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1. Introduction 

 
With the rapid development of digital computer and 

information processing technologies, nuclear I&C 
(Instrument & Control) system which needs safety-
critical function has adopted digital technologies. 
Software used in safety-critical system must have high 
dependability. Highly dependable software needs strict 
software testing and V&V activities. 

 
These days, regulatory demands for nuclear power 

plants are more and more increasing. But, human 
resources and time for regulation are limited. So, early 
software risky module prediction is very useful for 
software testing and regulation activities. 

 
Early estimation can be built from a collection of 

internal metrics during early development phase. 
Internal metrics are measures of a product derived from 
assessment of the product itself, and external metrics 
are measures of a product derived from assessment of 
the behavior of the systems [1].  Internal metrics can be 
collected more easily and early than external metrics. In 
addition, internal metrics can be useful for estimating 
fault-prone software modules using machine learning [1, 
2, 3]. 

 
In this paper, we introduce current research status 

and techniques related to estimating risky software 
module using machine learning techniques. Section 2 
describes the overview of the estimation model using 
machine learning and section 3 describes processes of 
the estimation model. Section 4 describes several 
estimation models using machine leanings. Section 5 
concludes the paper. 

 
2. Overview of the Estimation Model 

 
The area of machine learning focuses on the study of 

models that improve their performance at some task 
automatically through experience [4, 5]. Using machine 
learning techniques, we can use the methods which are 
to learn the relationship between certain observable 
features of a metrics and the estimation from software 
metrics data during early software development phases. 
Using machine learning, a regression function is called 
a model, the input variables are called features, the 
output variable is called target, and a pair consisting of 

a feature vector and the corresponding target value is 
called a pattern [6]. Some patterns are used for training 
for iteratively learning the regression function; other 
patterns are used for testing the performance of the 
regression function.  Fig. 1 shows the basic steps of our 
estimation model. 
 

 
Fig. 1. Basic Steps of the Estimation Model 

 
3. Processes of the Estimation Model 

 
3.1 Determine a Set of Candidate Software Metrics 
 

For the estimation of fault-prone software module, 
we can use software metrics. There are many kinds of 
software metrics. The followings are some of 
representative metrics used by NASA software testing 
project: number of blank lines,  branch count, number 
of calls to other functions, number of conditionals, 
total number of lines, the number of lines of comments, 
the cyclomatic complexity, the cyclomatic density, 
number of decision points,  the decision density, the 
design complexity, the halstead length, the halstead 
difficulty, and the halstead programming time. 

 
3.2 Determine an Appropriate Subset of Software 
Metrics 
 

There have been many researches for searching 
relationships between software metrics and software 
faults. There are two categories for estimating 
software faults using software metrics. One is using 
statistical techniques and the other is using machine 
learning. The models which using statistical 
classification techniques are Discriminant Analysis 
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and Factor Analysis and which the ones using machine 
learning classification techniques are decision trees, 
artificial neural networks, support vector machines, etc. 
Many parts of these researches have treated finding 
the subset of the software metrics that are most likely 
to predict the existence of faults. But, relationships 
between software metrics and fault-proneness are 
often complex [6, 7]. 

 
3.3 Collect the Data Set for Learning 
 

We should get data sets for training. The larger 
training data set is available, the more information can 
be used as input variable for risky module estimating. 
But, it is very difficult to obtain the failure data set 
especially in the case of safety-critical software. Also, 
data sets of the safety critical software used in a 
different application or same software used in a 
different environment may be less meaningful for 
estimation. This is one choice to get the data sets from 
the application which has similar characteristics. 
Characteristics of applications are methodologies, 
languages, program size, operating environment, and 
etc. 

 
3.4 Train using Different Machine Learning Model 
 

We can use several different machine learning 
models to estimating risky software modules. Some of 
these are artificial neural network learning and support 
vector machine. Training a machine learning models is 
a nonlinear optimization process which intends fitting 
the regression function to the training data.  

 
3.5 Select Best Model for Applying 
 

The performance of the prediction models for 
separation between the two classes (e. g. risky or non-
risky) can be evaluated using a confusion matrix. 
Accuracy, precision, recall and F-measure which can 
be derived from the confusion matrix also can be used 
prediction performance measures. In the case of multi-
classes, zero/one error can be used for measure.  

 
4. Selection of Learning Models 

 
Representative machine learning techniques for 

estimating risky software modules are Artificial Neural 
Networks (ANN) and Support Vector Machines (SVM).  

 
4.1 Artificial Neural Networks (ANNs) 

 
Artificial Neural Networks (ANNs) provide a general, 

practical method for learning real-valued, discrete-
valued, and vector-valued function from examples. 
ANN learning is robust to errors in the training data and 
has been successfully applied to problems such as 
interpreting visual sense, speech recognition, and 
learning robot control strategies [8]. 

 
4.2 Support Vector Machines (SVMs) 

Support Vector Machines (SVMs) are kernel based 
learning machines that introduced by Vapnik in 1995 [6, 
7]. SVMs used structural risk minimization principle 
(SRM) for minimizing the generalization error and they 
can generalize the high dimensional feature spaces 
using small training sample data. The hyperplane 
corresponding to 0=+⋅ bxw  is optimal hyperplane. 
The hyperplanes corresponding to 1±=+⋅ bxw  are the 
bounding hyperplanes. Optimal hyperplane corresponds 
to the one that minimizes the training error and has the 
maximal margin. In order to generalize to the case 
where the input spaces can not separate the two classes 
properly, a hyperplane is established in high 
dimensional feature space and the nonlinear 
classification is replaced by a linear classification 
problem. If the dimensionality of the new feature space 
is sufficiently high, the data will always be linearly 
separable. For supporting nonlinear mapping into 
feature space, the kernel function is used. The most 
common kernel functions are linear, polynomial, 
gaussian, and sigmoid. 
 

5. Summary 
 
High dependability software usually requires high 

cost for software testing, verification and validation.  
Also, regulatory activities are very expensive to be 
exhaustively performed. More and more the safety 
critical system of NPP adopted digital technologies, 
more and more the regulatory activities are increased. If 
we can estimate the risky software module in early 
development phases, their costs can be reduced and 
regulatory activities can be focused on the more risky 
modules relatively. Future, we will experiment using 
various machine learning algorithms and consider their 
applicability to the safety-critical system. 
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