SCALE package.  

Fig. 1 shows the comparison of the generalized 
adjoint flux for the response of 𝜈𝛴𝑓  in the fuel region 

between SCALE and DeCART. Here, 𝑅 =
<𝜈𝛴𝑓𝑔𝜙𝑔>

<𝜙𝑔>
 

and S𝑔∗ =
𝜈𝛴𝑓𝑔

<𝜈𝛴𝑓𝑔𝜙𝑔>
− 1

<𝜙𝑔>
. The plot presents that two 

results are in a good agreement and the trend is similar 
to the fission cross section of U235, because the 
generalized adjoint flux represents the average 
importance of the neutron at the energy group g to the 
response, 𝜈𝛴𝑓. On the other hand, the slightly increased 
adjoint flux around 10MeV is attributable to the fission 
cross section of U238. The adjoint flux drop between 
5eV and 10eV corresponds to the peak of the 
importance to the capture cross section as shown in Fig. 
2. 

Fig. 2 presents the generalized adjoint solutions for 
the response of the capture cross section in the fuel 
region. It can be seen from the plot that the trend of the 
importance is similar to the capture cross section of 
U238 and the two codes product the similar results 
except the resonance region. The discrepancy is 
attributable to the difference methods and codes of the 
resonance treatment between two codes. 

 

 
Fig. 1. Generalized Adjoint Flux for Response, 𝝂𝜮𝒇 

 
Fig. 2. Generalized Adjoint Flux for Response, 𝜮𝒄 

 
3. Conclusions 

 
In this paper, the generalized adjoint solver based on 

the generalized perturbation theory is implemented on 
DeCART and the verification calculations were carried 
out. As the results, the adjoint flux for the general 
response coincides with the reference solution and it is 
expected that the solver could produce the parameters 
for the sensitivity and uncertainty analysis. 
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