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1. Introduction 

 
In x-ray imaging detectors, the signal generated in a 

detector element is proportional to the number of 

secondary carriers (such as optical photons or electron-

hole pairs) generated in the x-ray convertor. 

Furthermore, the location and statistics of secondary 

carriers are directly related to the absorbed x-ray energy. 

Even under monochromatic exposure conditions, there 

will be a distribution of absorbed energies due to the 

statistical nature of x-ray interactions.  

 

At diagnostic energies (10-120 keV), escape of 

fluorescent x rays following a photoelectric absorption 

and Compton-scattered x rays are primary sources of 

absorbed energy dispersion [1]. This increases both 

variability in deposited x-ray energy and image noise in 

both energy-integrating and photon-counting x-ray 

detectors. Accurate measurement of incident photon 

energy is particularly important in photon-counting 

techniques such as K-edge imaging. Therefore, it is 

necessary to model and understand the effects of x-ray 

interaction physics on the absorbed energy distribution 

(AED) which describes the expected distribution of 

absorbed energy as a function of incident photon energy. 

This energy dispersion determines the energy resolution 

of spectroscopic systems and affects image quality in 

radiographic systems through the Swank factor and 

detective quantum efficiency [2,3,4,5].  

 

We believe understanding the AED will give insight 

to the fundamental performance limitations of both 

conventional and novel photon-counting x-ray imaging 

detectors. 

 

2. Methods and Materials 

 

Analytic expressions relating the AED to underlying 

x-ray interaction physics have been introduced 

previously at the IEEE NSS-MIC-RTSD 2012 meeting 

[6]. This AED is determined by calculating both the 

probability and energy deposited for each interaction 

type (e.g., photoelectric, photoelectric with fluorescence, 

Compton) for semi-infinite slab and pixel geometries. 

Energy contributions from neighboring elements in 

digital detectors are an important cause of additional 

energy dispersion as shown in Figure 1. 

 

 

 

 

In addition to energy deposition considerations 

described in the previous model, transport 

considerations can have a large impact on the AED. We 

have extended the analytic model to include transport 

properties of liberated secondary quanta for more 

practical and accurate modeling, including depth-

dependent charge transport properties such as charge 

collection and sharing between neighboring elements.  

These effects are particularly important in pixel imaging 

detectors. 
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Fig. 1. Schematic illustration showing the effect of multiple 

scatter on the response function for slab (a) and pixel (b) 

geometries. Numbers in converter correspond to photon 

energy deposited with each interaction. 
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Fig. 2. Comparison of analytic absorbed-energy response 

function (black solid line) and Monte Carlo simulations, with 

(red dashed line) and without (blue dotted line) multiple 

scattering. 
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Photoconductor-based detectors are playing an 

important role in the development of photon-counting 

and spectroscopic systems. We have extended the AED 

description to include secondary quanta transport 

properties associated with detector materials and 

geometries in these systems. We assumed Poisson 

conversion gain to account for the random nature of 

charge liberation for a given x-ray deposition (assumed 

to be deterministic conversion in the previous model). 

 

The effect of depth-dependent and incomplete charge 

collection [7] and charge sharing [8,9] on the AED was 

characterized by calculating the mean probability 

distributions representing the absorbed energy 

relocation as a function of absorbed energy. For the 

charge-sharing model, we calculated the fractions 

contributing to neighboring elements along the 

interaction depth. 

 

3. Result and Summary 

 

While x-ray AED results, including Poisson 

conversion gains and obtained for particular materials 

and configurations, have been validated by Monte Carlo 

calculations (see Fig. 2), the strength of analytic models 

is that it allows one to determine the two-dimensional 

response functions of arbitrary photoconductor 

materials without the computational demands of Monte 

Carlo simulations. Since small pixel size is a mandatory 

requirement to achieve high resolution imaging system, 

understanding the effects of x-ray interaction and charge 

transport properties on image quality is critical. 

 

We believe this model will be useful for correcting 

spectral distortion artifacts commonly observed in 

photon-counting applications and evaluating the 

imaging performance of novel x-ray convertor materials, 

and are in the progress of using Monte Carlo 

simulations and experiments using a CdTe pixel 

detector to validate the transport properties of the 

analytic approach. 
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