
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 22, 2009

Using Machine Learning for Risky Module Estimation of

Safety-Critical Software

Young-Mi Kim and Choong-Heui Jeong

 Korea Institute of Nuclear Safety, P.O.Box 114, Yuseong-gu, Daejeon, Korea, 305-600

*Corresponding author: ymkim@kins.re.kr

1. Introduction

With the rapid development of digital computer and

information processing technologies, nuclear I&C
(Instrument & Control) system which needs safety-
critical function has adopted digital technologies.
Software used in safety-critical system must have high
dependability. Highly dependable software needs strict
software testing and V&V activities.

These days, regulatory demands for nuclear power

plants are more and more increasing. But, human
resources and time for regulation are limited. So, early
software risky module prediction is very useful for
software testing and regulation activities.

Early estimation can be built from a collection of

internal metrics during early development phase.
Internal metrics are measures of a product derived from
assessment of the product itself, and external metrics
are measures of a product derived from assessment of
the behavior of the systems [1]. Internal metrics can be
collected more easily and early than external metrics. In
addition, internal metrics can be useful for estimating
fault-prone software modules using machine learning [1,
2, 3].

In this paper, we introduce current research status

and techniques related to estimating risky software
module using machine learning techniques. Section 2
describes the overview of the estimation model using
machine learning and section 3 describes processes of
the estimation model. Section 4 describes several
estimation models using machine leanings. Section 5
concludes the paper.

2. Overview of the Estimation Model

The area of machine learning focuses on the study of

models that improve their performance at some task
automatically through experience [4, 5]. Using machine
learning techniques, we can use the methods which are
to learn the relationship between certain observable
features of a metrics and the estimation from software
metrics data during early software development phases.
Using machine learning, a regression function is called
a model, the input variables are called features, the
output variable is called target, and a pair consisting of

a feature vector and the corresponding target value is
called a pattern [6]. Some patterns are used for training
for iteratively learning the regression function; other
patterns are used for testing the performance of the
regression function. Fig. 1 shows the basic steps of our
estimation model.

Fig. 1. Basic Steps of the Estimation Model

3. Processes of the Estimation Model

3.1 Determine a Set of Candidate Software Metrics

For the estimation of fault-prone software module,
we can use software metrics. There are many kinds of
software metrics. The followings are some of
representative metrics used by NASA software testing
project: number of blank lines, branch count, number
of calls to other functions, number of conditionals,
total number of lines, the number of lines of comments,
the cyclomatic complexity, the cyclomatic density,
number of decision points, the decision density, the
design complexity, the halstead length, the halstead
difficulty, and the halstead programming time.

3.2 Determine an Appropriate Subset of Software
Metrics

There have been many researches for searching
relationships between software metrics and software
faults. There are two categories for estimating
software faults using software metrics. One is using
statistical techniques and the other is using machine
learning. The models which using statistical
classification techniques are Discriminant Analysis

Determine a set of candidate software metrics

Determine an appropriate subset of software metrics

Collect the data set for learning

Train using different machine learning model

Select the best model for applying

- 1 -

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 22, 2009

and Factor Analysis and which the ones using machine
learning classification techniques are decision trees,
artificial neural networks, support vector machines, etc.
Many parts of these researches have treated finding
the subset of the software metrics that are most likely
to predict the existence of faults. But, relationships
between software metrics and fault-proneness are
often complex [6, 7].

3.3 Collect the Data Set for Learning

We should get data sets for training. The larger
training data set is available, the more information can
be used as input variable for risky module estimating.
But, it is very difficult to obtain the failure data set
especially in the case of safety-critical software. Also,
data sets of the safety critical software used in a
different application or same software used in a
different environment may be less meaningful for
estimation. This is one choice to get the data sets from
the application which has similar characteristics.
Characteristics of applications are methodologies,
languages, program size, operating environment, and
etc.

3.4 Train using Different Machine Learning Model

We can use several different machine learning
models to estimating risky software modules. Some of
these are artificial neural network learning and support
vector machine. Training a machine learning models is
a nonlinear optimization process which intends fitting
the regression function to the training data.

3.5 Select Best Model for Applying

The performance of the prediction models for
separation between the two classes (e. g. risky or non-
risky) can be evaluated using a confusion matrix.
Accuracy, precision, recall and F-measure which can
be derived from the confusion matrix also can be used
prediction performance measures. In the case of multi-
classes, zero/one error can be used for measure.

4. Selection of Learning Models

Representative machine learning techniques for

estimating risky software modules are Artificial Neural
Networks (ANN) and Support Vector Machines (SVM).

4.1 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) provide a general,

practical method for learning real-valued, discrete-
valued, and vector-valued function from examples.
ANN learning is robust to errors in the training data and
has been successfully applied to problems such as
interpreting visual sense, speech recognition, and
learning robot control strategies [8].

4.2 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are kernel based
learning machines that introduced by Vapnik in 1995 [6,
7]. SVMs used structural risk minimization principle
(SRM) for minimizing the generalization error and they
can generalize the high dimensional feature spaces
using small training sample data. The hyperplane
corresponding to 0=+⋅ bxw is optimal hyperplane.
The hyperplanes corresponding to 1±=+⋅ bxw are the
bounding hyperplanes. Optimal hyperplane corresponds
to the one that minimizes the training error and has the
maximal margin. In order to generalize to the case
where the input spaces can not separate the two classes
properly, a hyperplane is established in high
dimensional feature space and the nonlinear
classification is replaced by a linear classification
problem. If the dimensionality of the new feature space
is sufficiently high, the data will always be linearly
separable. For supporting nonlinear mapping into
feature space, the kernel function is used. The most
common kernel functions are linear, polynomial,
gaussian, and sigmoid.

5. Summary

High dependability software usually requires high

cost for software testing, verification and validation.
Also, regulatory activities are very expensive to be
exhaustively performed. More and more the safety
critical system of NPP adopted digital technologies,
more and more the regulatory activities are increased. If
we can estimate the risky software module in early
development phases, their costs can be reduced and
regulatory activities can be focused on the more risky
modules relatively. Future, we will experiment using
various machine learning algorithms and consider their
applicability to the safety-critical system.

REFERENCES

[1] Nachiappan Nagappan, Toward a Software Testing and

Reliability Early Warning Metric Suite, ICSE’04, 2004.
[2] P. Bellini, I. Bruno, P. Nesi, D. Rogai, Comparing Fault-

Proneness Estimation Models, IEEE, 2005.
[3] Fei, Ping Guo, and Michael R. Lyu, A Novel Method for

Early Software Quality Prediction Based on Support
Vector Machine, ISSRE’05, 2005

[4] Bo Yang, Lan Yao, Hong-Zhong Huang, Early Software
Quality Prediction Based on a Fuzzy Neural Network
Model, ICNC 2007, 2007

[5] Frank Padberg, Thomas Ragg, and Ralf Schoknecht,
Using Machine Learning for Estimating the Defect
Content After an Inspection, IEEE Transaction on
Software Engineering, 2004

[6] E.O. Elish, M.O. Elish, Predicting defect-prone software
modules using support vector machines, The Journal of
Systems and Software, 2008

[7] Y. M. Kim and C. H. Jeong, Estimation of Risky Modules
in Safety-Critical Software, KNS, Fall, 2008

[8] Tom M. Mitchell, Machine Learning, McGraw-Hill,
1997

- 2 -

	분과별 논제 및 발표자

	PNO0: - 1263 -
	PNO1: - 1264 -

